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A sparse version of Kernel Fisher Discriminant Analysis using an approach based onMatching Pursuit (MPKFDA) has been shown
to be competitive with Kernel Fisher Discriminant Analysis and the Support Vector Machines on publicly available datasets, with
additional experiments showing that MPKFDA on average outperforms these algorithms in extremely high dimensional settings.
In (nearly) all cases, the resulting classifier was sparser than the Support Vector Machine. Natural questions that arise are what is
the relative importance of the use of the Fisher criterion for selecting bases and the deflation step? Can we speed the algorithm
up without degrading performance? Here we analyse the algorithm in more detail, providing alternatives to the optimisation
criterion and the deflation procedure of the algorithm, and also propose a stagewise version. We demonstrate empirically that
these alternatives can provide considerable improvements in the computational complexity, whilst maintaining the performance of
the original algorithm (and in some cases improving it).

1. Introduction

Linear discriminant analysis and the related Fisher Discrim-
inant Analysis were proposed by Fisher [1] as statistical
approaches for classifying new data into two separate groups
(the former assumes homoskedasticity, whereas the latter
does not).The underlying assumption in Fisher Discriminant
Analysis is that conditional probability density functions
𝑝(x | 𝑦 = 1) and 𝑝(x | 𝑦 = −1) are both normally distributed.
Under this assumption, the Bayes optimal solution is to
predict points as being from the second class if the ratio of
the log-likelihoods is below some threshold (usually chosen
as the point half-way between the class centroids).

Fisher Discriminant Analysis has been formulated using
the “kernel trick,” resulting in Kernel Fisher Discriminant
Analysis (KFDA) [2, 3]. The resulting algorithm is Bayes
optimal if conditional probability density functions of the
data in the feature space𝑝(𝜙(x) | 𝑦 = 1) and𝑝(𝜙(x) | 𝑦 = −1)
are normally distributed and has shown to be empirically
competitive with other state-of-the-art algorithms such as the
Support Vector Machine (SVM) [2, 4].

One drawback, as with most kernel methods, is that stor-
ing large kernel matrices is computationally prohibitive. In

order to tackle this problem, one could subsample the dataset
[5]. More interestingly, several authors have made attempts
at addressing this issue by creating low rank kernel matrices
behaving similarly to the full ranked ones whilst allowing for
cheaper computations [6, 7]. Most important for us is the
work of [8] where they devise a method of constructing low
rank kernel matrices, motivated by a greedy approach called
Matching Pursuit.

Matching Pursuit was proposed in the signal processing
literature [9] as an attempt at finding a sparse set of basis
functions (atoms) for a signal from a given dictionary and can
be interpreted as a sparse version of least squares regression
when the Orthogonal Matching Pursuit version is applied. In
Orthogonal Matching Pursuit, each time a dictionary atom
is chosen, the remaining weight vectors are projected into
a space orthogonal to those chosen such that future atoms
are only considered from a set far from those already picked.
KernelMatching Pursuit [10] has been proposed as the kernel
counterpart of Orthogonal Matching Pursuit.

The greedy iterative idea of Matching Pursuit was applied
to KFDA in order to impose “dual sparsity,” as is achieved by
the (kernel) SVM [4], resulting in the algorithm Matching
Pursuit KFDA (MPKFDA) [11]. The authors showed that

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 793986, 12 pages
http://dx.doi.org/10.1155/2015/793986



2 Mathematical Problems in Engineering

this sparse version results in generalisation error bounds
guaranteeing its future success. The bounds justify the choice
of the greedy strategy, despite not being provably optimal [12],
by ensuring that for any random choice of dataset and from
any given distribution the resulting classifierwill be “probably
approximately correct” [13] with its predictions. In fact, the
bound actually states that any strategy that simultaneously
results in a sparse classifier and achieves a low training error
will with high probability generalise well to new data, and
given two classifiers with the same empirical error it favours
the choice of the more parsimonious of the two.

One of the practical advantages of MPKFDA lies in
the evaluation on test points, only 𝑘 kernel evaluations are
required (where 𝑘 is the number of basis vectors chosen)
compared to𝑚 (the number of samples) needed for KFDA. It
is also worth stating thatMPKFDA like KFDA has the advan-
tage of delivering conditional probabilities of classification
(unlike the SVM).

The paper has the following layout. Section 2 presents
some recent developments in this topic. In Section 3.1 we
present the notations used throughout the paper while
Section 3.2 discusses the main practical contribution of the
paper and presents the MPKFDA algorithm and its variants.
The experiments are given in Section 3.4. The experimental
results and discussion are in Section 4, and finally, some
concluding remarks are given in Section 5.

2. Related Work

A greedy preimage algorithm similar in nature to MPKFDA
was introduced by [14], and the comparisons in the paper
MPKFDA was more accurate than the authors’ method for
4 of the 6 datasets tested.

Following on from the empirical analysis given in [11],
MPKFDA has since been applied to text classification [15],
where experiments on the 20-Newsgroup dataset [16] dem-
onstrated that MPKFDA maintained comparable classifica-
tion accuracy compared with the SVM and 𝑘-nearest neigh-
bours, whist significantly reducing the computation costs at
prediction time.

Recently, an algorithm based on a manifold criterion and
the Fisher criterion was, called Embedded Manifold-based
Kernel Fisher Discriminant Analysis [17]. The authors claim
that this preserves not only the local geometry structure of
the data, but also the global discriminant structure of the
data.This method bears striking similarities to the MPKFDA
method of [11], except that whereas MPKFDA can be solved
through an efficient iterative procedure, the method of [17]
requires solving the full generalised eigenvalue problem.

From a theoretical perspective, a less general but tighter
bound for KFDA than the type given in [11] has been devel-
oped [18], where the authors give a nontrivial, nonasymptotic
upper bound on the classification error of KFDA under
the assumption that the kernel induced space is a Gaussian
Hilbert space. Amore general compression bound onMatch-
ing Pursuit algorithms in a kernel defined feature space was
developed by [19], which in principle could be extended to
MPKFDA.

3. Materials and Methods

3.1. Preliminaries. Given a sample 𝑆 containing 𝑚 examples
x ∈ R𝑛 and labels 𝑦 ∈ {−1, 1}, let X = (x1, . . . , x𝑚)
be the input vectors stored in matrix X as row vectors and
let y = (𝑦1, . . . , 𝑦𝑚)

 be the labels in a column vector,
where  denotes the transpose of vectors or matrices. For
simplicity, we assume that the examples are already projected
into the kernel defined feature space, so that the kernelmatrix
K has entries K[𝑖, 𝑗] = ⟨x

𝑖
, x
𝑗
⟩. The notation K[:, 𝑖] will

denote the 𝑖th column of the matrix K. When given a set
of indices i = {𝑖1, . . . , 𝑖𝑘} then K[i, i] denotes the square
matrix defined solely by the index set i. Given a Hilbert
spaceH, the reproducing property can be stated as 𝑓(x

𝑖
) =

⟨𝑓, 𝜅(x
𝑖
, ⋅)⟩H for the reproducing kernel 𝜅 for every function

𝑓(x
𝑖
) belonging toH.

3.2. Algorithmics. Firstly we review Fisher Discriminant
Analysis and its kernel form.We then show how the (orthog-
onal)Matching Pursuit formof the algorithm is derived using
the Nyström low-rank approximation method.

3.2.1. Fisher Discriminant Analysis. Using the notation from
[3], the Fisher Discriminant Analysis problem can be written
as

w∗ = max
w

wXyyXw
wXBXw

, (1)

where B = D − C andD and C are given by

D [𝑖, 𝑖] =

{{{

{{{

{

2𝑚−

𝑚
if 𝑦
𝑖
= +1

2𝑚+

𝑚
if 𝑦
𝑖
= −1,

C [𝑖, 𝑗] =

{{{{{{

{{{{{{

{

2𝑚−

(𝑚𝑚+)
if 𝑦
𝑖
= +1 = 𝑦

𝑗

2𝑚+

(𝑚𝑚−)
if 𝑦
𝑖
= −1 = 𝑦

𝑗

0 otherwise,

(2)

where 𝑚+(𝑚−) are the number of positive (negative) exam-
ples.

3.2.2. Kernel Fisher Discriminant Analysis. In [3], it was
shown that we can express w∗ in the dual (unregularised)
form as a linear combination of the training examples w∗ =
X𝛼∗, where 𝛼∗ is given by 𝛼∗ = ((1/𝜆)y − BXw∗), with
𝜆 being a Lagrange Multiplier. Assuming that the data has
already been projected into a high dimensional feature space,
the kernel matrix is defined simply as K = XX. This allows
us to perform the so-called “kernel trick” and replace w with
X𝛼 to give the following dual form for Fisher Discriminant
Analysis:

𝛼
∗

= max
𝛼

𝛼
XXyyXX𝛼
𝛼
XXBXX𝛼

= max
𝛼

𝛼
KyyK𝛼
𝛼
KBK𝛼

. (3)

This kernel trick is based on the reproducing property, with
the observation that in the equation to compute 𝛼∗ as well to
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evaluate on a test point, all that is needed are the vectors x
𝑖

in inner products with each other. It is therefore sufficient to
know these inner products only, instead of the actual vectors
x
𝑖
. This allows inner products between nonlinear mappings

𝜙 : x
𝑖
→ 𝜙(x

𝑖
) ∈ F of x

𝑖
into a feature space F, as long

as the inner product 𝜅(x
𝑖
, x
𝑗
) = 𝜙(x

𝑖
)


𝜙(x
𝑗
) can be evaluated

efficiently. Inmany cases, this inner product or kernel function
can be evaluatedmuchmore efficiently than the feature vector
itself, which can even be infinite dimensional in principle. A
commonly used kernel function for which this is the case is
the Radial Basis Function (RBF) kernel, which has a width
parameter 𝛾:

𝜅
𝛾
(x
𝑖
, x
𝑗
) = exp(−1

𝛾


x
𝑖
− x
𝑗



2
) . (4)

3.2.3. Nyström Low-Rank Approximations. The Nyström
method of low-rank approximation of the Gram matrix [20]
is defined as

K̃ = K [:, i]RRK [:, i] , (5)

where R is the Cholesky decomposition of K[i, i]−1 such that
RR = K[i, i]−1. However, rather than using the full [𝑚 × 𝑚]
low rank approximation, it would be preferable to work in
the [𝑘 × 𝑘] space where 𝑘 ≪ 𝑚. In order to do this, we treat
K[:, i]R as a new input X̃ in Fisher Discriminant Analysis,
which in effect means we are projecting into a 𝑘-dimensional
subspace. Within this space, we can view

Σ̃
𝑘
= X̃X̃ = RK [:, i] K [:, i]R, (6)

as a form of covariance matrix within this space. This trick
allows us to perform nonlinear discriminant analysis on a
sparse subspace using standard (linear) Fisher Discriminant
Analysis.

3.2.4. Matching Pursuit Kernel Fisher Discriminant Analy-
sis. Orthogonal Matching Pursuit (nonorthogonal Matching
Pursuit omits the deflation step) can be formalised as a
general framework in machine learning, where we repeat the
following steps:

(1) Function maximisation.
(2) Deflation.

We can have an Orthogonal Matching Pursuit algorithm
for Fisher Discriminant Analysis [3] in the following way.
Initially, we pick one example i = {𝑖1} and project the remain-
ing training examples into the space defined by i.We then find
the index that maximises the KFDA criterion, after which we
carry out a deflation of the kernel K to allow new training
examples to be chosen. Finally, this give us a set i of training
examples that can be used to compute the final weight vector
w, together with the Fisher Discriminant Analysis decision
function 𝑓(x) = sgn(wx + 𝑏), where 𝑏 is the bias and x an
example.

We can define the following maximisation problem for a
dual sparse version of FisherDiscriminant Analysis by setting

w = Xe
𝑖
, where e

𝑖
is the 𝑖th unit vector of length 𝑚, and

substituting into the Fisher Discriminant Analysis problem
described above (ignoring constants) to yield

max
𝑖

𝜌
𝑖
=
e
𝑖
XXyyXXe

𝑖

e
𝑖
XXBXXe

𝑖

=
K [:, 𝑖] yyK [:, 𝑖]
K [:, 𝑖] BK [:, 𝑖]

. (7)

Maximising the quantity above leads to maximisation of the
Fisher Discriminant ratio corresponding to e

𝑖
and hence

a sparse subset of the original KFDA problem. We would
like to find the optimal set of indices i. We proceed in a
greedy manner (Matching Pursuit) in much the same way
as [8, 10]. The procedure involves choosing basis vectors that
maximise the Fisher Discriminant ratio iteratively until some
prespecified number of 𝑘 vectors are chosen.

After finding the best index 𝑖, the kernel matrixK is made
orthogonal to the basis chosen by setting 𝜏 = K[:, 𝑖]/‖K[:, 𝑖]‖
and deflating using, for example, the projection deflation
method [11, 21] K = (I − 𝜏𝜏)K. If 𝜏 were “true” eigenvectors,
this deflation ensures that remaining potential basis vectors
will be chosen from a space that is orthogonal to those bases
already picked. After choosing the 𝑘 training examples, giving
i = (𝑖1, . . . , 𝑖𝑘), we can use the Nyström approximation
defined in (6) to give us our new data matrix X̃ = RK[:, i].
We then train Fisher Discriminant Analysis as in (1) in this
new projected space to find a 𝑘-dimensional weight vector
w
𝑘
. Given a new point z, using the kernel evaluated between

the test point and the training points within the index set:
k = 𝜅 (z, x ∈ i) and its projection into the Nyström subspace
𝜙(z) = Rk, we can make predictions using the Fisher
Discriminant Analysis prediction function:

𝑓 (z) = sgn (⟨w̃, 𝜙 (z)⟩ + 𝑏) . (8)

3.2.5. Generalisation Error Bound for MPKFDA

Theorem 1 (generalisation error of MPKFDA [11]). Let 𝑆 be
a sample of 𝑚 points drawn independently according to a
probability distribution 𝑃 where 𝑅 is the radius of the ball in
the feature space containing the support of the distribution. Let
𝜇
𝑘
(𝜇
𝑘
) be the empirical (true) mean of a sample of𝑚−𝑘 points

from the set 𝑆 \ i projected into a 𝑘-dimensional space, Σ̂
𝑘
(Σ
𝑘
)

is its empirical (true) covariance matrix, w
𝑘

̸= 0 with norm
1, and 𝑏

𝑘
is given, such that w

𝑘
𝜇
𝑘
≤ 𝑏
𝑘
and 𝛼 ∈ [0, 1). Then,

with probability 1 − 𝛿 over the draw of the random sample, if
𝑏
𝑘
− w
𝑘
𝜇
𝑘
≥ 𝜅(𝛼)√w

𝑘
Σ̂
𝑘
w
𝑘
, then

𝑃 (w
𝑘
𝜙 (x) − 𝑏

𝑘
> 0) < 1−𝛼, (9)

where 𝛼 solves the equation 𝛼 = (𝑏
𝑘
− w
𝑘
𝜇
𝑘
− 𝐴)

2
/(w
𝑘
Σ̂
𝑘
w
𝑘
+

𝐵 + (𝑏
𝑘
− w
𝑘
𝜇
𝑘
− 𝐴)

2
) such that

𝜇𝑘 −𝜇
𝑘

 ≤
𝑅

√𝑚 − 𝑘
(2+√𝑘 ln 𝑒𝑚

𝑘
+ 2 ln 2𝑚

𝛿
) ,


Σ̂
𝑘
−Σ
𝑘

𝐹
≤

2𝑅2

√𝑚 − 𝑘
(2+√𝑘 ln 𝑒𝑚

𝑘
+ 2 ln 4𝑚

𝛿
) .

(10)
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Proof. Here we present a sketch of the proof; for a full proof
see [11].

First we need a bound the true and empirical means of an
𝑚 sample 𝑆, which was given by [22], and the corollary of the
bound on the true and empirical covariances, both of which
make use of the radius of the ball in the feature space that
contains the support of the distribution. The next ingredient
is the lemma of [23] which bounds the error of a robust
minimax classifier (whose maximiser coincides with the
maximum of the KFDA objective) given the true mean and
covariance. Combining these, and applying a 𝑘-dimensional
projection (such as given by the Nyström method), gives us
the result.

3.3. Generalisations. We can see that the resulting bound
does not require the optimisation criterion (7), nor does it
require the deflation as proposed by the Nyström method. In
fact, all it requires is that the classifier uses a sparse set of basis
vectors, and that the training error is small. This allows us to
consider other optimisation criteria and deflations methods,
which potentially have similar (or even better) generalisation
properties.

3.3.1. Alternative Optimisation Criteria. The optimisation
criterion (7) scales as O(𝑚2

), meaning that the algorithm
scales as O(𝑚2

𝑘). It is worth investigating whether cheaper
O(𝑚) or even näıve O(1) methods can compete with this
method. In addition, although at first sight the criterionmight
to make logical sense, there are other possible ways in which
the sparse basis set could be chosen. Some alternatives are
discussed below. The original optimisation criterion will be
called optimal for the rest of the paper, with the short
names for the othermethods considered given in parentheses
below.

(i) Pseudo-Fisher (pseudo): we know that the denomi-
nator in the Fisher criterion captures the “within-class” scat-
ter of the data. In some cases, particularly in the case of bal-
anced datasets, this may be assumed to be relatively uniform
across the classes. Whilst of the same order, clear the maxi-
misation will be significantly faster if only the numerator is
used (essentially twice as fast). The maximisation is simply
defined as

max
𝑖

𝜌
𝑖
= e
𝑖
XXyyXXe

𝑖
= K [:, 𝑖] yyK [:, 𝑖] . (11)

(ii) Random (random): of course one might ask if the
Fisher criterion is really helping the optimisation at all. In
the work of [11], it was simply assumed that the Fisher
criterion was important in the optimisation. A simple test
of the veracity of this is to simply select the bases uniformly
at random (without replacement). This method is not quite
as unprincipled as it may seem at first sight. By performing
the optimisation in this manner, the algorithm reduces to
becoming the randomised Nyström approximation [20],
adapted for the KFDA framework.

There are two results for the Nyström approximation
which are relevant: an upper bound on the expected recon-
struction of the low rank matrix approximation [24] and
a bound which shows that if there exists a separator with

hard margin 𝛾 in the original space a Nyström projection of
dimension 𝑑 ≥ (8/𝜖)[1/𝛾2 + ln(1/𝛿)] will with probability
1−𝛿 over the selection of the 𝑑 points defining the projection
create a margin of at least 𝛾/2 for all but at most an 𝜖 fraction
of the training data [25]. The second statement implies
the potential for good generalisation since a large margin
classifier misclassifying some points has a provable bound
on generalisation. Nonetheless it is not clear that this will be
found by the margin maximising SVM, since it deals with
margin errors using slack variables that do not simply count
margin errors, let alone KFDA, which maximises the average
margin. Furthermore, the assumption that there exists a
hard margin separator in the original space is in practice
unrealistic. A SVM solution with small objective might be
found, implying good generalisation but at the expense of a
number of points with nonzero slack variables. Nevertheless,
the first statement, that the reconstruction error of the kernel
matrix is bounded, implies that learning may be possible
using this seemingly naı̈ve method. Furthermore it provides
a test that the Fisher criterion is worth computing in practice,
and as such it is included in the experiments below.

(iii) Reverse Fisher (reverse): whereas the SVM finds
points that are difficult to classify in each class and constructs
a hyperplane that maximises the separation between these
points, theMPKFDA seeks to find a few points thatmaximise
average margin between the classes. One interesting, and
again slightly perplexing possibility, is that the complete
reverse of the Fisher criterion might be useful in the sparse
selection of bases. The proposal here is not to completely
reverse the KFDA algorithm but simply to use the reverse
criterion for the selection of bases. By selecting bases in this
way, the points that are least characteristic of the classes will
be chosen first, which in high noise and/or highly nonlinear
situations that require complicated decision borders could
allow the algorithm to perform better for certain datasets.
Of course, as the number of bases chosen approaches 𝑚, the
algorithm reverts to the full Fisher discriminant. At the very
worst, this provides another sanity check for the use of the
standard criteria of (7). In this case, the optimisation criterion
is

min
𝑖

𝜌
𝑖
=
e
𝑖
XXyyXXe

𝑖

e
𝑖
XXBXXe

𝑖

=
K [:, 𝑖] yyK [:, 𝑖]
K [:, 𝑖] BK [:, 𝑖]

. (12)

(iv) Reverse Pseudo-Fisher (reverse-pseudo): natu-
rally, one could again consider a pseudooptimisation where
only the between-class scatter is considered.The optimisation
criterion then becomes

min
𝑖

𝜌
𝑖
= e
𝑖
XXyyXXe

𝑖
= K [:, 𝑖] yyK [:, 𝑖] . (13)

3.3.2. Deflation Methods. A matrix deflation modifies a
matrix to eliminate the influence of a given eigenvector, typ-
ically by setting the associated eigenvalue to zero (see [21] for
a more detailed discussion). For the greedy Fisher algorithm,
the deflation step ensures that sufficiently different points are
chosen at each step. It is easy to see that if a point gives a high
value for the Fisher criterion, then nearby points will also
give high values, and vice versa. By removing the influence of



Mathematical Problems in Engineering 5

a point, the scores for all nearby points should be lowered.
Thismeans that at the next step, points that are orthogonal (or
close to orthogonal) will be selected. Of course this is easily
tested by running the algorithm without any deflation step.
Thiswill be included in the experimental results for validation
purposes (and will be called none).

Note that if we do not perform any deflation, the algo-
rithm is simply performing subset selection for KFDA. In the
case of the random optimisation criterion, we can see that
this is equivalent to randomly selecting a subset of the data.
The other optimisation criteria are then variations of greedy
subset selection (see, e.g., [5]).We included experiments with
no deflation, aswell as the deflationmethods discussed below.

In each of the methods, we assume that the basis vector
with which the deflation will be performed has been nor-
malised; that is, 𝜏 = 𝜏/‖𝜏‖.

(i) Hotelling’s Deflation (hotelling): in the Principal
Component Analysis setting, the goal is to extract the leading
𝑘 eigenvectors of the sample covariance matrix, Σ ⪰ 0, as
its eigenvectors are equivalent to the loadings of the first 𝑘
principal components. Hotelling’s deflation method [21] is
a simple and popular technique for sequentially extracting
these eigenvectors. Here it is applied to the kernel matrix
K rather than the covariance matrix Σ. On the 𝑡th iteration
of the deflation method, we would first extract the leading
eigenvector of K:

𝜏 = arg max
𝜏:‖𝜏‖=1
𝜏
K𝜏, (14)

and then use Hotelling’s deflation to annihilate 𝜏:

K = K− 𝜏𝜏
K𝜏𝜏. (15)

This procedure preserves annihilates a selected eigenvalue
while maintaining all others, which also implies that it
preserves positive-semidefiniteness. Sparse Principal Com-
ponent Analysis [21] seeks to find sparse loadings which
together capture the maximum amount of variance in the
data, usually the additional constraint that the loadings are
produced in a sequential fashion. Typically, Hotelling’s defla-
tion is applied by substituting an extracted “pseudoeigen-
vector” for a true eigenvector in the deflation step. Here we
substitute the (normalised) vector found by the criteria (7).
However, the properties of Hotelling’s deflation, discussed in
[21], depend crucially on the use of a true eigenvector, but we
include the method for comparison.

(ii) Projection Deflation (projection): given the kernel
matrix K and an arbitrary unit vector 𝜏 ∈ R𝑚, an intuitive
way to remove the contribution of 𝜏 from K is to project K
onto the orthocomplement of the space spanned by 𝜏:

K = (I− 𝜏𝜏)K. (16)

If 𝜏 is a true eigenvector, this reduces to Hotelling’s deflation.
In the general case, when 𝜏 is not a true eigenvector,
projection deflation maintains the desirable properties that
were lost to Hotelling’s deflation. For example, positive-sem-
idefiniteness is preserved [21]. The deflation method was the
one originally proposed for MPKFDA by [11].

(iii) Schur Complement Deflation (schur): since the goal
of the deflation step is to eliminate the influence a given basis
vector, as measured through variance and covariances, it is
reasonable to consider the conditional variance of the data
variables given a pseudo-principal component. While this
conditional variance is nontrivial to compute in general, it
takes on a simple closed formwhen the variables are normally
distributed. As KFDA assumes that the class conditional
distributions are normal (in the feature space), this is not
unreasonable here. The resulting deflation (as shown by [21])
is

K = K−
K𝜏𝜏K
𝜏
K𝜏

. (17)

Schur complement deflation, like projection deflation, pres-
erves positive-semidefiniteness, and also reduces to Hotel-
ling’s deflation if 𝜏 is a true eigenvector.

(iv) Orthogonalised (Hotelling) Deflation (ortho-hotel-
ling): while projection deflation and Schur complement
deflation address the concerns raised by performing a single
deflation using a non-eigenvector setting, difficulties arise
when attempting to sequentially deflate a matrix with respect
to a series of nonorthogonal pseudoeigenvectors.

A distinction must be made between the variance
explained by a vector, and the additional variance explained
given all previous vectors. These are equivalent in the
Principal Component Analysis setting, as true eigenvectors
are orthogonal, but in general, the vectors extracted by
greedy methods such as MPKFDA will not be orthogonal. A
modified version of Hotelling’s deflation to account for this
was given by [26]. Their procedure is equivalent to (15) for
𝑡 = 1 and is expressed in terms of an iterative Gram-Schmidt
decomposition for 𝑡 > 1:

Q = [q1, . . . , q𝑡−1]


,

q
𝑡
=

(I −QQ) 𝜏
(I −QQ) 𝜏

,

K = K− qqKqq.

(18)

(v) Orthogonalised Schur Complement Deflation (or-
tho-schur): finally we can consider a modification of the
Schur complement deflation to account for the sequential
noneigenvector deflation setting. As with themodifiedHotel-
ling method, at 𝑡 = 1 the procedure is equivalent to the Schur
complement method (17). For 𝑡 > 1, we use q

𝑡
as defined in

(18) and then apply the Schur complement deflation using q:

K = K−
KqqK
qKq

. (19)

In Proposition 2.2 of [21] the authors show that, for the
case of sparse Principal Component Analysis, applying this
method will actually be equivalent to the standard Schur
complement deflation. However, in the case of MPKFDA,
the proof does not hold as the space spanned by all the
previously extracted pseudoeigenvectors cannot be expressed
as a linear combination of the previously chosen bases, as the
pseudoeigenvalues are discarded.
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Input: Kernel K, training labels y, sparsity parameter 𝑇 ≥ 1, number of bases to pick at each iteration 𝑆 ≥ 1.
(1) calculate matrix B
(2) initialise i = 0

(3) for 𝑡 = 1 to 𝑇/𝑆 do
(4) for 𝑠 = 1 to 𝑆 do
(5) {i, 𝑖} ← argmax

𝑖∉i𝜌𝑖 (optimisation criterion)
(6) end for
(7) Deflate kernel matrix
(8) calculate the projection X̃ = RK[:, i] where R is the Cholesky decomposition of K[i, i]−1 and i = (i1, . . . , i𝑘)
(9) end for
(10) train Fisher Discriminant Analysis using (1) in this new projected space to find a sparse weight vector w̃ and make

predictions using (8)
Output: final set i, (sparse) weight vector w̃, bias term 𝑏

Algorithm 1: Stagewise Greedy Kernel Fisher Discriminant Analysis.

3.3.3. Stagewise Optimisation. Stagewise Orthogonal Match-
ing Pursuit [27] identifies all coordinates with amplitudes
exceeding a specially-chosen threshold, solves a least-squares
problem using the selected coordinates, and subtracts the
least-squares fit, producing a new residual. After a fixed num-
ber of stages, it stops. In contrast to Orthogonal Matching
Pursuit, many coefficients can enter the model at each stage
in Stagewise Orthogonal Matching Pursuit while only one
enters per stage inOrthogonalMatching Pursuit.The authors
give numerical examples showing that Stagewise Orthogonal
MatchingPursuit rapidly and reliably finds sparse solutions in
compressed sensing, decoding of error-correcting codes, and
overcomplete representation.We could employ the threshold
selection strategy by selecting the set the new variables with
𝜌
𝑖
> 𝜏 for a given 𝜏. However, the 𝜌

𝑖
does not directly corre-

spond to the residuals found in regression, so for simplicity
we employed a slightly different approach where we simply
fixed the number of bases that could be included at each stage.
The orthogonalisation is then performedwith respect to all of
the bases chosen at the last iteration. It remains as future work
to prove theoretical guarantees for this method akin [27] or
to find a more rigorous analog of the Stagewise Orthogonal
Matching Pursuit application in this framework.

We give a more general version of MPKFDA in
Algorithm 1 that includes the stagewise optimisation as well
as allowing the choices of optimisation criteria and deflation
methods defined above.

3.4. Experiments. Wepresent a comparison on 13 benchmark
datasets derived from the UCI, DELVE, and STATLOG
benchmark repositories [28]. We analyse the performance of
MPKFDA using RBF kernels as defined in (6), for each
of the 5 optimisation criteria (random, optimal, pseudo,
reverse, reverse-pseudo), for the 6 deflation meth-
ods (none, hotelling, projection, schur, ortho-pro-
jection, ortho-schur), and for 4 values of the stagewise
optimisation method (1, 2, 5, 10), giving a total of 120 meth-
ods. The data comes in 100 predefined splits into training
and test sets (20 in the case of the image and splice datasets)

as described in [2]. For each of the datasets we used 5-
fold cross-validation (c.v.) over the first five training splits to
select the optimal RBF kernel width parameter 𝛾 using the
original algorithm (i.e., the stagewise optimisation set to 1,
the optimal criterion, and schur deflation) with a range
of values for 𝛾: 2[−5,−3,−1,1,3,5], selecting the median over the
five sets as the optimal value. We then reran each algorithm
using this value of 𝛾 to determine the best level of sparsity
𝑘 (with the maximum value being set to min(200, 𝑚)). We
calculated the Fisher Discriminant Analysis validation error
at intervals of 10 up to themaximum 𝑘 in order to determine a
good approximate sparsity level. It was deemed unnecessary
to select a different 𝛾 for each algorithm, for computational
reasons and comparability.

4. Results and Discussion

4.1. Stages = 1. It is quite difficult to compare the algorithms
across all three dimensions (number of stages, optimisation
criteria, and deflation methods) at once, so to begin with we
focus on the standard setup where the stagewise method is
not used (i.e., stages = 1). We performed a 3-way Analysis
of Variance with the main effects of dataset, deflation type,
and optimisation criterion. All main effects were significant
(𝑝 < 0.001), so post hoc testing was done between margin
means using Tukey’s honestly significant difference test with
𝑝 < 0.001. Figures 1, 2, 3, and 4 summarise the Average
Error Rates (AERs), Average Standard Deviations (ASDs),
andAverage Running Times (ARTs) of the differentmethods.
In Figure 1, the average error over all splits and all datasets is
shown.

If we look first at the deflation methods, the last four
methods (projection, schur, ortho-projection, and
ortho-schur) have broadly similar performance in terms
of error rate across the optimisation criteria, although the
ortho-schur method gives the best performance averaged
over all of the criteria (AER = 0.218). Indeed, it is interesting
to note that the best overall error (AER = 0.185) is achieved
with the pseudo optimisation criterion when combined
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Random Optimal Pseudo Reverse Reverse-pseudo Average
None 0.219 0.283 0.271 0.309 0.310 0.278

Hotelling 0.254 0.255 0.197 0.343 0.344 0.279

Projection 0.219 0.186 0.187 0.288 0.293 0.235

Schur 0.220 0.188 0.187 0.275 0.288 0.232

Ortho-projection 0.218 0.194 0.188 0.273 0.283 0.231

Ortho-schur 0.221 0.188 0.185 0.245 0.254 0.219

Average 0.225 0.216 0.203 0.289 0.295 0.246
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Figure 1: Average Error Rate (AER): test errors averaged over all splits and all datasets, with stages = 1. Shorter bars indicate smaller error
values, with the smallest overall error shown in bold text.
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Figure 2: Average Standard Deviation (ASD): average over splits of the standard deviations of test errors averaged over datasets, with
stages = 1. Shorter bars indicate smaller standard deviation values, with the smallest overall standard deviation shown in bold text.
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Figure 3: Average Running Time (ART): training time (seconds) averaged over all splits and all datasets, with stages = 1. Shorter bars indicate
shorter computation time, with the shortest overall time shown in bold text.
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Figure 4: Average Sparsity (AS): sparsity level (100(𝑘/𝑚)) averaged over all splits and all datasets, with stages = 1. Shorter bars indicate
increased sparsity, with the most sparse (overall) method in bold text.

with the ortho-schur deflation method. In fact, when we
examine the optimisation criteria, the pseudo method also
gives the best performance when we average over all of
the deflation methods (AER = 0.202), although it is not
significantly different to the optimalmethod (AER = 0.215,
𝑝 > 0.05). Note that averaging over the methods does not

necessarily give the total indication of performance, as this
may include some poor methods. Also note that the next best
performing method (AER = 0.186) is actually the original
method proposed by [11] (optimal combined with schur).

The reverse and reverse-pseudomethods show the
poorest overall performance and indeed are worse than



8 Mathematical Problems in Engineering

the random method. This would appear to confirm that the
use of the Fisher Discriminant Analysis criterion and the
pseudoversion (optimal and pseudo) are indeed sensible,
which was supposed but never tested in [11].

For completeness, the average error for each dataset
whilst varying the deflation methods with the optimisation
method fixed to ortho-schur and stages fixed to 1 is shown
in Figure 7. The average error for each dataset whilst varying
the optimisation methods with the deflation method fixed
to pseudo and stages fixed to 1 is shown in Figure 8.

Of course the error rates cannot be taken in isolation.
Figure 2 gives the Average Standard Deviations (ASDs),
where the average is over the datasets and the standard
deviation is over the test error of each of the splits. Here we
note that the method that gave the best overall error (ortho-
schur with pseudo) also had the lowest overall standard
deviation (ASD = 0.02), although not significantly different
from several of the other methods (𝑝 > 0.05). This still
indicates that the method is on average also the most stable
across the splits of the data.

Next we examine the Average Running Times (ARTs)
of the algorithms. The reported values in Figure 3 are the
average running times (in seconds) taken for the final train-
ing. Note that this of course depends on the level of sparsity
as well as the complexity of the method. Unsurprisingly,
the fastest method is the one that uses no deflation and
the random criterion, which corresponds to the random
Nyström method applied to KFDA. The performance of this
method is significantly worse (AER = 0.219 𝑝 < 0.001)
than the best performing method and also has a significantly
higher standard deviation (ASD = 0.034, 𝑝 < 0.001)
indicating that it is unstable.The pseudo criterion is the next
fastest after random on average over the deflation methods,
and in the case of the best performing deflation method
for this criterion (ortho-schur). The hotelling deflation
method is the second fastest, but as can be seen in Figure 1
its performance is poor (e.g., for the optimal and pseudo
criteria it is the worst method bar performing no deflation at
all). The next fastest criterion is the ortho-schur method
(ART = 0.872 secs).

Finally, Figure 4 shows the Average Sparsity (AS) level
(AS = 100(𝑘/𝑚)) over all of the splits of all of the datasets
for each of the methods. Of the deflation methods, the most
sparse over all of the criteria is the hotelling method (AS =
3.4%), with the least sparse (again unsurprisingly) being no
deflation (none, AS = 9.9%). Of the optimsiation criteria, the
most sparse over all of the deflationmethods is the optimal
method (AS = 5.8%), followed by the random (AS = 6.5%)
and pseudo (AS = 6.7%) methods. The most sparse indi-
vidual method was hotelling and random (AS = 2.1%).
Ignoring the hotelling method for its poor performing,
the best performing method from Figure 1 (ortho-schur
and pseudo) is also the most sparse (AS = 3.9%).

4.2. Stages > 1. We now examine the performance of the
stagewise version of the algorithm. Figure 5 shows a box plot
of the average error over all datasets for the pseudo opti-
misation criterion with the ortho-schur deflation method,
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Figure 5: Stages (Average Error Rate): average error rates for
varying the number of stages whilst keeping the criterion fixed
(to pseudo) and the deflation method fixed (to ortho-schur).
The red line within each box indicates the median over the datasets.
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Figure 6: Stages (Average Running Time): log of average running
time of varying the number of stages whilst keeping the criterion
fixed (to pseudo) and the deflation method fixed (to ortho-
schur). The red line within each box indicates the median over the
datasets.

whilst varying the number of stages [1, 2, 5, 10], (Figure 9
shows this for each dataset). Figure 6 shows a similar plot
for the logarithm of the average running time. We observe
a steady degradation of performance, until we reach 10 stages
where the performance declines markedly. In fact the error
rate over all the datasets is actually lower for stages = 2 (AER=
0.121, ASD = 0.009) than for stages = 1 (AER = 0.122, ASD =
0.009) whilst the computation time is clearly lower for
stages = 2 (ART = 0.17 secs) than for stages = 1 (ART =
0.24 secs). The 95% confidence intervals for stages = 1 and
stages = 2 overlap for the error rate, but not for the running
time, indicating that stages = 2 is significantly faster whilst
there is not a significant difference in performance. A similar
pattern was observed with other deflation methods and
optimisation criteria.

5. Conclusions

We provide extensive empirical analysis of a total of 120
variations on the MPKFDA algorithm of Diethe and Hussain
[11]. The results indicate that whilst the method of [11] per-
forms well, there are (statistically) significant improvements
to be made in terms of computation time and generalisation
performance by using different optimisation criteria for
picking basis vectors and deflation methods. We found that
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Figure 7: Deflations. Average error rates over the predefined splits for each dataset for varying the deflation methods with the number of
stages fixed to one and the criterion fixed to pseudo. The red line within each box indicates the median over the splits.

the best performing method overall was a pseudo version
of the Fisher Discriminant Analysis criterion (which only
included the numerator) together with an orthogonalised
version of the Schur complement deflation method. The
fact that the pseudo criterion performed best was somewhat
surprising and seems to indicate that the between-class

scatter is not useful for selecting bases. We also analysed a
stagewise version of the algorithm,wheremore than one basis
vector could be selected during each iteration and showed
that selecting two each time provided significant a speed-
up whilst not affecting performance. It should be noted that
these results are averaged over 13 datasets, and of course there
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Figure 8: Criteria. Average error rates over the predefined splits for each dataset for varying the optimisation criteria with the number of
stages fixed to one and the deflation method fixed to ortho-schur. The red line within each box indicates the median over the splits.

maybe differences on individual datasets that are not clear
from these results. However, the results give some guidance
to the use of MPKFDA and its generalisations in practice.

Finally, it would be interesting to explore recent theoret-
ical advances with respect to the KFDA algorithm [18] and
Matching Pursuit algorithms operating in a kernel defined

feature space [19], since a tighter bound for MPKFDA than
the one given in [11] should be achievable.
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