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This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary
order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified
Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core
region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error
during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the
first and second derivatives of polarization correction are derived and presented.

1. Introduction

The weakly guiding approximation based on scalar wave
equation (Helmholtz equation) is widely used in the most
well-known approximate methods and their various mod-
ifications for analysis of optical waveguides. Because the
difference between refractive indexes of the core and the
cladding of conventional telecommunication silica optical
fibers is less than 1%, they are weakly guiding. Therefore
this approximation providing a passage from the vector wave
equation to simplified scalar wave equation is applied as basic
assumption in various approximate methods for computing
of optical fiber mode parameters under sufficient accuracy.
However these solutions are not exact, because they do not
take into account polarization effects, and there are some
applications requiring more high accuracy. The problem can
be solved by adding polarization correction 𝛿𝛽 to scalar
propagation constant𝛽 that would improve accuracy ofmode
propagation constant calculation. Polarization correction is
described in detail by Snyder and Love [1]. It relates to “exact”

and “approximate” propagation constants by following simple
ratio (Equation (32.22) in [1]):

𝛽
2

exact = 𝛽
2
− 𝛿𝛽. (1)

This work presents fast and simple method for evaluation
of polarization correction to scalar propagation constant
of arbitrary order guided modes propagating over weakly
guiding optical fibers. Proposed solution is based on earlier
on developed modified Gaussian approximation extended
for analysis of weakly guiding optical fibers with arbitrary
refractive index profile in the core region bounded by single
solid outer cladding. Some results are presented that illustrate
the decreasing of computational error during the estimation
of propagation constant when polarization corrections are
taken into account. Analytical expressions for the first and
second derivatives of polarization correction are derived and
presented.
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2. Polarization Correction: General
Information

Generally polarization correction to approximate scalar
propagation constant for modes propagating over optical
waveguide with arbitrary cross section and refractive index
profile can be found by following well-known perturbation
theory formula (Equation (32.24) in [1]):

𝛿𝛽 =
𝑎 (2Δ)

3/2

2𝑉

∫
𝐴
∞

(∇
𝑡
⋅ 𝐸⃗) 𝐸⃗ ⋅ ∇

𝑡
𝑓 (𝑥, 𝑦) 𝑑𝐴

∫
𝐴
∞

󵄨󵄨󵄨󵄨󵄨
𝐸⃗
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝐴

, (2)

where 𝑎 is core radius, Δ = (𝑛
2

max − 𝑛
2

𝑁
)/2𝑛
2

max is profile
height parameter, 𝑛max is maximal value of refractive index
in the core region, 𝑛

𝑁
is outer cladding refractive index,

𝑉 = kanmax√2Δ is normalized frequency, 𝑘 = 2𝜋/𝜆 is
wavenumber,𝜆 is wavelength, and ⃗𝐸 is transverse electric field
[1–6]:

𝐸⃗ = 𝐹
(𝑙)

𝑚
(𝑟) [{

cos (𝑙𝜑)
sin (𝑙𝜑)

} 𝑥 ∓ {
sin (𝑙𝜑)
cos (𝑙𝜑)

}𝑦] , (3)

where 𝐹(𝑙)
𝑚
(𝑟) is radial mode field distribution, 𝑙 is azimuthal

mode number (𝑙 = 0, 1, 2, . . .), 𝑚 is radialmode number (𝑚 =

1, 2, 3, . . .), 𝑥 and 𝑦 are unit vectors in the directions of the 𝑥-
and 𝑦-axis, 𝐴

∞
is infinite cross section square, and ∇

𝑡
is the

transverse component of nabla differential operator:

∇
𝑡
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
; (4)

𝑓(𝑟) is profile function related with refractive index profile
𝑛(𝑅) by well-known expression [1–5]:

𝑛
2
(𝑅) = 𝑛

2

0
[1 − 2Δ ⋅ 𝑓 (𝑅)] . (5)

Passage to optical fiberswill split expression (2) into following
integrals (Table (14.1) in [1]):

𝐼
1
=
(2Δ)
3/2

4𝑎𝑉

∫
∞

0
𝐹
(𝑙)

𝑚
(𝜕𝐹
(𝑙)

𝑚
/𝜕𝑅) (𝜕𝑓/𝜕𝑅) 𝑅 𝑑𝑅

∫
∞

0
[𝐹
(𝑙)

𝑚 ]
2

𝑅𝑑𝑅

; (6a)

𝐼
2
=
𝑙 (2Δ)

3/2

4𝑎𝑉

∫
∞

0
[𝐹
(𝑙)

𝑚
]
2

(𝜕𝑓/𝜕𝑅) 𝑑𝑅

∫
∞

0
[𝐹
(𝑙)

𝑚 ]
2

𝑅𝑑𝑅

, (6b)

where 𝑅 = 𝑟/𝑎 is normalized radius. Here polarization
correction to scalar propagation constant of particular order
guided mode in optical fiber is represented in the form of
mentioned two integrals combination. Table 1 compares the
relations between LP modes and conventional modes and
contains corresponding polarization corrections defined by
(6a) and (6b) integrals (Table (14.1) in [1]).

By substituting radial mode field distribution 𝐹
(𝑙)

𝑚
and

profile function 𝑓(𝑅)into integrals (6a) and (6b) the final
expression for polarization correction can be obtained. For
example, below there is polarization correction 𝛿𝛽 to the

Table 1

LP mode Conventional mode 𝛿𝛽

LP
0𝑚

(𝑙 = 0) HE
1𝑚

(𝑙 = 0) 𝐼
1

LP
1𝑚

(𝑙 = 1)

TE
0𝑚

0
TM
0𝑚

2 (𝐼
1
+ 𝐼
2
)

HE
2𝑚

𝐼
1
− 𝐼
2

EH
2𝑚

𝐼
1
+ 𝐼
2

LP
𝑙𝑚

(𝑙 > 1) HE
𝑙+1,𝑚

𝐼
1
− 𝐼
2

EH
𝑙+1,𝑚

𝐼
1
+ 𝐼
2

mode HE1m(LP0m) propagation constant for weakly guiding
step index optical fiber (Table (14.3) in [1]):

𝛿𝛽 = −
(2Δ)
3/2

2𝑎

𝑈
2
𝑊

𝑉2

𝐾
0
(𝑊)

𝐾
1
(𝑊)

, (7)

where𝑈 and𝑊 are core and claddingmode parameters:𝑈2+
𝑊
2
= 𝑉
2;𝐾
𝑙
is second kind modified Bessel function.

And polarization correction to the fundamental mode
propagation constant for the graded optical fiber with ideal
infinite parabolic index profile is described by following
expression (Table (14.2) in [1]):

𝛿𝛽 = −
(2Δ)
3/2

2𝑎𝑉
. (8)

Both ideal step and ideal parabolic refractive index
profiles correspond to exact solutions of scalar wave equation
that completely describe mode field distribution. However
unlike ideal profiles, analysis of real optical fibers requires
a passage to more complicated refractive index profiles
differing from ideal forms by local defects and refractive
index fluctuations [3, 7]. Also a passage to higher order
guided modes should be required in the case of a few or
multimode optical fibers.

In this work, the mentioned problem is solved by use of
earlier on developed extension ofmodifiedGaussian approxi-
mation (EMGA). EMGAprovides computing of transmission
parameters of arbitrary order guidedmodes. It was developed
for analysis of weakly guiding silica optical fibers with axial-
symmetric arbitrary refractive index profile in the core region
bounded by one solid outer cladding.

3. Extension of Modified
Gaussian Approximation

EMGA is based on conventional well-known Gaussian
approximation [1] of radial mode field distribution 𝐹

(𝑙)

𝑚
(𝑅)

in the weakly guiding optical waveguide with an arbitrary
refractive index profile by the well-known Laguerre-Gauss
function expression [1–6], describing a mode field distribu-
tion in weakly guiding optical waveguide with ideal infinite
parabolic index profile:

𝐹
(𝑙)

𝑚
(𝑅) = (

𝑅

𝑅
0

)

𝑙

𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

) exp(−𝑅
2

2𝑅2
0

) , (9)
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where 𝐿(𝑙)
𝑚−1

is Laguerre polynomial, 𝑅
0
= 𝜌
0
/𝑎 is equivalent

normalizedmode field radius, and 𝜌
0
is equivalentmode field

radius.
EMGA leads to equivalent normalized mode field radius

𝑅
0
estimation by solving a characteristic equation, which

is derived from propagation constant variational expression
under following passage to square core mode parameter 𝑈2
variational expression, written for analyzed weakly guiding
optical waveguide with given refractive index profile. 𝑅

0
is

variational parameter. It is basic for Gaussian approximation
and completely defines mode transmission parameters.

The most well-known methods utilized variational
approach with conventional Gaussian approximation
and their various modifications [1, 8–14] are based on
representation of optical fiber refractive index profile by
simple power functions, while the real commercial fiber
profiles have more complex form with local defects and
refractive index fluctuations [3, 7]. Some methods solve this
problem by using representation of profile or/andmode fields
by series expansions together with adding other variational
parameters [1–15]. This leads to increasing the number of
equations in characteristic set or number of series terms for
complex profiles and higher order modes. That is the main
reason why most methods for analysis of optical fibers are
concerned with computing of transmission parameters only
for the fundamental mode. Even in the case of generalization
of conventional Gaussian approximation proposed by Snyder
and Love (Section 15.6 and Table (15.4) in [1]) analytical
variational expressions were obtained only for modes LP

𝑙1

with the radial order 𝑚 = 1 due to elimination of Laguerre
polynomial 𝐿(𝑙)

𝑚−1
.

Unlike the abovementioned known methods, in EMGA
the stratification method approach [3] is applied for repre-
sentation of complicated profile form corresponding to real
commercial telecommunication optical fibers. Here optical
fiber with an arbitrary axial-symmetric refractive index
profile is considered as multicladding optical fiber.Therefore,
refractive index profile inside core region can be represented
in the form of the set of𝑁 layers in which the refractive index
stays a constant:

𝑛 (𝑅) =
{

{

{

𝑛
𝑘
, 𝑅
𝑘
=
𝑘

𝑁
, 0 ≤ 𝑘 ≤ 𝑁 − 1

𝑛
𝑁
, 1 < 𝑅 ≤ +∞,

(10)

and any profile function 𝑓(𝑅) can be written in terms of
profile parameter ℎ

𝑘
:

𝑓 (𝑅) =
{

{

{

ℎ
𝑘
, 𝑅
𝑘
=
𝑘

𝑁
, 0 ≤ 𝑘 ≤ 𝑁 − 1

1, 1 < 𝑅 ≤ +∞,

(11a)

where

ℎ
𝑘
=
𝑛
2

max − 𝑛
2

𝑘

𝑛2max − 𝑛
2

𝑁

, (11b)

where 𝑛
𝑘
is refractive index of 𝑘 layer (𝑘 = 0, . . . , 𝑁), 𝑛max

is the maximal core refractive index, and 𝑛
𝑁

is cladding
refractive index.

This approach based on stratification method makes
EMGA to be versatile that provides ability of analysis of real
commercial optical fibers with nonideal disturbed refractive
index profile.

Another problem occurring during a passage from well-
known integral variational expressions for propagation con-
stant or core mode parameter (Equations (15.4) and (15.18)
in [1]) to the analytical formulas for higher order modes is a
presence of nonstandard integrals with product of Laguerre
polynomials of nonequal degree and order in the numerator.
Here it is solved by representation of Laguerre polynomial in
the form of finite power series according to its definition [16].

Proposed approach permits writing the variational
expression for core mode parameter 𝑈 and characteris-
tic equation for normalized equivalent mode field radius
𝜕𝑈
2
/𝜕𝑅
0
= 0 in the form of finite nested sums for any order

mode LP
𝑙𝑚

as follows:

𝑈
2
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!
{
𝑄

𝑅2
0

+ 𝑉
2
[𝑋
0
+

𝑁−1

∑

𝑘=0

ℎ
𝑘
(𝑋
1
− 𝑋
2
)]} ;

(12)

𝑋
0
= exp(− 1

𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝

0

;

𝑋
1
= exp(− 𝑘

2

𝑁2𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝

0

𝑘
2𝑝

𝑁2𝑝
;

𝑋
2
= exp(−(𝑘 + 1)

2

𝑁2𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝

0

(𝑘 + 1)
2𝑝

𝑁2𝑝
;

(13)

− 𝑄 + 𝑉
2
[𝑆
0
+

𝑁−1

∑

𝑘=0

ℎ
𝑘
(𝑆
1
− 𝑆
2
)] = 0; (14)

𝑆
0
= exp(− 1

𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝

0

(1 − 𝑝𝑅
2

0
) ;

𝑆
1
= exp(− 𝑘

2

𝑁2𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

⋅

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝

0

𝑘
2𝑝

𝑁2𝑝
(
𝑘
2

𝑁2
− 𝑝𝑅
2

0
) ;

𝑆
2
= exp(−(𝑘 + 1)

2

𝑁2𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝

0

⋅
(𝑘 + 1)

2𝑝

𝑁2𝑝
(
(𝑘 + 1)

2

𝑁2
− 𝑝𝑅
2

0
) ;

𝑄 =
(𝑙 + 𝑚 − 1)! (3𝑙 + 2𝑚 − 1)

(𝑚 − 1)!

+ 2𝑙
2

2𝑚−2

∑

𝑞=0

𝐷
𝑞
(𝑞 + 𝑙 − 1)! − 4𝑙

2𝑚−2

∑

𝑞=0

𝐶
𝑞
(𝑞 + 𝑙)!,

(15)
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where

𝐷
𝑞
=

min(𝑞,𝑚−1)

∑

𝑝=max(0,𝑞−𝑚+1)
𝑏
(𝑙,𝑚−1)

𝑝
𝑏
(𝑙,𝑚−1)

𝑞−𝑝
; (16a)

𝐶
𝑞
=

min(𝑞,𝑚−1)

∑

𝑝=max(0,𝑞−𝑚+1)
𝑏
(𝑙,𝑚−1)

𝑝
𝑏
(𝑙+1,𝑚−1)

𝑞−𝑝
; (16b)

and 𝑏
(𝑙,𝑚)

𝑝
is coefficient of polynomial representation in the

form of power series [15, 16]:

𝐿
(𝑙)

𝑚
(𝑥) =

𝑚

∑

𝑞=0

𝑏
(𝑙,𝑚)

𝑞
𝑥
𝑞
; (17a)

𝑏
(𝑙,𝑚)

𝑞
= (−1)

𝑞 (𝑙 + 𝑚)!

(𝑙 + 𝑞)! (𝑚 − 𝑞)!𝑞!
. (17b)

Therefore analysis of weakly guiding single-cladding
optical fiber with an arbitrary profile leads to the following.
Refractive index profile is represented by profile function (10)
in the form of 𝑁 layers. Fiber parameters and mode orders
𝑙 and 𝑚 are substituted to characteristic equation (14). By
means of numerical solution (14), the normalized equivalent
mode field radius 𝑅

0
will be obtained. Then 𝑅

0
is substituted

into expression (12), andmode core parameter𝑈 is estimated,
which permits evaluating the propagation constant 𝛽 for
guided mode LP

𝑙𝑚
by the well-known expression [1–6]:

𝛽
2
= 𝑘
2

0
𝑛
2

max −
𝑈
2

𝑎2
. (18)

Solution of characteristic equation (14) is correct under
normalized frequency𝑉 > 1, and it should satisfy the guided
mode cutoff condition [1–6]:

𝑘
0
𝑛
𝑁
< 𝛽 ≤ 𝑘

0
𝑛max. (19)

Optical confinement factor 𝑃core can be considered as the
second criterion for identification of the ghost solutions:

𝑃
(𝑙𝑚)

co ≥ 0.5. (20)

By taking into account Gaussian approximation parameter
𝑃core is defined by analytical expression derived from the
generalized integral form for weakly guiding optical fibers
presented in [1]:

𝑃
(𝑙𝑚)

co =
(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

2𝑚−2

∑

𝑞=0

𝐷
𝑞
(𝑙 + 𝑞)! ⋅ 𝑊

𝑞
, (21)

where

𝑊
𝑞
= 1 − exp(− 1

𝑅2
0

)

𝑙+𝑞

∑

𝑝=0

1

𝑝!𝑅
2𝑝

0

. (22)

Therefore EMGA provides computation of transmission
parameters of arbitrary order guidedmodes propagating over
weakly guiding optical fibers with arbitrary axial-symmetric
refractive index profile under high accuracy demonstrated in
[17] also due to taking into account researched fiber profile
local distortions.

4. Polarization Correction to the Propagation
Constant of Guided Modes in Weakly
Guiding Optical Fiber with an Arbitrary
Refractive Index Profile

According to the abovementioned, it is supposed that the
optical fiber is analyzed by EMGA based on Gaussian
approximation. Therefore substitution of (9) into integral
expressions (6a) and (6b) will lead the denominator integral
to the simple ratio of azimuthal and radial mode numbers 𝑙
and𝑚 [16]:

∫

∞

0

(
𝑅

𝑅
0

)

2𝑙

[𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

)]

2

exp(−𝑅
2

𝑅2
0

)𝑅𝑑𝑅

=
(𝑙 + 𝑚 − 1)!

(𝑚 − 1)!
.

(23)

By applying Laguerre polynomial recurrence and deriva-
tion formulas [16] and carrying out awkward algebraic
transformations, the analytical expression for radial mode
field distribution derivation 𝜕𝐹(𝑙)

𝑚
(𝑅)/𝜕𝑅 in the numerator of

integral (6a) can be written in the form

𝑑𝐹
(𝑙)

𝑚

𝑑𝑅
=
𝑅
𝑙−1

𝑅𝑙
0

exp(− 𝑅
2

2𝑅2
0

)

⋅ [(
𝑅
2

𝑅2
0

+ 𝑙) 𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

) −
2𝑅
2

𝑅2
0

𝐿
(𝑙+1)

𝑚−1
(
𝑅
2

𝑅2
0

)]

= (
𝑙

𝑅
+
𝑅

𝑅2
0

)𝐹
(𝑙)

𝑚
−

2

𝑅
0

𝐹
(𝑙+1)

𝑚
.

(24)

According to the abovementioned, EMGA uses stratifica-
tion method approach for refractive index profile representa-
tion inside the fiber core region by finite number of𝑁 layers.
As a result profile function 𝑓(𝑅) is defined by expression
(10). By taking into account the great number of layers (𝑁 >

100 [7]) required for detailed description of real optical fiber
refractive index profile, the derivative of profile function from
the numerator integral of expression (6a) can bewritten in the
following form:

𝜕𝑓

𝜕𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅=𝑅
𝑘

=
𝑓 (𝑅
𝑘+1

) − 𝑓 (𝑅
𝑘
)

𝑅
𝑘+1

− 𝑅
𝑘

=
{

{

{

𝑁(ℎ
𝑘+1

− ℎ
𝑘−1

) , 𝑅
𝑘
=
𝑘

𝑁
, 0 ≤ 𝑘 ≤ 𝑁 − 1

0, 1 < 𝑅
𝑘
≤ +∞.

(25)

As a result the numerator integral of (6a) is led to finite sum,
and expression (6a) by taking into account (23), (24), and (25)
will be rewritten as follows:

𝐼
1
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

(2Δ)
3/2

4𝑎𝑉

⋅ 𝑁

𝑁−1

∑

𝑘=0

(ℎ
𝑘+1

− ℎ
𝑘
) [𝐹
(𝑙)

𝑚
𝑅
𝑘

𝜕𝐹
(𝑙)

𝑚

𝜕𝑅
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅
𝑘
=𝑘/𝑁

.

(26)
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Figure 1: Error reducing of calculation of the fundamental mode HE
11
normalized propagation constant produced by EMGA by polarization

correction under low value of normalized frequency: (a) relative error, with and without polarization correction; (b) difference of relative
error curves.

After substituting (24) into (26) the final analytic expression
for integral 𝐼

1
will be obtained:

𝐼
1
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁 (2Δ)
3/2

2𝑎𝑉𝑅2
0

𝑁−1

∑

𝑘=0

(ℎ
𝑘+1

− ℎ
𝑘
) {[𝐹

(𝑙)

𝑚
]
2

⋅ [𝑙 +
𝑅
2

𝑘

𝑅2
0

−
2𝑅
2

𝑘

𝑅2
0

⋅
𝐿
(𝑙+1)

𝑚−1
(𝑅
2

𝑘
/𝑅
2

0
)

𝐿
(𝑙)

𝑚−1
(𝑅2
𝑘
/𝑅2
0
)
]}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅
𝑘
=𝑘/𝑁

.

(27a)

By applying the same approach to 𝐼
2
, after substituting (23)

and (24) into (6b) the expression for integral 𝐼
2
will be written

in the following analytical form:

𝐼
2
=

𝑙 (𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

(2Δ)
3/2

4𝑎𝑉

⋅ 𝑁

𝑁−1

∑

𝑘=0

(ℎ
𝑘+1

− ℎ
𝑘
) {[𝐹
(𝑙)

𝑚
]
2

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅
𝑘
=𝑘/𝑁

.

(27b)

5. Results and Discussion

The “worst” case from the point of view of EMGA application
for analysis of optical fibers, ideal step index refractive index
profile, will be considered for estimation of polarization cor-
rection influence on error reducing. According to [3, 4, 18], it
corresponds to computing of fundamentalmode propagation
constant 𝛽 under the low values of normalized frequency
near 𝑉 = 2.405. Therefore conventional silica step index
optical fiber with pure silica cladding and 3.1% Germanium
doped core was considered. Normalized frequency range𝑉 =

1.5 ⋅ ⋅ ⋅ 2.7 was researched under wavelength 𝜆 = 1310 nm.

Some results of error comparison between exact solution of
wave equation and approximate values of normalized propa-
gation constant obtained for the fundamental mode HE

11
by

EMGA without and by taking into account polarization cor-
rection are presented in Figure 1.Here polarization correction
provides error reducing on 0.25 ⋅ ⋅ ⋅ 1.05% over researched
low value normalized frequency range. The influence of
polarization correction on the error reducing decreases under
normalized frequency enhancement.

Further results of the higher order mode propagation
constant estimation produced by exact solution and EMGA
without and with polarization correction near the particular
value of normalized frequency corresponding to mode cut-
off condition were also compared. Normalized propagation
constant relative error curves 𝛿

𝑏
(𝑉) obtained for guided

mode HE
21

and their difference are presented in Figure 2.
Here polarization correction provides reducing of relative
error on 0.5 ⋅ ⋅ ⋅ 1.5% under the researched range of 𝑉 =

3 ⋅ ⋅ ⋅ 5. Following increasing value of normalized frequency
also reduces influence of polarization correction: it decreases
relative error not more than 0.1 ⋅ ⋅ ⋅ 0.2%.

Following passage to higher order guided modes also
demonstrates decreasing of polarization correction influence
on propagation constant error reducing. Differences of rel-
ative error curves for guided higher order modes HE

31
and

HE
41
are shown in Figure 3. Here it is less than 0.2% formode

HE
31
and 0.004% formodeHE

41
even under values of𝑉 near

the cutoff condition corresponding to the mentioned guided
modes.

Further the same analysis was produced for step index
multimode optical fiber 50/125 also with pure silica cladding
and 3.1% Germanium doped core over wavelength range
𝜆 = 800 ⋅ ⋅ ⋅ 1350 nm. Relative error curves calculated for the
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Figure 2: Error reducing of calculation of the higher order mode HE
21
normalized propagation constant produced by EMGA by polarization

correction under low value of normalized frequency: (a) relative error, with and without polarization correction; (b) difference of relative
error curves.
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Figure 3: Difference of relative error curves of calculation of the higher order modes normalized propagation constant produced by EMGA
with and without polarization correction: (a) HE

31
mode; (b) HE

41
mode.

fundamental mode HE
11
and their difference are represented

in Figure 4.Here normalized frequency𝑉 reaches high values
13.5 ⋅ ⋅ ⋅ 23 over researched wavelength range. That is why the
error is so small and is less than 0.32%, and polarization
correction ensures its decrease to only 0.0005 ⋅ ⋅ ⋅ 0.00035%,
while for higher order modes it helps to improve accuracy
up to 0.01 ⋅ ⋅ ⋅ 0.1% depending on mode order. For example,
differences of relative error curves for guided higher order
modes HE

23
and HE

32
are shown in Figure 5. For mode HE

23

the error reduces by 0.02 ⋅ ⋅ ⋅ 0.12% during wavelength grow-
ing and corresponding normalized frequency 𝑉 decreasing
under fixed core diameter value, while for mode HE

32
it

reaches 0.005 ⋅ ⋅ ⋅ 0.04%.
According to obtained results, the main influence of

polarization correction 𝛿𝛽 on reducing of normalized propa-
gation constant calculation error corresponds to lower order
guided modes under critical values of normalized frequency
𝑉 near cutoff condition (low core diameter or wavelength
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Figure 4: Error reducing of calculation of the fundamental modeHE
11
normalized propagation constant produced by EMGAby polarization

correction: (a) relative error, with and without polarization correction; (b) difference of relative error curves.
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Figure 5: Difference of relative error curves of calculation of the higher order modes normalized propagation constant produced by EMGA
with and without polarization correction: (a) HE

23
mode; (b) HE

32
mode.

near mode cutoff wavelength). Under described conditions,
relative error can be reduced by up to 1%. By taking into
account the following passage to the first and second prop-
agation constant derivatives 𝜕𝛽/𝜕𝜆 and 𝜕2𝛽/𝜕𝜆2 required for
estimation of mode dispersion parameters, it would much
reduce the errors of computing of mode delay and chromatic
dispersion of guided modes with particular order.

Derived analytical expressions for polarization correction
to the scalar propagation constant estimated by EMGA
have analytical form and do not require high-performance

computers. For example, computing time of any order guided
mode “exact” propagation constant 𝛽exact by taking into
account polarization correction 𝛿𝛽 at the particular wave-
length 𝜆 and the number of layers for refractive index profile
representation in the fiber core region𝑁 > 300 is less than 1 s
under the following computing resource parameters: AMD
Phenom II x4 965, 3.4HHz, RAM 4Gb, Microsoft Windows
7.0 Professional, and Matlab 6.1.

Derived analytical formulas for polarization correction
𝛿𝛽 and its derivatives represented in Appendix provide
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both improving of EMGA accuracy and ability of taking
into account polarization effects and specifically polarization
mode dispersion that is especially topical for problems of
simulation ofMulti-Gigabit data transmission over fiber optic
links

6. Conclusion

Based on EMGA fast and simple method for calculation
of polarization correction to any order mode propagation
constant in weakly guiding optical fiber with an arbitrary
axial-symmetric refractive index profile is introduced. Some
results of estimation of propagation constant computing error
decreasing by taking into account polarization correction are
demonstrated. The main influence of polarization correction
𝛿𝛽 on reducing of propagation constant calculation error
was noticed for lower order guided modes under critical
values of normalized frequency 𝑉 near cutoff condition (low
core diameter or wavelength near mode cutoff wavelength).
Derived analytical formulas for polarization correction 𝛿𝛽

and its derivatives provide both improving of EMGA accu-
racy and ability of taking into account polarization effects and
specifically polarization mode dispersion that is especially
topical for problems of simulation of Multi-Gigabit data
transmission over fiber optic links.

Appendix

First and Second Derivatives of Polarization
Correction

A passage from the propagation constant to mode delay and
chromatic dispersion requires expressions for polarization
correction first and second derivatives. First, let us rewrite
formula (27a) in the compacted following form:

𝐼
1
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁−1

∑

𝑘=0

𝐺
(1)

𝑘
, (A.1)

where

𝐺
(1)

𝑘
= 𝑃 (ℎ

𝑘+1
− ℎ
𝑘
) [𝐹
(𝑙)

𝑚−1
]
2

𝑄
𝑘
;

𝑃 =
𝑁 (2Δ)

3/2

2𝑎𝑉𝑅2
0

;

𝑄
𝑘
= [𝑙 +

𝑅
2

𝑘

𝑅2
0

−
2𝑅
2

𝑘

𝑅2
0

⋅
𝐿
(𝑙+1)

𝑚−1
(𝑅
2

𝑘
/𝑅
2

0
)

𝐿
(𝑙)

𝑚−1
(𝑅2
𝑘
/𝑅2
0
)
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅
𝑘
=𝑘/𝑁

.

(A.2)

It provides representing the first and second derivatives of the
first component of polarization correction 𝐼

1
also in the form

of finite sum:

𝜕𝐼
1

𝜕𝜆
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁−1

∑

𝑘=0

𝜕𝐺
(1)

𝑘

𝜕𝜆
;

𝜕
2
𝐼
1

𝜕𝜆2
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁−1

∑

𝑘=0

𝜕
2
𝐺
(1)

𝑘

𝜕𝜆2
.

(A.3)

After differentiation and carrying out necessary trans-
formations the derivatives of parameter 𝐺(1)

𝑘
are led to the

following form:

𝜕𝐺
(1)

𝑘

𝜕𝜆
= 𝑃 [𝐹

(𝑙)

𝑚
]
2

𝑄(
𝜕ℎ
𝑘+1

𝜕𝜆
−
𝜕ℎ
𝑘

𝜕𝜆
) + 𝐺

(1)

𝑘
(
1

𝑃

𝜕𝑃

𝜕𝜆

+
2

𝐹
(𝑙)

𝑚

𝜕𝐹
(𝑙)

𝑚

𝜕𝜆
+
1

𝑄

𝜕𝑄

𝜕𝜆
)

𝜕
2
𝐺
(1)

𝑘

𝜕𝜆2
= 𝑃 [𝐹

(𝑙)

𝑚
]
2

𝑄[(
𝜕ℎ
𝑘+1

𝜕𝜆
−
𝜕ℎ
𝑘

𝜕𝜆
)

⋅ (
1

𝑃

𝜕𝑃

𝜕𝜆
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2

𝐹
(𝑙)

𝑚
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(𝑙)

𝑚

𝜕𝜆
+
1

𝑄

𝜕𝑄

𝜕𝜆
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𝜕
2
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𝜕
2
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𝑘
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𝜕𝐺
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(
1

𝑃
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2

𝐹
(𝑙)

𝑚
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[

[

𝜕
2
𝐹
(𝑙)

𝑚

𝜕𝜆2
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]
}

}
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.

(A.4)

The derivatives of parameter 𝑃 are expressed as follows:

𝜕𝑃

𝜕𝜆
= 𝑃[

3

2Δ

𝜕Δ

𝜕𝜆
−

1

𝑅
0
𝑉
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=
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𝜕𝜆
)

2

+ 𝑃{
3

2Δ
[
𝜕
2
Δ

𝜕𝜆2
−
1

Δ
(
𝜕Δ

𝜕𝜆
)

2

]

+
2

𝑅
0

[
1

𝑅
0

(
𝜕𝑅
0

𝜕𝜆
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(A.5)

First- and second-order derivatives of parameter 𝑄 are
defined as follows:
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2
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)
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(A.6)

By applying recurrent expressions of orthogonal poly-
nomial order and differentiation formulas [15, 16], first
and second derivatives of the Laguerre polynomials will be
obtained:

𝜕

𝜕𝜆
[𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

)] =
2𝑅
2

𝑅3
0

𝐿
(𝑙+1)

𝑚−2
(
𝑅
2

𝑅2
0

)
𝜕𝑅
0

𝜕𝜆

=
2𝑅
2

𝑅3
0

[𝐿
(𝑙+1)

𝑚−1
(
𝑅
2

𝑅2
0

) − 𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

)]
𝜕𝑅
0

𝜕𝜆
;

𝜕
2

𝜕𝜆2
[𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

)] =
2𝑅
2

𝑅3
0

{𝐿
(𝑙+1)

𝑚−1
(
𝑅
2

𝑅2
0

)
𝜕
2
𝑅
0

𝜕𝜆2

− 𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

)
𝜕
2
𝑅
0

𝜕𝜆2
+
𝜕𝑅
0

𝜕𝜆

𝜕

𝜕𝜆
[𝐿
(𝑙+1)

𝑚−1
(
𝑅
2

𝑅2
0

)]}

−
1

𝑅
0

(3 +
2𝑅
2

𝑅2
0

)
𝜕𝑅
0

𝜕𝜆

𝜕

𝜕𝜆
[𝐿
(𝑙)

𝑚−1
(
𝑅
2

𝑅2
0

)] .

(A.7)

Finally, by differentiating the radial mode field distribu-
tion, first- and second-order derivatives of 𝐹(𝑙)

𝑚
are defined by

the following expressions:

𝜕𝐹
(𝑙)

𝑚

𝜕𝜆
=

1

𝑅
0

𝜕𝑅
0

𝜕𝜆
[
2𝑅

𝑅
0

𝐹
(𝑙+1)

𝑚
− 𝐹
(𝑙)

𝑚
(𝑙 +

𝑅
2

𝑅2
0

)] ;

𝜕
2
𝐹
(𝑙)

𝑚

𝜕𝜆2
=
2𝑅

𝑅2
0

[
𝜕𝐹
(𝑙+1)

𝑚

𝜕𝜆

𝜕𝑅
0

𝜕𝜆
−

2

𝑅
0

𝐹
(𝑙+1)

𝑚
(
𝜕𝑅
0

𝜕𝜆
)

2

+ 𝐹
(𝑙+1)

𝑚

𝜕
2
𝑅
0

𝜕𝜆2
+
𝑅

𝑅2
0

𝐹
(𝑙)

𝑚
(
𝜕𝑅
0

𝜕𝜆
)

2

] +
1

𝑅
0

(𝑙 +
𝑅
2

𝑅2
0

)

⋅ [𝐹
(𝑙)

𝑚

𝜕
2
𝑅
0

𝜕𝜆2

+
𝜕𝐹
(𝑙)

𝑚

𝜕𝜆

𝜕𝑅
0

𝜕𝜆
−

1

𝑅
0

𝐹
(𝑙)

𝑚
(
𝜕𝑅
0

𝜕𝜆
)

2

] .

(A.8)

Polarization correction component 𝐼
2
first- and second-

order derivatives can be expressed analogously to 𝐼
1
in the

form of finite sums:

𝐼
2
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁−1

∑

𝑘=0

𝐺
(2)

𝑘
;

𝜕𝐼
2

𝜕𝜆
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁−1

∑

𝑘=0

𝜕𝐺
(2)

𝑘

𝜕𝜆
;

𝜕
2
𝐼
2

𝜕𝜆2
=

(𝑚 − 1)!

(𝑙 + 𝑚 − 1)!

𝑁−1

∑

𝑘=0

𝜕
2
𝐺
(2)

𝑘

𝜕𝜆2
,

(A.9)

where

𝐺
(2)

𝑘
= 𝑃 (ℎ

𝑘+1
− ℎ
𝑘
) [𝐹
(𝑙)

𝑚−1
]
2

;

𝜕𝐺
(2)

𝑘

𝜕𝜆
= 𝑃 [𝐹

(𝑙)

𝑚
]
2

(
𝜕ℎ
𝑘+1

𝜕𝜆
−
𝜕ℎ
𝑘

𝜕𝜆
) + 𝐺

(2)

𝑘
(
1

𝑃

𝜕𝑃

𝜕𝜆

+
2

𝐹
(𝑙)

𝑚

𝜕𝐹
(𝑙)

𝑚

𝜕𝜆
) ;

𝜕
2
𝐺
(2)

𝑘

𝜕𝜆2
= 𝑃 [𝐹

(𝑙)

𝑚
]
2

[(
𝜕ℎ
𝑘+1

𝜕𝜆
−
𝜕ℎ
𝑘

𝜕𝜆
)

⋅ (
1

𝑃

𝜕𝑃

𝜕𝜆
+

2

𝐹
(𝑙)

𝑚

𝜕𝐹
(𝑙)

𝑚

𝜕𝜆
) +

𝜕
2
ℎ
𝑘+1

𝜕𝜆2
−
𝜕
2
ℎ
𝑘

𝜕𝜆2
]

+
𝜕𝐺
(2)

𝑘

𝜕𝜆
(
1

𝑃

𝜕𝑃

𝜕𝜆
+

2

𝐹
(𝑙)

𝑚

𝜕𝐹
(𝑙)

𝑚

𝜕𝜆
)

+ 𝐺
(2)

𝑘

{

{

{

1

𝑃
[
𝜕
2
𝑃

𝜕𝜆2
−
1

𝑃
(
𝜕𝑃

𝜕𝜆
)

2

]

+
2

𝐹
(𝑙)

𝑚

[

[

𝜕
2
𝐹
(𝑙)

𝑚

𝜕𝜆2
−

1

𝐹
(𝑙)

𝑚

(
𝜕𝐹
(𝑙)

𝑚

𝜕𝜆
)

2

]

]

}

}

}

.

(A.10)

By differentiating characteristic equation (14) the deriva-
tives of the normalized mode field radius will be obtained:



10 Mathematical Problems in Engineering

𝜕𝑅
0

𝜕𝜆
=
𝑆
0
(𝜕𝑉
2
/𝜕𝜆) + ∑

𝑁−1

𝑘=0
[(𝑆
0
− 𝑆
1
) (ℎ
𝑘
(𝜕𝑉
2
/𝜕𝜆) + 𝑉

2
(𝜕ℎ
𝑘
/𝜕𝜆))]

−2𝑉2 ⋅ [𝑆
(1)

0
+ ∑
𝑁−1

𝑘=0
ℎ
𝑘
(𝑆
(1)

1
− 𝑆
(1)

2
)]

, (A.11)

where

𝑆
(1)

0
= exp(− 1

𝑅2
0

)

2𝑚−2

∑

𝑞=0

𝐷
𝑞

𝑙+𝑞

∑

𝑝=0

(𝑙 + 𝑞)!

𝑝!𝑅
2𝑝+3

0

[(1 − 𝑝𝑅
2

0
)
2

− 𝑝𝑅
4

0
] ;

𝑆
(1)

1
= exp(− 𝑘

2

𝑁2𝑅2
0

)
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2𝑚−2
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𝐷
𝑞

𝑙+𝑞

∑
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𝑘
2
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2

0
)
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4
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2
= exp(−(𝑘 + 1)

2
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)
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𝑞
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2
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2

0
)

2
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4

0
] .

𝜕
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𝑅
0
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2
𝑆
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+
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∑
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ℎ
𝑘
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(1)

1
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(1)

2
)(𝑉
2 𝜕ℎ𝑘

𝜕𝜆
+ ℎ
𝑘
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𝑉
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𝑘
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2
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𝑉
2

2

𝜕
2
ℎ
𝑘

𝜕𝜆2
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(
𝜕𝑅
0
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2
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(2)
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+
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∑
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𝑘
(𝑆
(2)
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𝑆
0

2

𝜕
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𝑉
2

𝜕𝜆2
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where

𝑆
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Finally the derivatives of profile parameter ℎ
𝑘
defined by

formula (11b) are determined by the following expressions:

𝜕ℎ
𝑘

𝜕𝜆
=

1

𝑛2max − 𝑛
2

𝑁
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𝑘
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𝜕
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𝑛
2
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𝑘

𝜕
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𝑁
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− 2
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𝑘
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2
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𝑁
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