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This paper is concernedwith the problemof almost automorphic solutions of a class of fuzzyCohen-Grossberg neural networkswith
mixed time delays and variable coefficients. Based on inequality analysis techniques and combining the exponential dichotomywith
fixed point theorem, some sufficient conditions for the existence and global exponential stability of almost automorphic solutions
are obtained. Finally, a numerical example is given to show the feasibility of our results.

1. Introduction

In recent years, neural networks have been extensively stud-
ied due to their important applications in many areas such
as function approximation, pattern recognition, associative
memory, and combinatorial optimization. In particular, the
research on the dynamical behavior of the neural networks
has become an important topic in neural network theory.
Therefore, the dynamics of neural networks, especially the
existence of periodic solutions, antiperiodic solutions, and
almost periodic solutions to neural networks, has been
extensively investigated and a large number of criteria on
the stability of neural networks have been discussed in the
literature [1–5]. Moreover, it is well known that Cohen-
Grossberg neural network [6] is one of the most popular and
typical network models. Some models such as Hopfield-type
neural networks, CNNs, BAM-type models are special cases
of Cohen-Grossberg neural networks. For more details about
Cohen-Grossberg neural networks, one can see, for example,
[7–12].

In reality, time delays often occur due to finite switching
speeds of the amplifiers and communication time. More-
over, it is observed both experimentally and numerically
that time delay in neural networks may induce instability.
Therefore, neural networks with time delays have recently
become a topic of research interest. On the other hand, in

mathematicalmodeling of real world problems, we encounter
some inconveniences besides delays, namely, the complexity
and the uncertainty or vagueness. Vagueness is opposite to
exactness and we argue that it cannot be avoided in the
humanway of regarding the world. Any attempt to explain an
extensive detailed descriptionnecessarily leads to using vague
concepts since precise description contains abundant number
of details. To understand it, we must group them together
and this can hardly be done precisely. A nonsubstitutable
role is here played by natural language. For the sake of
taking vagueness into consideration, fuzzy theory is viewed
as a more suitable setting. Based on traditional CNNs, T.
Yang and L.-B. Yang [13] first introduced the fuzzy cellular
neural networks (FCNNs), which integrate fuzzy logic into
the structure of traditional CNNs and maintain local con-
nectedness among cells. Unlike previous CNNs, FCNN is a
very useful paradigm for image processing problems, which
has fuzzy logic between its template input and/or output
besides the sum of product operation. It is a cornerstone
in image processing and pattern recognition. Recently, some
results on stability and other behaviors have been derived for
fuzzy neural networks with or without time delays (see [14–
22]).

Also, the almost periodicity is more universal than
the periodicity. Moreover, almost automorphic functions,
which were introduced by Bochner in his papers [23–25] in
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relation to some aspects of differential geometry, are much
more general than almost periodic functions. The notion of
almost automorphic function was introduced to avoid some
assumptions of uniform convergence that arise when using
almost periodic function. In the last several decades, the basic
theories on the almost automorphic functions have been well
developed [26, 27] and have been applied successfully to the
investigation of almost automorphic solutions of differential
equations (see [28–30] and reference therein). In [31–33],
authors studied almost automorphic solutions for several
classes of neural networks, respectively. Recently, consid-
erable efforts have been devoted to the periodic solutions
and almost periodic solutions of Cohen-Grossberg neural
networks with time delays (see, e.g., [34–41]). However, to
the best of our knowledge, there is no paper published on the
existence and stability of almost automorphic solutions for
fuzzy neural networks with time delays.

Motivated by the above discussion, in this paper, we
propose a class of fuzzy Cohen-Grossberg neural networks
with mixed time delays and variable coefficients as follows:
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(1)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑛 corresponds to the number of units
in neural networks; 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th

unit at time 𝑡; 𝑎
𝑖
(𝑥
𝑖
(𝑡)) represents an amplification function at

time 𝑡; 𝑏
𝑖
(𝑥
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(𝑡)) is an appropriately behaved function at time 𝑡

such that the solutions of model (1) remain bounded; 𝛼
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, 𝛽
𝑖𝑗
,
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, and 𝑆
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are the elements of fuzzy feedback MIN template,

fuzzy feedback MAX template, fuzzy feed forward MIN
template, and fuzzy feed forwardMAX template, respectively;
𝑑
𝑖𝑗
weight the strength of the 𝑖th neuron at the time 𝑡,

𝑐
𝑖𝑗
and 𝑒
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are the elements of feedback template and feed

forward template; ∧, ∨ denote the fuzzy AND and fuzzy
OR operation, respectively; 𝑓

𝑗
, 𝑔
𝑗
, and ℎ

𝑗
are the activation

functions; 𝜏
𝑖𝑗
(𝑡) ≥ 0 is the time-varying delay caused during

the switching and transmission processes; 𝐾
𝑖𝑗
is the delay

kernel function; 𝐼
𝑖
(𝑡) denotes external input to the 𝑖th neuron

at time 𝑡.
The initial value of (1) is the following:

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , 𝑠 ∈ (−∞, 0] , (2)

where 𝜑
𝑖
∈ 𝐶((−∞, 0],R), 𝑖 = 1, 2, . . . , 𝑛.

Our main purpose of this paper is by utilizing inequal-
ity analysis techniques and combining the exponential
dichotomy with fixed point theorem, to study the existence
and global exponential stability of almost automorphic solu-
tions of (1). Our results of this paper are completely new.

Throughout this paper, we assume that the following
conditions hold.
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where 𝜇 is a real positive number and there exist 𝜌 > 0
and 𝐶 > 0 such that𝐾

𝑖𝑗
(𝑡) ≤ 𝜌𝑒

−𝑡𝐶, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
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For convenience, we introduce the following notations:
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where 𝜔
𝑖
> 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

This paper is organized as follows. In Section 2, we
introduce some definitions and make some preparations
for later sections. In Section 3, we present some sufficient
conditions for the existence and global exponential stability
of almost automorphic solutions of (1). In Section 4, we give
an example to demonstrate the feasibility of our results.

2. Preliminary

In this section, we introduce some definitions and state some
preliminary results.

Definition 1 (see [27]). A continuous function 𝑓 : R → R𝑛

is said to be almost automorphic if for every sequence of real
numbers (𝑠󸀠

𝑛
)
𝑛∈N there exists a subsequence (𝑠

𝑛
)
𝑛∈N such that

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
) = 𝑔 (𝑡) (8)

is well defined for each 𝑡 ∈ R and

lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
) = 𝑓 (𝑡) (9)

for each 𝑡 ∈ R.

Remark 2. Note that the function 𝑔 in the definition above is
measurable but not necessarily continuous. Moreover, if 𝑔 is
continuous, then 𝑓 is uniformly continuous. Besides, if the
convergence above is uniform in 𝑡 ∈ R, then 𝑓 is almost
periodic. Denote by 𝐴𝐴(R,R𝑛) the collection of all almost
automorphic functions

𝐴𝑃 (R,R
𝑛
) ⊂ 𝐴𝐴 (R,R

𝑛
) ⊂ 𝐵𝐶 (R,R

𝑛
) , (10)

where 𝐴𝑃(R,R𝑛) and 𝐵𝐶(R,R𝑛) are the collection of all
almost periodic functions and the set of bounded continuous
functions from R to R𝑛, respectively.

Lemma 3 (see [27]). Let 𝑓, 𝑔 ∈ 𝐴𝐴(R,R𝑛). Then we have the
following:

(i) 𝑓 + 𝑔 ∈ 𝐴𝐴(R,R𝑛);
(ii) 𝜆𝑓 ∈ 𝐴𝐴(R,R𝑛) for any scalar 𝜆 ∈ R;
(iii) 𝑓

𝛼
∈ 𝐴𝐴(R,R𝑛) where 𝑓

𝛼
: R → R𝑛 is defined by

𝑓
𝛼
(⋅) = 𝑓(⋅ + 𝛼);

(iv) let 𝑓 ∈ 𝐴𝐴(R,R𝑛); then the rangeR
𝑓
:= {𝑓(𝑡), 𝑡 ∈ R}

is relatively compact inR𝑛, thus 𝑓 is bounded in norm;
(v) if 𝜑 : R𝑛 → R𝑛 is a continuous function, then the

composite function 𝜑 ∘ 𝑓 : R𝑛 → R𝑛 is almost
automorphic;

(vi) (𝐴𝐴(R,R𝑛), ‖ ⋅ ‖
∞
) is a Banach space.

Definition 4 (see [27]). A function 𝑓 ∈ 𝐶(R ×R𝑛,R𝑛) is said
to be almost automorphic in 𝑡 ∈ R for each𝑥 ∈ R𝑛 if for every
sequence of real numbers (𝑠󸀠

𝑛
)
𝑛∈N there exists a subsequence

(𝑠
𝑛
)
𝑛∈N such that

lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
, 𝑥) = 𝑔 (𝑡, 𝑥) (11)

is well defined for each 𝑡 ∈ R, 𝑥 ∈ R𝑛 and
lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
, 𝑥) = 𝑓 (𝑡, 𝑥) (12)

for each 𝑡 ∈ R, 𝑥 ∈ R𝑛. The collection of such functions will
be denoted by 𝐴𝐴(R ×R𝑛,R𝑛).

Lemma 5 (see [27]). Let 𝑓 : R × R𝑛 → R𝑛 be an almost
automorphic function in 𝑡 ∈ R for each 𝑥 ∈ R𝑛 and assume
that 𝑓 satisfies a Lipschitz condition in 𝑥 uniformly in 𝑡 ∈ R.
Let 𝜑 : R → R𝑛 be an almost automorphic function.Then the
function

𝜙 : 𝑡 󳨃󳨀→ 𝜙 (𝑡) = 𝑓 (𝑡, 𝜑 (𝑡)) (13)

is almost automorphic.

Definition 6 (see [27]). System

𝑥
󸀠

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) (14)

is said to admit an exponential dichotomy if there exist a pro-
jection 𝑃 and positive constants 𝛼, 𝛽 so that the fundamental
solution matrix𝑋(𝑡) satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑡) 𝑃𝑋

−1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝛽𝑒
−𝛼(𝑡−𝑠)

, 𝑡 ≥ 𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑡) (𝐼 − 𝑃)𝑋

−1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝛽𝑒
−𝛼(𝑠−𝑡)

, 𝑡 ≤ 𝑠.

(15)
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Consider the following almost automorphic system:

𝑥
󸀠

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) , (16)

where 𝐴(𝑡) is an almost automorphic matrix function and
𝑓(𝑡) is an almost automorphic vector function.

Lemma 7 (see [27]). If the linear system (14) admits an
exponential dichotomy, then system (16) has a unique almost
automorphic solution:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑋 (𝑡) 𝑃𝑋
−1

(𝑠) 𝑓 (𝑠) 𝑑𝑠

− ∫

+∞

𝑡

𝑋 (𝑡) (𝐼 − 𝑃)𝑋
−1

(𝑠) 𝑓 (𝑠) 𝑑𝑠,

(17)

where𝑋(𝑡) is the fundamental solution matrix of (14).

Lemma 8 (see [33]). Let 𝑐
𝑖
(𝑡) be an almost automorphic

function on R and

𝑀[𝑐
𝑖
] = lim
𝑇→∞

1

𝑇

∫

𝑡+𝑇

𝑡

𝑐
𝑖
(𝑠) 𝑑𝑠 > 0, 𝑖 = 1, 2, . . . , 𝑛; (18)

then the linear system

𝑥
󸀠

(𝑡) = diag (−𝑐
1
(𝑡) , −𝑐

2
(𝑡) , . . . , −𝑐

𝑛
(𝑡)) 𝑥 (𝑡) (19)

admits an exponential dichotomy on R.

Definition 9. The almost automorphic solution 𝑥
∗
(𝑡) =

(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 of system (1) is said to be glob-

ally exponentially stable, if, for any solution 𝑥(𝑡) =

(𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇, there exist constants 𝑀 > 0 and

𝜇 > 0 such that, for all 𝑡 ∈ R,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝑒
−𝜇𝑡
. (20)

3. Main Results

In this section, we establish some results for the existence and
uniqueness of almost automorphic solutions of (23).

Let R𝑛 be the 𝑛-dimensional Euclidean space. Set 𝑥 =

{𝑥
𝑖
} = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇. For every 𝑥 ∈ R𝑛, its norm is defined

by ‖ 𝑥 ‖= max
1≤𝑖≤𝑛

{𝜔
−1

𝑖
|𝑥
𝑖
|}, where 𝜔

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛.

From (𝐻
1
), the antiderivative of 1/𝑎

𝑖
(𝑥
𝑖
) exists. We may

choose an antiderivative 𝑅
𝑖
(𝑥
𝑖
) of 1/𝑎

𝑖
(𝑥
𝑖
) with 𝑅

𝑖
(0) = 0.

Obviously, 𝑅󸀠
𝑖
(𝑥
𝑖
) = 1/𝑎

𝑖
(𝑥
𝑖
). By 𝑎

𝑖
(𝑥
𝑖
) > 0, we obtain

that 𝑅
𝑖
(𝑥
𝑖
) is increasing about 𝑥

𝑖
and the inverse function

𝑅
−1

𝑖
(𝑥
𝑖
) of 𝑅
𝑖
(𝑥
𝑖
) is existential, continuous, and differentiable.

So, (𝑅−1
𝑖
)
󸀠
(𝑥
𝑖
) = 𝑎

𝑖
(𝑥
𝑖
), where (𝑅−1

𝑖
)
󸀠
(𝑥
𝑖
) is the derivative

of 𝑅−1
𝑖
(𝑥
𝑖
) about 𝑥

𝑖
, and composition function 𝑏

𝑖
(𝑅
−1

𝑖
(𝑥
𝑖
)) is

differentiable. Denote 𝑦
𝑖
(𝑡) = 𝑅

𝑖
(𝑥
𝑖
(𝑡)). It is easy to see that

𝑦
󸀠

𝑖
(𝑡) = 𝑅

󸀠

𝑖
(𝑥
𝑖
(𝑡))𝑥
󸀠

𝑖
(𝑡) = 𝑥

󸀠

𝑖
(𝑡)/𝑎
𝑖
(𝑥
𝑖
(𝑡)) and 𝑥

𝑖
(𝑡) = 𝑅

−1

𝑖
(𝑦
𝑖
(𝑡)).

Substituting these equalities into system (1), we can get that

𝑦
󸀠

𝑖
(𝑡) = −𝑏

𝑖
(𝑅
−1

𝑖
(𝑦
𝑖
(𝑡))) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))

+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) +

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑠))) 𝑑𝑠

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) +

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑠))) 𝑑𝑠

+

𝑛

⋁

𝑗=1

𝑆
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) + 𝐼

𝑖
(𝑡) ,

𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛.

(21)

The initial condition of (21) is as follows:

𝑦
𝑖
(𝑠) = 𝑅

𝑖
(𝜑
𝑖
(𝑠)) = 𝜙

𝑖
(𝑠) , 𝑠 ∈ (−∞, 0] , 𝑖 = 1, 2, . . . , 𝑛.

(22)

Then system (21) can be written as

𝑦
󸀠

𝑖
(𝑡) = −

̃
𝑏
𝑖
(𝑦
𝑖
(𝑡)) 𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))

+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) +

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑠))) 𝑑𝑠

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡)

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑅
−1

𝑗
(𝑦
𝑗
(𝑠))) 𝑑𝑠

+

𝑛

⋁

𝑗=1

𝑆
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) + 𝐼

𝑖
(𝑡) , 𝑡 > 0,

(23)

where ̃𝑏
𝑖
(𝑦
𝑖
(𝑡)) ≜ 𝑏

𝑖
(𝑅
−1

𝑖
(𝑦
𝑖
(𝑡)))/𝑦

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛.

System (1) has an almost automorphic solution which is
globally exponentially stable if and only if system (23) has an
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almost automorphic solution which is globally exponentially
stable.

It is easy to see that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑅
−1

𝑖
(𝑢) − 𝑅

−1

𝑖
(V)
󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑅
−1

𝑖
)

󸀠

(𝜉) (𝑢 − V)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖
(𝜉)
󵄨
󵄨
󵄨
󵄨
|𝑢 − V| ≤ 𝑎+

𝑖
|𝑢 − V| ,

𝑖 = 1, 2, . . . , 𝑛,

(24)

where 𝜉 is between 𝑢 and V.

Lemma 10. Suppose that assumptions (𝐻
3
), (𝐻
4
), and (𝐻

5
)

hold and 𝜑
𝑗
∈ 𝐴𝐴(R,R); then

𝜙 : 𝑡 󳨃󳨀→ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠))) 𝑑𝑠 (25)

belongs to 𝐴𝐴(R,R).

Proof. By Lemma 3, we have that, for 𝜑
𝑗
∈ 𝐴𝐴(R,R), the

function 𝜓 : 𝑠 󳨃→ ℎ
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)) belongs to 𝐴𝐴(R,R). Now,

let {𝑠󸀠
𝑛
} be a sequence of real numbers. By (𝐻

5
)we can extract

a subsequence {𝑠
𝑛
} of {𝑠󸀠

𝑛
} such that, for all 𝑡, 𝑠 ∈ R,

lim
𝑛→+∞

𝐾
𝑖𝑗
(𝑡 − 𝑠 + 𝑠

𝑛
) = 𝐾

1

𝑖𝑗
(𝑡 − 𝑠) ,

lim
𝑛→+∞

𝐾
1

𝑖𝑗
(𝑡 − 𝑠 − 𝑠

𝑛
) = 𝐾
𝑖𝑗
(𝑡 − 𝑠) ,

lim
𝑛→+∞

𝜓 (𝑡 + 𝑠
𝑛
) = 𝜓
1

(𝑡) , lim
𝑛→+∞

𝜓
1
(𝑡 − 𝑠
𝑛
) = 𝜓 (𝑡) .

(26)

Set

𝜙
1
: 𝑡 󳨃󳨀→ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝜓

1

(𝑠) 𝑑𝑠. (27)

Clearly,

𝜙 (𝑡 + 𝑠
𝑛
) − 𝜙
1

(𝑡)

= ∫

𝑡+𝑠
𝑛

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠 − 𝑠

𝑛
) 𝜓 (𝑠) 𝑑𝑠 − ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝜓

1

(𝑠) 𝑑𝑠

= ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑢) 𝜓 (𝑢 + 𝑠

𝑛
) 𝑑𝑢 − ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝜓

1

(𝑠) 𝑑𝑠

= ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓 (𝑠 + 𝑠

𝑛
) − 𝜓
1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ ∫

𝑡

−∞

𝜌𝑒
−(𝑡−𝑠)𝐶 󵄨󵄨

󵄨
󵄨
󵄨
𝜓 (𝑠 + 𝑠

𝑛
) − 𝜓
1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠.

(28)

By the well-known Lebesgue Dominated ConvergenceTheo-
rem and (𝐻

4
), we have, for all 𝑡 ∈ R,

lim
𝑛→∞

𝜙 (𝑡 + 𝑠
𝑛
) = 𝜙
1

(𝑡) . (29)

Similarly, for each 𝑡 ∈ R,

lim
𝑛→∞

𝜙
1
(𝑡 − 𝑠
𝑛
) = 𝜙 (𝑡) , (30)

which implies that 𝜙 : 𝑡 󳨃→ ∫

𝑡

−∞
𝐾
𝑖𝑗
(𝑡 − 𝑠)ℎ

𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)))𝑑𝑠

belongs to 𝐴𝐴(R,R). The proof is complete.

Lemma 11. Suppose that assumptions (𝐻
1
)–(𝐻
4
) hold. Define

the nonlinear operator Φ by

Φ𝜑 = ((Φ𝜑)
1
, (Φ𝜑)

2
, . . . , (Φ𝜑)

𝑛
) (31)

for each 𝜑 ∈ 𝐴𝐴(R,R𝑛), where for 𝑖 = 1, 2, . . . , 𝑛,

(Φ𝜑)
𝑖
(𝑡)

= ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑠) 𝑔
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑠) 𝜇
𝑗
(𝑠)

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠)

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡)

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠)

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

+

𝑛

⋁

𝑗=1

𝑆
𝑖𝑗
(𝑠) 𝜇
𝑗
(𝑠) + 𝐼

𝑖
(𝑠)
]

]

𝑑𝑠.

(32)

Then Φmaps 𝐴𝐴(R,R𝑛) into itself.
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Proof. First of all, let us check that Φ is well defined. Indeed,
by Lemma 3, the space 𝐴𝐴(R,R𝑛) is translation invariant.
Besides, by Lemmas 5 and 10, the function

𝜒
𝑖
: 𝑠 󳨃󳨀→

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑠) 𝑔
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))) +

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑠) 𝜇
𝑗
(𝑠)

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠) ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡)

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠) ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

+

𝑛

⋁

𝑗=1

𝑆
𝑖𝑗
(𝑠) 𝜇
𝑗
(𝑠) + 𝐼

𝑖
(𝑠)

(33)

belongs to 𝐴𝐴(R,R𝑛). Consequently we can write

(Φ𝜑)
𝑖
(𝑡) = ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

𝑖
(𝑠) 𝑑𝑠. (34)

Let {𝑠󸀠
𝑛
} be a sequence of real numbers. By the composition

theorem of almost automorphic functions, the function
̃
𝑏
𝑖
(𝑦
𝑖
(𝑡)) ∈ 𝐴𝐴(R,R𝑛). By (𝐻

3
) we can extract a subsequence

{𝑠
𝑛
} of {𝑠󸀠

𝑛
} such that, for all 𝑡, 𝑠 ∈ R,

lim
𝑛→+∞

̃
𝑏
𝑖
(𝑦
𝑖
(𝑡 + 𝑠
𝑛
)) =

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝑡)) ,

lim
𝑛→+∞

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝑡 − 𝑠
𝑛
)) =

̃
𝑏
𝑖
(𝑦
𝑖
(𝑡)) ,

lim
𝑛→+∞

𝜒
𝑖
(𝑡 + 𝑠
𝑛
) = 𝜒
1

𝑖
(𝑡) ,

lim
𝑛→+∞

𝜒
1

𝑖
(𝑡 − 𝑠
𝑛
) = 𝜒
𝑖
(𝑡) .

(35)

Set

(Φ
1
𝜑)
𝑖
(𝑡) = ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

1

𝑖
(𝑠) 𝑑𝑠. (36)

Then it follows that
(Φ𝜑)
𝑖
(𝑡 + 𝑠
𝑛
) − (Φ

1
𝜑)
𝑖
(𝑡)

= ∫

𝑡+𝑠
𝑛

−∞

exp(−∫
𝑡+𝑠
𝑛

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

𝑖
(𝑠) 𝑑𝑠

− ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

1

𝑖
(𝑠) 𝑑𝑠

= ∫

𝑡+𝑠
𝑛

−∞

exp(−∫
𝑡

𝑠−𝑠
𝑛

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)𝜒

𝑖
(𝑠) 𝑑𝑠

− ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

1

𝑖
(𝑠) 𝑑𝑠

= ∫

𝑡

−∞

exp(−∫
𝑡

𝑢

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)𝜒

𝑖
(𝑢 + 𝑠

𝑛
) 𝑑𝑢

− ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

1

𝑖
(𝑠) 𝑑𝑠

= ∫

𝑡

−∞

exp(−∫
𝑡

𝑢

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)𝜒

𝑖
(𝑢 + 𝑠

𝑛
) 𝑑𝑢

− ∫

𝑡

−∞

exp(−∫
𝑡

𝑢

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)𝜒

1

𝑖
(𝑢) 𝑑𝑢

+ ∫

𝑡

−∞

exp(−∫
𝑡

𝑢

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)𝜒

1

𝑖
(𝑢) 𝑑𝑢

− ∫

𝑡

−∞

exp(−∫
𝑡

𝑢

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)𝜒

1

𝑖
(𝑢) 𝑑𝑢

= ∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)

⋅ (𝜒
𝑖
(𝑠 + 𝑠
𝑛
) − 𝜒
1

𝑖
(𝑠)) 𝑑𝑠

+ ∫

𝑡

−∞

(exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜎 + 𝑠

𝑛
)) 𝑑𝜎)

− exp(−∫
𝑡

𝑠

̃
𝑏
1

𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃))𝜒

1

𝑖
(𝑠) 𝑑𝑠.

(37)

By the LebesgueDominatedConvergenceTheoremweobtain
immediately that

lim
𝑛→+∞

(Φ𝜑)
𝑖
(𝑡 + 𝑠
𝑛
) = (Φ

1
𝜑)
𝑖
(𝑡) (38)

for all 𝑡 ∈ R.
Reasoning in a similar way to the first step we can show

easily that

lim
𝑛→+∞

(Φ
1
𝜑)
𝑖
(𝑡 − 𝑠
𝑛
) = (Φ𝜑)

𝑖
(𝑡) (39)

for all 𝑡 ∈ R. Consequently, the function Φ𝜑 belongs to
𝐴𝐴(R,R𝑛).

Theorem 12. Assume that (𝐻
1
)–(𝐻
5
) hold, then system (23)

has a unique almost automorphic solution in the region

B = 𝐵 (𝜑
0
, 𝑟) = {𝜑 ∈ 𝐴𝐴 (R,R

𝑛
) ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑
0󵄩󵄩
󵄩
󵄩
󵄩
≤

𝑟𝐽

1 − 𝑟

} ,

(40)

if the following condition holds

𝑟 = max
1≤𝑖≤𝑛

{

{

{

(𝜆
𝑖
𝑎
−

𝑖
𝜔
−1

𝑖
)

−1

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

}

}

}

< 1,

(41)
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where 𝜑0 = (𝜑0
1
, 𝜑
0

1
, . . . , 𝜑

0

1
)
𝑇,

𝜑
0

𝑖
(𝑡) = ∫

𝑡

−∞

𝐽
𝑖
(𝑠) exp(−∫

𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(42)

Proof. Obviously, B is a closed convex subset of 𝐴𝐴(R,R𝑛)
and one has
󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
0󵄩󵄩
󵄩
󵄩
󵄩

= max
1≤𝑖≤𝑛

sup
𝑡∈R

{𝜔
−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝐽
𝑖
(𝑠) exp(−∫

𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{𝜔
−1

𝑖
∫

𝑡

−∞

󵄨
󵄨
󵄨
󵄨
𝐽
𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨
exp(−∫

𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃) 𝑑𝑠}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{𝜔
−1

𝑖
∫

𝑡

−∞

𝐽
+

𝑖
exp (𝜆

𝑖
𝑎
−

𝑖
(𝑠 − 𝑡)) 𝑑𝑠}

= max
1≤𝑖≤𝑛

{𝜔
−1

𝑖

𝐽
+

𝑖

𝜆
𝑖
𝑎
−

𝑖

} = 𝐽.

(43)

Thus, for any 𝜑 ∈B, we have

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑
0󵄩󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
0󵄩󵄩
󵄩
󵄩
󵄩
≤

𝑟𝐽

1 − 𝑟

+ 𝐽 =

1

1 − 𝑟

. (44)

Now we prove thatΦ is a self-mapping fromB toB. In fact,
for arbitrary 𝜑 ∈B, we have

󵄩
󵄩
󵄩
󵄩
󵄩
Φ𝜑 − 𝜑

0󵄩󵄩
󵄩
󵄩
󵄩

= max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑠) 𝑔
𝑗

⋅ (𝑅
−1

𝑗
(𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠)

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗

⋅ (𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠)

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗

⋅ (𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

]

]

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

⋀

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝛼
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢)

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑢)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

+

𝑛

⋁

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝛽
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢)

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑢)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢
]

]

𝑑𝑠

}

}

}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢
]

]

𝑑𝑠

}

}

}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)
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⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

𝑑𝑠

}

}

}

⋅
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp (−𝜆
𝑖
𝑎
−

𝑖
(𝑡 − 𝑠))

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

𝑑𝑠

}

}

}

⋅
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

= max
1≤𝑖≤𝑛

{

{

{

(𝜆
𝑖
𝑎
−

𝑖
𝜔
−1

𝑖
)

−1

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

}

}

}

⋅
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

= 𝑟
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
≤

𝑟𝑀

1 − 𝑟

,

(45)

which implies that Φ𝜑 ∈ B, so the mapping Φ is a self-
mapping from B to B. Next, we will prove that Φ is a
contraction mapping. For any 𝜑, 𝜓 ∈B, we have that
󵄩
󵄩
󵄩
󵄩
Φ𝜑 − Φ𝜓

󵄩
󵄩
󵄩
󵄩

= max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑠)

⋅ [𝑓
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠)))

−𝑓
𝑗
(𝑅
−1

𝑗
(𝜓
𝑗
(𝑠)))]

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑠)

⋅ [𝑔
𝑗
(𝑅
−1

𝑗
(𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))

−𝑔
𝑗
(𝑅
−1

𝑗
(𝜓
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))))]

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠)

⋅ [∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗

⋅ (𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

−∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗

⋅ (𝑅
−1

𝑗
(𝜓
𝑗
(𝑢))) 𝑑𝑢]

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠)

⋅ [∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗

⋅ (𝑅
−1

𝑗
(𝜑
𝑗
(𝑢))) 𝑑𝑢

−∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢) ℎ

𝑗

⋅ (𝑅
−1

𝑗
(𝜓
𝑗
(𝑢))) 𝑑𝑢]

]

]

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗
(𝑠) − 𝜓

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)) − 𝜓

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗

⋅ ∫

𝑠

−∞

𝐾
𝑖𝑗
(𝑠 − 𝑢)

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
𝑗
(𝑢) − 𝜓

𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢
]

]

𝑑𝑠

}

}

}

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp(−∫
𝑡

𝑠

̃
𝑏
𝑖
(𝑦
𝑖
(𝜃)) 𝑑𝜃)

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
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+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

𝑑𝑠

}

}

}

⋅
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

≤ max
1≤𝑖≤𝑛

sup
𝑡∈R

{

{

{

𝜔
−1

𝑖
∫

𝑡

−∞

exp (−𝜆
𝑖
𝑎
−

𝑖
(𝑡 − 𝑠))

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

𝑑𝑠

}

}

}

⋅
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

= max
1≤𝑖≤𝑛

{

{

{

(𝜆
𝑖
𝑎
−

𝑖
𝜔
−1

𝑖
)

−1

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

}

}

}

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

= 𝑟
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩
.

(46)

Because 𝑟 < 1, so Φ is a contraction mapping. Therefore, Φ
has a unique fixed point 𝑥∗ ∈ B such that Φ(𝑥∗) = 𝑥∗; that
is, (23) has a unique almost automorphic solution 𝑥∗ ∈ B.
This completes the proof of Theorem 12.

Theorem 13. Assume that (𝐻
1
)–(𝐻
5
) hold, the almost auto-

morphic solution of (23) is globally exponentially stable if, for
𝑖 = 1, 2, . . . , 𝑛, the following conditions hold

𝜆
𝑖
𝑎
−

𝑖
𝜔
𝑖
>

𝑛

∑

𝑗=1

(𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+ 𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+ (𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
∫

+∞

0

𝐾
𝑖𝑗
(𝑠) 𝑑𝑠) .

(47)

Proof. For 𝑖 = 1, 2, . . . , 𝑛, consider the function Θ
𝑖
(𝛾) given

by

Θ
𝑖
(𝛾) = 𝛾 − 𝜆

𝑖
𝑎
−

𝑖
+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝛾𝜏

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
∫

+∞

0

𝐾
𝑖𝑗
(𝑠) 𝑒
𝛾𝑠
𝑑𝑠.

(48)

It is clear that the functionΘ
𝑖
(𝛾) is continuous onR+ and by

(47), we have

Θ
𝑖
(0) = −𝜆

𝑖
𝑎
−

𝑖
+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
∫

+∞

0

𝐾
𝑖𝑗
(𝑠) 𝑑𝑠

< 0,

𝑖 = 1, 2, . . . , 𝑛.

(49)

Thus, there exists a sufficiently small constant 𝜇 such that

Θ
𝑖
(𝜇) < 0, 𝑖 = 1, 2, . . . , 𝑛. (50)

From Theorem 12, we see that system (23) has at least one
almost automorphic solution 𝑦∗(𝑡) = {𝑦∗

𝑖
(𝑡)}
𝑛

𝑖=1
with initial

condition 𝑦∗
𝑖
(𝑠) = 𝜙

∗

𝑖
(𝑠), 𝑠 ∈ (−∞, 0], 𝑖 = 1, 2, . . . , 𝑛.

Suppose that 𝑦(𝑡) = {𝑦
𝑖
(𝑡)}
𝑛

𝑖=1
is an arbitrary solution with

initial condition 𝑦
𝑖
(𝑠) = 𝜙

𝑖
(𝑠), 𝑠 ∈ (−∞, 0], 𝑖 = 1, 2, . . . , 𝑛. Set

𝑧(𝑡) = 𝑦(𝑡) − 𝑦
∗
(𝑡); then it follows from system (23) that

𝑧
󸀠

𝑖
(𝑡)

= − [𝑏
𝑖
(𝑅
−1

𝑖
(𝑧
𝑖
(𝑡) + 𝑦

∗

𝑖
(𝑡))) − 𝑏

𝑖
(𝑅
−1

𝑖
(𝑦
∗

𝑖
(𝑡)))]

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑡) + 𝑦

∗

𝑗
(𝑡)))

−𝑓
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑡)))]

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) + 𝑦

∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))

−𝑔
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))]

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) [ℎ

𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑠) + 𝑦

𝑗
∗ (𝑠)))

−ℎ
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑠)))] 𝑑𝑠

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) [ℎ

𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑠) + 𝑦

𝑗
∗ (𝑠)))

−ℎ
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑠)))] 𝑑𝑠,

𝑡 > 0,

(51)
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where 𝑖 = 1, 2, . . . , 𝑛. The initial condition of (51) is

𝑧
𝑖
(𝑠) = 𝜓

𝑖
(𝑠) = 𝜙

𝑖
(𝑠) − 𝜙

∗

𝑖
(𝑠) ,

𝑠 ∈ (−∞, 0] , 𝑖 = 1, 2, . . . , 𝑛.

(52)

Similar to system (23), we set ̂𝑏
𝑖
(𝑧
𝑖
(𝑡)) ≜ (𝑏

𝑖
(𝑅
−1

𝑖
(𝑧
𝑖
(𝑡) +

𝑦
∗

𝑖
(𝑡))) − 𝑏

𝑖
(𝑅
−1

𝑖
(𝑦
∗

𝑖
(𝑡))))/𝑧

𝑖
(𝑡). In view of (𝐻

2
) and (24), we

have ̂𝑏
𝑖
(𝑅
−1

𝑖
(⋅)) ≥ 𝜆

𝑖
𝑎
−

𝑖
> 0.

Now, we consider functions 𝑢
𝑖
(𝑡) = 𝜔

−1

𝑖
𝑒
𝜇𝑡
|𝑦
𝑖
(𝑡)−𝑦

∗

𝑖
(𝑡)| =

𝜔
−1

𝑖
𝑒
𝜇𝑡
|𝑧
𝑖
(𝑡)|, 𝜇 > 0, 𝑖 = 1, 2, . . . , 𝑛. Then

0 ≤ 𝐷
+
𝑢
𝑖
(𝑡) = 𝜔

−1

𝑖
𝑒
𝜇𝑡
{𝜇

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+

𝑑
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑑𝑡

}

= 𝜔
−1

𝑖
𝑒
𝜇𝑡

⋅

{

{

{

𝜇
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+ sgn (𝑧

𝑖
(𝑡))

⋅
[

[

−
̂
𝑏
𝑖
(𝑧
𝑖
(𝑡)) 𝑧
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡)

⋅ [𝑓
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑡) + 𝑦

∗

𝑗
(𝑡))) − 𝑓

𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑡)))]

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡)

⋅ [𝑔
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) + 𝑦

∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))

−𝑔
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))] +

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) [ℎ

𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑠) + 𝑦

𝑗
∗ (𝑠)))

−ℎ
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑠)))] 𝑑𝑠

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) [ℎ

𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑠) + 𝑦

𝑗
∗ (𝑠)))

−ℎ
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑠)))] 𝑑𝑠

]

]

}

}

}

≤ 𝜔
−1

𝑖
𝑒
𝜇𝑡

⋅ {𝜇
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 𝜆
𝑖
𝑎
−

𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑡) + 𝑦

∗

𝑗
(𝑡))) − 𝑓

𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑡)))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) + 𝑦

∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))

−𝑔
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

⋀

𝑗=1

𝛼
+

𝑖𝑗

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑠) + 𝑦

𝑗
∗ (𝑠)))

−ℎ
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑛

⋁

𝑗=1

𝛽
+

𝑖𝑗

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑅
−1

𝑗
(𝑧
𝑗
(𝑠) + 𝑦

𝑗
∗ (𝑠)))

−ℎ
𝑗
(𝑅
−1

𝑗
(𝑦
∗

𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠}

≤ 𝜔
−1

𝑖
𝑒
𝜇𝑡

⋅

{

{

{

𝜇
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
− 𝜆
𝑖
𝑎
−

𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

}

}

}

≤ − (𝜆
𝑖
𝑎
−

𝑖
− 𝜇) 𝑢

𝑖
(𝑡) + 𝜔

−1

𝑖

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑢
𝑗
(𝑡)

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝜇𝜏
𝑢
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) 𝑒

𝜇(𝑡−𝑠)
𝑢
𝑗
(𝑠) 𝑑𝑠

≤ − (𝜆
𝑖
𝑎
−

𝑖
− 𝜇) 𝑢

𝑖
(𝑡) + 𝜔

−1

𝑖

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑢
𝑗
(𝑡)

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝜇𝜏 sup
𝑡−𝜏≤𝑠≤𝑡

𝑢
𝑗
(𝑠)

+ 𝜔
−1

𝑖

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗

⋅ ∫

+∞

0

𝐾
𝑖𝑗
(𝑠) 𝑒
𝜇𝑠
𝑑𝑠 sup
𝑠≤𝑡

𝑢
𝑗
(𝑠) ,

𝑖 = 1, 2, . . . , 𝑛.

(53)
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Set 𝑀 = max
1≤𝑖≤𝑛

sup
𝑡∈(−∞,0]

{𝜔
−1

𝑖
|𝑧
𝑖
(𝑡)|} =

max
1≤𝑖≤𝑛

sup
𝑡∈(−∞,0]

{𝜔
−1

𝑖
|𝜙
𝑖
(𝑡) − 𝜙

∗

𝑖
(𝑡)|} and 𝜖 > 0 is an

arbitrary real number. Then, we can get

𝑢
𝑖
(𝑡) = 𝜔

−1

𝑖
𝑒
𝜇𝑡 󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝜔
−1

𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

≤ 𝑀 ≤ 𝑀 + 𝜖,

𝑡 ∈ (−∞, 0] , 𝑖 = 1, 2, . . . , 𝑛.

(54)

In the following, we will show that

𝑢
𝑖
(𝑡) < 𝑀 + 𝜖, 𝑡 ∈ (0, +∞) , 𝑖 = 1, 2, . . . , 𝑛. (55)

If (55) is not true, without loss of generality, then there exist
a constant 𝑙 and a first time 𝑡

1
such that

𝑢
𝑖
(𝑡) < 𝑀 + 𝜖, 𝑖 ̸= 𝑙, 𝑡 ∈ (−∞, 𝑡

1
] ,

𝑢
𝑙
(𝑡) < 𝑀 + 𝜖, 𝑡 ∈ (−∞, 𝑡

1
) ,

𝑢
𝑙
(𝑡
1
) = 𝑀 + 𝜖.

(56)

Therefore, we have

𝐷
+
𝑢
𝑙
(𝑡
1
)

≤ − (𝜆
𝑙
𝑎
−

𝑙
− 𝜇) 𝑢

𝑙
(𝑡
1
) + 𝜔
−1

𝑙

𝑛

∑

𝑗=1

𝑐
+

𝑙𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑢
𝑗
(𝑡
1
)

+ 𝜔
−1

𝑙

𝑛

∑

𝑗=1

𝑑
+

𝑙𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝜇𝜏 sup
𝑡
1
−𝜏≤𝑠≤𝑡

1

𝑢
𝑗
(𝑠)

+ 𝜔
−1

𝑙

𝑛

∑

𝑗=1

(𝛼
+

𝑙𝑗
+ 𝛽
+

𝑙𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗

⋅ ∫

+∞

0

𝐾
𝑙𝑗
(𝑠) 𝑒
𝜇𝑠
𝑑𝑠 sup
𝑠≤𝑡

𝑢
𝑗
(𝑠)

<

{

{

{

𝜇 − 𝜆
𝑙
𝑎
−

𝑙
+ 𝜔
−1

𝑙

𝑛

∑

𝑗=1

𝑐
+

𝑙𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗

+ 𝜔
−1

𝑙

𝑛

∑

𝑗=1

𝑑
+

𝑙𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝜇𝜏

+𝜔
−1

𝑙

𝑛

∑

𝑗=1

(𝛼
+

𝑙𝑗
+ 𝛽
+

𝑙𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
∫

+∞

0

𝐾
𝑙𝑗
(𝑠) 𝑒
𝜇𝑠
𝑑𝑠

}

}

}

⋅ (𝑀 + 𝜀)

= Θ
𝑙
(𝜇) (𝑀 + 𝜀) < 0.

(57)

This is a contradiction; hence (55) holds. Let 𝜖 → 0
+, then

we have

𝑢
𝑖
(𝑡) < 𝑀, 𝑡 ∈ (0, +∞) , 𝑖 = 1, 2, . . . , 𝑛. (58)

Together, (54) with (58) give the following:

𝑢
𝑖
(𝑡) < 𝑀, 𝑡 ∈ R, 𝑖 = 1, 2, . . . , 𝑛. (59)

Then, we have
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡) − 𝑦

∗

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝜔

𝑖
𝑒
−𝜇𝑡
, 𝑖 = 1, 2, . . . , 𝑛, (60)

which means that the almost automorphic solution of the
system (23) is globally exponentially stable. The proof of
Theorem 13 is completed.

4. An Example

In this section, we give an example to illustrate the feasibility
and effectiveness of our results obtained in Section 3.

Example 1. Let 𝑛 = 2. Consider the following system:

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑥
𝑖
(𝑡))

⋅
[

[

𝑏
𝑖
(𝑥
𝑖
(𝑡)) −

2

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

−

2

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−

2

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) −

2

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡)

⋅ ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠

−

2

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡)

−

2

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠

−

2

⋁

𝑗=1

𝑆
𝑖𝑗
(𝑡) 𝜇
𝑗
(𝑡) − 𝐼

𝑖
(𝑡)
]

]

,

(61)

where 𝑖 = 1, 2 and

𝑓
1
(𝑥) = 𝑓

2
(𝑥) =

1

2

(|𝑥 + 1| + |𝑥| − 1) ,

𝑔
1
(𝑥) = 𝑔

2
(𝑥) = tan𝑥,

ℎ
1
(𝑥) = ℎ (𝑥) = tanh𝑥,

𝑎
1
(𝑥
1
(𝑡)) = 2 − sin (2𝑥

1
(𝑡)) ,

𝑎
2
(𝑥
2
(𝑡)) = 2 − cos (𝑥

1
(𝑡)) ,

𝑏
1
(𝑥
1
(𝑡)) = 3𝑥

1
(𝑡) ,

𝑏
2
(𝑥
2
(𝑡)) = 4𝑥

2
(𝑡) , 𝑐

11
(𝑡) = 0.05 + 0.01 cos 𝑡,

𝑐
12
(𝑡) = 0.02 + 0.01 sin 𝑡,

𝑐
21
(𝑡) = 0.02 − 0.01 cos 𝑡,

𝑐
22
(𝑡) = 0.03 + 0.01 sin 𝑡,

𝑑
11
(𝑡) = 0.06 − 0.01 cos 𝑡,

𝑑
12
(𝑡) = 0.05 − 0.01 sin 𝑡,
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𝑑
21
(𝑡) = 0.05 − 0.02 sin 𝑡,

𝑑
22
(𝑡) = 0.07 − 0.02 sin 𝑡,

𝛼
11
(𝑡) = 0.07 + 0.01 cos 𝑡,

𝛼
12
(𝑡) = 0.03 + 0.02 sin 𝑡,

𝛼
21
(𝑡) = 0.06 + 0.01 sin 𝑡,

𝛼
22
(𝑡) = 0.06 − 0.02 sin 𝑡,

𝛽
11
(𝑡) = 0.01 + 0.03 sin 𝑡,

𝛽
12
(𝑡) = 0.05 + 0.03 cos 𝑡,

𝛽
21
(𝑡) = 0.03 + 0.04 cos 𝑡,

𝛽
22
(𝑡) = 0.01 + 0.04 sin 𝑡,

𝜏
𝑖𝑗
(𝑡) = sin2𝑡, 𝐾

𝑖𝑗
(𝑠) = 𝑒

−𝑠
.

𝑆
11
(𝑡) = 0.23 − 0.22 sin 𝑡,

𝑆
12
(𝑡) = 0.27 − 0.02 cos 𝑡,

𝑆
21
(𝑡) = 0.03 + 0.45 cos 𝑡,

𝑆
22
(𝑡) = 0.14 − 0.07 sin 𝑡,

𝑇
11
(𝑡) = 0.15 + 0.24 cos 𝑡,

𝑇
12
(𝑡) = 0.17 − 0.03 sin 𝑡,

𝑇
21
(𝑡) = 0.14 + 0.03 sin 𝑡,

𝑇
22
(𝑡) = 0.15 + 0.07 cos 𝑡,

𝑒
11
(𝑡) = 0.03 + 0.02 cos 𝑡,

𝑒
12
(𝑡) = 0.04 + 0.03 sin 𝑡,

𝑒
21
(𝑡) = 0.02 + 0.04 sin 𝑡,

𝑒
22
(𝑡) = 0.04 − 0.03 cos 𝑡,

𝜇
1
(𝑡) = sin 𝑡, 𝜇

2
(𝑡) = cos 𝑡,

𝐼
1
(𝑡) = −cos2 (𝑒𝑡) , 𝐼

2
(𝑡) = − sin (𝑒𝑡) .

(62)

By calculating, we have that 𝑎−
1
= 𝑎
−

2
= 1, 𝑎+
1
= 𝑎
+

2
= 3, 𝜆

1
= 3,

𝜆
2
= 4, 𝐿𝑓

𝑗
= 𝐿
𝑔

𝑗
= 𝐿
ℎ

𝑗
= 1, ∫+∞

0
𝐾
𝑖𝑗
(𝑠)𝑑𝑠 = 1, and 𝜏 = 1 and

take the positive real numbers 𝜔
𝑗
= 1, 𝑗 = 1, 2; then

𝑟 = max
1≤𝑖≤𝑛

{

{

{

(𝜆
𝑖
𝑎
−

𝑖
𝜔
−1

𝑖
)

−1

⋅
[

[

𝑛

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+

𝑛

∑

𝑗=1

𝑑
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗

+

𝑛

∑

𝑗=1

(𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
]

]

}

}

}

= 0.47 < 1.

(63)
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Figure 1: Behavior of the state component for 𝑥
1
(𝑡).
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Figure 2: Behavior of the state component for 𝑥
2
(𝑡).

Moreover, we have
2

∑

𝑗=1

(𝑐
+

1𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+ 𝑑
+

1𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝜇𝜏

+ (𝛼
+

1𝑗
+ 𝛽
+

1𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
∫

+∞

0

𝐾
1𝑗
(𝑠) 𝑒
𝜇𝑠
𝑑𝑠)

= 1.41 < 3 = 𝜆
1
𝑎
−

1
𝜔
1
,

2

∑

𝑗=1

(𝑐
+

2𝑗
𝐿
𝑓

𝑗
𝑎
+

𝑗
𝜔
𝑗
+ 𝑑
+

2𝑗
𝐿
𝑔

𝑗
𝑎
+

𝑗
𝜔
𝑗
𝑒
𝜇𝜏

+ (𝛼
+

2𝑗
+ 𝛽
+

2𝑗
) 𝐿
ℎ

𝑗
𝑎
+

𝑗
𝜔
𝑗
∫

+∞

0

𝐾
2𝑗
(𝑠) 𝑒
𝜇𝑠
𝑑𝑠)

= 1.17 < 4 = 𝜆
2
𝑎
−

2
𝜔
2
.

(64)

All the assumptions inTheorems 12 and 13 are satisfied.We set
the initial condition 𝑥(𝑡) = [−3 3]

𝑇; the response of the state
component is showed in Figures 1 and 2.Therefore, (61) has an
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almost automorphic solution, which is globally exponentially
stable.
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