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As uncertainty is the inherent character of sensing data, the processing and optimization techniques for Probabilistic Skyline (PS)
in wireless sensor networks (WSNs) are investigated. It can be proved that PS is not decomposable after analyzing its properties, so
in-network aggregation techniques cannot be used directly to improve the performance. In this paper, an efficient algorithm, called
Distributed Processing of Probabilistic Skyline (DPPS) query in WSNs, is proposed. The algorithm divides the sensing data into
candidate data (CD), irrelevant data (ID), and relevant data (RD).The ID in each sensor node can be filtered directly to reduce data
transmissions cost, since, only according to both CD and RD, PS result can be correctly obtained on the base station. Experimental
results show that the proposed algorithm can effectively reduce data transmissions by filtering the unnecessary data and greatly
prolong the lifetime of WSNs.

1. Introduction

Recently, it is found that wireless sensor networks (WSNs)
have a more and more important impact on the ways
to collect and use information from the physical world.
With the rapid development of microelectronics technology,
communication technology, and the embedded technology,
WSNs have become a common concern to industry and
academia because of their great commercial prospects and its
value of academic research [1–3]. For example, we can prevent
forest fires by monitoring the temperature and humidity in
real time. Influenced by manifold factors such as hardware
devices, sensor technology, communication quality, and the
surrounding environment, sensing data collected by sensor
nodes are often with inaccurate or low confidence. That is to
say, the temperature and humidity data acquired by sensor
nodes are not accurate. As uncertainty is an inherent property
of sensing data, to some extent, sensing data are uncertain
data essentially.

As one of the most important means, multiobjective
decision, skyline query [4–8] processing technologies have

brought a large number of excellent researches, both inWSNs
[9–16] and for uncertain data [17–26]. Considering a wireless
sensor network that consists of a large amount of sensor
nodes deployed in a geographical region, sensing data are
collected by these distributed sensor nodes. Accordingly,
there could be multiple sensor nodes deployed in certain
zones to promote the precision of uncertain data. As a result,
many queries in WSNs that rarely need transmitting every
piece of sensing data in the local sensor nodes have been well
studied to reduce the communication cost and to speed up
the computation [9–16], for instance, sliding window skylines
in sensor network [11, 12], continuous skyline monitoring
in WSNs [10], probabilistic query of uncertain data streams
[18, 19], dynamic (or relative) skylines [25], and distributed
uncertain skyline query [26]. Nevertheless, most of these
researches are studied under a centralized system setting.

In this paper, an efficient algorithm, called Distributed
Processing of Probabilistic Skyline (DPPS) query in WSNs,
is proposed. It explores the problem of PS query processing
in distributed WSNs, in which there exist alternative tuples.
The basic idea is to perform data pruning and aggregation
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at sensor node such that only the data required for final
processing are transferred to the base station. By comparing
the data communication cost of DPPS and Centralized
Algorithm (CA) to examine the effectiveness of the DPPS,
we also perform sensitivity tests to observe the behavior of
examined DPPS under various parameter settings.The result
validates our ideas and shows the superiority of our proposal.

In summary, the contributions of this paper are as follows:

(i) Theproperties of PS have been analyzed, andweprove
theoretically that PS query is not decomposable.

(ii) An efficient algorithm, called Distributed Processing
of Probabilistic Skyline (DPPS) query in WSNs, is
proposed, which reduces the in-network amount of
data transmission by filtering the irrelevant data on
the sensor nodes.

(iii) Last but not least, the experimental results show that
DPPS has advantages of data transmission in WSNs
over CA.

The rest of this paper is organized as follows. The related
work is introduced briefly in Section 2. Section 3 introduces
the important notions and theorems. In Section 4, the
DPPS is depicted in detail. And we analyze the performance
evaluation ofDPPS in Section 5. Finally, the conclusion of this
paper is presented in Section 6.

2. Related Work

Here, we review representative work in the areas of (1) skyline
query processing in WSNs and (2) skyline query processing
on uncertain data.

Skyline Query Processing in Sensor Networks. An extensive
number of research works in this area have appeared in
the literature [9–16]. Due to the limited energy budget
available of sensor nodes, the primary issue is how to develop
energy-efficient techniques to reduce communication and
energy costs in the networks. In literature [9], Wang et
al. analyzed the properties of reverse skyline query and
presented a skyband-based approach to tackle the problem
of reverse skyline query answering efficiently over WSNs.
Chen et al. [10] addressed the problem of continuous skyline
monitoring in WSNs and presented a hierarchical threshold-
based approach, MINMAX, to minimize the transmission
traffic. Two papers in the literature [11, 12] investigated the
sliding window skylines in sensor network. The former put
forward an energy-efficient algorithm, SWSMA, to continu-
ouslymaintain sliding window skylines over a wireless sensor
network. The algorithm employs tuple filter or grid filter
within each sensor to reduce the amount of data to transmit
and save the energy consumption as a consequence, while
the latter proposed a method EES which uses a mapping
function to map the data into a smaller range of integers
and carries out the skyline of the mapped set as the mapped
skyline filter (MSF). Chen et al. [13] partitioned the entire
data set into disjoint subsets and returned the skyline points
progressively through examining the subsets one by one.
Also, a global filter consisting of some found skyline points

in the processed subsets is used to filter out those unlikely
skyline points from the rest of subsets for transmission.
Shen et al. [14] researched location-based skyline queries
in WSNs and raised an energy-efficient approach of Ring-
Skyline (RS) which divides the monitoring area into several
rings and adopts in-network query processing to reduce
energy consumption. In [15], Xin et al. raised an energy-
efficient multiskyline evaluation (EMSE) algorithm to eval-
uate multiple skyline queries effectively in WSNs. EMSE
utilizes both global and local optimization mechanisms to
eliminate unnecessary data transmission. In literature [16],
a new lter-based method, called SKYFILTER, was brought
up for skyline query processing. The method provides an
enhanced efficiency by reduction of the total wireless com-
munication between sensor nodes.

Skyline Query Processing on Uncertain Data. In literature [17],
the bottom-up and top-down algorithms are put forward to
process 𝑝-skyline queries; a 𝑝-skyline contains all the objects
whose skyline probabilities are at least 𝑝. It can filter the
unqualified objects efficiently with the help of the grid-based
space division algorithm and weight-counting algorithm.
Literature [18, 19] investigated the PS query of uncertain
data streams. The former proposed an approach, candidate
list, to compute a PS on a large number of uncertain tuples
within the sliding window, and the later studied the problem
of efficiently computing the skyline over sliding windows
on uncertain data elements against probability thresholds.
The all skyline query problem over discrete uncertain data
sets was first researched in [20], in which space splitting
algorithm and dominating counting algorithm were raised.
In [21], Böhm et al. attempted to model the uncertainty
with pdfs (probability density function) and investigated
the skyline query over the pdf modeled uncertain data.
Additionally, in [22], the objects are indexed with the Gauss-
tree in the parameter space to improve the pruning efficiency,
where the leaf nodes store the objects with expectation and
variance. Ding and Jin [23] first address the distributed
uncertain skyline query problem and the DSUD and e-
DSUD algorithms were raised to process the queries over
tuple-level uncertain data with the processing framework, in
which the uncertain tuples are independent of each other.
For skyline computation in highly distributed environments,
Hose and Vlachou [24] provide a good survey of existing
approaches, where the uncertain skyline queries and the open
research directions are discussed. The reverse skyline query
over uncertain database retrieves all the uncertain objects
whose dynamic (or relative) skylines [25] contain a user-
specified query object with a probability not less than a user-
specified threshold. In [26], efficient exact and approximate
algorithms are addressed to tackle this problem that skyline
probability computation over uncertain preferences is ♯𝑃-
complete.

As opposed to our investigation, these researches either
ignored the uncertainty of sensing data or considered no
particularity of wireless sensor network environment. All of
them failed to solve PS query processing problems effectively
in WSNs.
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Table 1: The meanings of frequently used symbols.

Symbol Meanings
𝑡, 𝑡
𝑖

Uncertain tuple
𝑈 Universal set of all the uncertain tuples
𝐷 A dimension space with 𝑑-dimension
𝑈
𝑖

Subset of universal set 𝑈

𝜏 Set of alternative tuples, we have 𝑈 = {𝜏
1
, 𝜏
2
, . . .}

𝜏
𝑡

𝜏 that dominates 𝑡

𝑇 A set composed of 𝜏
𝑡

𝑊, 𝑊
𝑖

Possible worlds
𝑃𝑊 Set of possible worlds in 𝑈, which is the subset of 𝑈

3. Preliminaries

3.1. Problem Statement. In this section, some important
concepts are defined; also, some theorems are proved to be
true. The variable 𝑝 is the threshold of the Probabilistic
Skyline and the meanings of frequently used symbols are
listed in Table 1.

Consider a WSN that consists of a lot of sensor nodes
deployed in a geographical region. Feature readings (e.g.,
temperature and humidity) are collected from these dis-
tributed sensor nodes. Multiple sensors are deployed at
certain zones in order to improvemonitoring quality. Figure 1
shows a wireless sensor network (with a two-tier hierarchical
topology) that monitors forest temperature and humidity in
different zones (denoted as different color). In this network,
sensor nodes are grouped into clusters, where cluster heads
are responsible for local processing and for reporting aggre-
gated results to the base station. As shown, 𝑝

2
and 𝑝

6
denote

the cluster heads for clusters A and B, correspondingly.
A table is shown in Figure 1, representing a snapshot

of temperature and humidity records collected from the
sensor network. As shown, each tuple records both possi-
ble temperature and humidity corresponding to a location.
The confidence value associated with a tuple indicates the
existence probability of those particular temperature and
humidity. For example, there are two data tuples generated
for Location A. The temperature and humidity in these two
tuples are both valid (i.e., with measured confidences).

Definition 1 (possible world semantics [23]). We use 𝐷 to
denote a 𝑑-dimensional space and 𝑈 to denote the universal
set of all uncertain tuples in the 𝑑-dimensional space𝐷. Each
tuple has a probability 𝑃(𝑡

𝑖
) (0 ≤ 𝑃(𝑡

𝑖
) ≤ 1) to occur, and

V
𝑖𝑗
(1 ≤ 𝑗 ≤ 𝑑) denotes the 𝑗th dimension value. The tuples

that cannot exist at the same time are alternatives. A possible
world 𝑊 is instantiated by taking a set of tuples from the
alternative relation.

For example, uncertain tuples 𝑡
1
and 𝑡
2
in Figure 1 are

alternatives. The various dimensions numerical values of 𝑡
1

and 𝑡
2
indicate the relevant information of the region A. Due

to the property of alternative tuples, both of them may occur
but cannot occur simultaneously.

The aggregate confidence of 𝜏 is the sumof the confidence
values of all its alternative tuples; that is, 𝑃(𝜏) = ∑

𝑡∈𝜏
𝑃(𝑡).

Table 2: An example of possible worlds.

Possible world 𝑊 Probability Pr(𝑊)

𝑊
1

= {⌀} (1 − 0.9) ∗ (1 − 1) = 0

𝑊
2

= {𝑡
1
, 𝑡
3
} 0.5 ∗ 0.1 = 0.05

𝑊
3

= {𝑡
1
, 𝑡
4
} 0.5 ∗ 0.4 = 0.20

𝑊
4

= {𝑡
1
, 𝑡
5
} 0.5 ∗ 0.1 = 0.05

𝑊
5

= {𝑡
1
, 𝑡
6
} 0.5 ∗ 0.2 = 0.1

𝑊
6

= {𝑡
1
, 𝑡
7
} 0.5 ∗ 0.2 = 0.1

𝑊
7

= {𝑡
2
, 𝑡
3
} 0.4 ∗ 0.1 = 0.04

𝑊
8

= {𝑡
2
, 𝑡
4
} 0.4 ∗ 0.4 = 0.16

𝑊
9

= {𝑡
2
, 𝑡
5
} 0.4 ∗ 0.1 = 0.04

𝑊
10

= {𝑡
2
, 𝑡
6
} 0.4 ∗ 0.2 = 0.08

𝑊
11

= {𝑡
2
, 𝑡
7
} 0.4 ∗ 0.2 = 0.08

𝑊
12

= {𝑡
3
} (1 − 0.5 − 0.4) ∗ 0.1 = 0.01

𝑊
13

= {𝑡
4
} (1 − 0.5 − 0.4) ∗ 0.4 = 0.04

𝑊
14

= {𝑡
5
} (1 − 0.5 − 0.4) ∗ 0.1 = 0.01

𝑊
15

= {𝑡
6
} (1 − 0.5 − 0.4) ∗ 0.2 = 0.02

𝑊
16

= {𝑡
7
} (1 − 0.5 − 0.4) ∗ 0.2 = 0.02

For instance, corresponding to location A, 𝜏A = {𝑡
1
, 𝑡
2
}; that

is, 𝑡
1
and 𝑡
2
are alternative tuple instances (or simply called

alternatives) of 𝜏A. Consider 𝑃(𝜏A) = 0.3 + 0.4 = 0.7. In the
same way, we can get that 𝜏B = {𝑡

3
, 𝑡
4
, 𝑡
5
, 𝑡
6
, 𝑡
7
} and 𝑃(𝜏B) =

0.1 + 0.4 + 0.1 + 0.2 + 0.2 = 1. The probability of all possible
worlds in 𝑈 is shown in Table 2.

Definition 2 (skyline). Given a set 𝑈 of uncertain tuples in
the 𝑑-dimensional space𝐷, a skyline query retrieves tuples in
𝑈 that are not dominated by any other tuple. For two tuples
𝑡
𝑖
and 𝑡
𝑗
in 𝑈, tuple 𝑡

𝑖
dominates 𝑡

𝑗
(denoted as 𝑡

𝑖
≺ 𝑡
𝑗
) if

it is not worse than 𝑡
𝑗
in all dimensions (∀𝑘 ∈ [1, 𝑑], V

𝑖𝑘
≥

V
𝑗𝑘
) and better than 𝑡

𝑗
at least in one (∃𝑙 ∈ [1, 𝑑], V

𝑖𝑙
> V
𝑗𝑙
).

The probability that 𝑡
𝑖
dominates 𝑡

𝑗
is 𝑡
𝑖
’s existing probability

denoted as 𝑃(𝑡
𝑖
≺ 𝑡
𝑗
) = 𝑃(𝑡

𝑖
).

Definition 3 (skyline probability). Given a set 𝑈 of uncertain
tuples in the 𝑑-dimensional space 𝐷, the set of possible
worlds based on set 𝑈 is denoted in the form of 𝑃𝑊 =

{𝑊
1
, 𝑊
2
, . . . , 𝑊

𝑛
}. We assume that there exit uncertain tuple

𝑡 and possible world subset 𝑃𝑊
󸀠

𝑡
= {𝑊
󸀠

1
, . . . , 𝑊

󸀠

𝑚
} ⊆ 𝑃𝑊, if 𝑡

and 𝑃𝑊 satisfy that

(1) for any possible world 𝑊 ∈ 𝑃𝑊
󸀠

𝑡
, the uncertain tuple

𝑡 belongs to the skyline of 𝑊; that is, 𝑡 ∈ Skyline(𝑊);
(2) for any possible world 𝑊 ∈ 𝑃𝑊-𝑃𝑊

󸀠

𝑡
, the uncertain

tuple 𝑡 does not belong to the skyline of 𝑊; that is,
𝑡 ∉ Skyline(𝑊).

Then, we conclude that the skyline probability of an
uncertain tuple 𝑡 is the sum of all the possible worlds’
existential probability which are in the subset 𝑃𝑊

󸀠

𝑡
; that is

to say, 𝑃sky(𝑡) = ∑
𝑊∈𝑃𝑊

󸀠

𝑡

Pr(𝑊). For example, 𝑃sky(𝑡2) =

Pr(𝑊
7
) + pr(𝑊

10
) = 0.04 + 0.08 = 0.12.

Assume that there exist an uncertain tuple 𝑡 and an
alternative tuples set 𝜏

𝑡
= {𝑡
󸀠

1
, 𝑡
󸀠

2
, . . .} in the universal set
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Figure 1: An example of wireless sensor network.

𝑈 = {𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
}. If there exists 𝑡

󸀠

𝑘
∈ 𝜏
𝑡 that dominates 𝑡, we

can say 𝜏
𝑡 dominates 𝑡 (𝜏𝑡 ≺ 𝑡). Then, the probability that 𝜏

𝑡

dominates 𝑡 can be calculated as 𝑃(𝜏
𝑡

≺ 𝑡) = ∑
𝑡
󸀠

𝑘
∈𝜏
𝑡
,𝑡
󸀠

𝑘
≺𝑡

𝑃(𝑡
󸀠

𝑘
).

We use 𝑇 to denote the set that is composed of all 𝜏
𝑡 in 𝑈;

that is, 𝑇 = {𝜏
𝑡

1
, 𝜏
𝑡

2
, . . . , 𝜏

𝑡

𝑛
} ⊆ 𝑈. Consequently, the skyline

probability of uncertain tuple 𝑡 is the product of the existent
probability 𝑃(𝑡) of 𝑡 and the nonexistent probability ∏

𝑇
(1 −

𝑃(𝜏
𝑡

𝑖
)) of 𝜏

𝑡

𝑖
∈ 𝑇; that is, 𝑃sky(𝑡) = 𝑃(𝑡) × ∏

𝑇
(1 − 𝑃(𝜏

𝑡

𝑖
)).

Definition 4 (Probabilistic Skyline). Given a set 𝑈 of uncer-
tain tuples in the 𝑑-dimensional space 𝐷 and a threshold
value 𝑝, then the Probabilistic Skyline of 𝑈 contains all the
uncertain tuples in𝑈whose skyline probability is bigger than
𝑝, denoted as PS(𝑈) = {𝑡 | 𝑃sky(𝑡) > 𝑝}.

3.2. Property Analysis

Theorem 5. Probabilistic Skyline query is not a decomposable
operator.

Proof of Theorem 5. We first let 𝑡
𝑖
.𝑥 > 𝑡

𝑗
.𝑥 represent the fact

that 𝑡
𝑖
.𝑥 is better than 𝑡

𝑗
.𝑥 and let 𝑡

𝑖
.𝑦 > 𝑡

𝑗
.𝑦 represent the

fact that 𝑡
𝑖
.𝑦 is better than 𝑡

𝑗
.𝑦. Then, we assume that the

set 𝑈 = {𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
} of uncertain tuples is depicted in

Figure 2(a), and the threshold value 𝑝 is 0.3. We can know
that 𝑃sky(𝑡1) = 0.09, 𝑃sky(𝑡2) = 0.3, 𝑃sky(𝑡3) = 0.12, 𝑃sky(𝑡4) =

0.072, and 𝑃sky(𝑡5) = 0.4 by Definition 2. Also, we have
the result PS(𝑈) = {𝑡

5
} according to Definition 3. Now, let

𝑈 = 𝑈
1

∪ 𝑈
2
, 𝑈
1

= {𝑡
1
, 𝑡
2
, 𝑡
5
}, illustrated in Figure 2(b),

and 𝑈
2

= {𝑡
3
, 𝑡
4
}, shown in Figure 2(c). Similarly, it can

be proved that PS(𝑈
1
) = {𝑡

5
} and PS(𝑈

2
) = {𝑡

4
}. Only by

PS(𝑈
1
) ∪ PS(𝑈

2
) = {𝑡

4
, 𝑡
5
} demonstrated in Figure 2(d), in

whatever way, we cannot obtain the result that PS(𝑈) = {𝑡
5
};

that is to say, PS ̸= 𝑔(PS(𝑈
1
) ∪ PS(𝑈

2
)). Thus, PS query is not

a decomposable operator.

We can know that PS query is not a decomposable opera-
tor byTheorem5; thus, we cannot improve the efficiency of PS

queries in WSNs by using in-network computing technology
[11, 15] directly.

Next, we will further analyze the properties of the PS
query.

Theorem 6. Given a set 𝑈 of uncertain tuples in the 𝑑-
dimensional space 𝐷, a tuple 𝑡 ∈ 𝑈

𝑖
and a threshold value 𝑝.

𝑈
𝑖

= {𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
} are the subset of 𝑈 which contains tuples

collected on the 𝑖th cluster, and one uses 𝑇
𝑖

⊆ 𝑇 to denote the
set that is composed of 𝜏

𝑡

𝑘
⊆ 𝑈
𝑖
. Thus, 𝑡 does not belong to the

skyline of 𝑈 when it satisfies the conditions as follows:

𝑃 (𝑡) × ∏

𝑇
𝑖

(1 − 𝑃 (𝜏
𝑡

𝑘
)) < 𝑝. (1)

Proof of Theorem 6. This theorem can be proved by Defini-
tions 2 and 3 directly.

Theorem 7. Given a set 𝑈 of uncertain tuples in the 𝑑-
dimensional space 𝐷, a tuple 𝑡 ∈ 𝑈

𝑖
, and a threshold value

𝑝, then, 𝑡 should be excluded when it satisfies the conditions as
follows:

∏
𝑇
𝑖

(1 − 𝑃 (𝜏
𝑡

𝑘
))

1 − 𝑃 (𝜏𝑡
𝑥
)

< 𝑝 (𝑓𝑜𝑟 𝑎𝑛𝑦 𝜏
𝑡

𝑥
⊆ 𝑇
𝑖
) . (2)

Proof of Theorem 7. Since ∏
𝑇
𝑖

(1 − 𝑃(𝜏
𝑡

𝑘
))/(1 − 𝑃(𝜏

𝑡

𝑥
)) < 𝑝,

1 − 𝑃(𝜏
𝑡

𝑥
) ≤ 1, and 𝑃(𝑡) ≤ 1, then it can be deduced that

𝑃sky(𝑡) = 𝑃(𝑡) × ∏
𝑇
𝑖

(1 − 𝑃(𝜏
𝑡new
𝑘

)) < 𝑝. Thus, 𝑡 ∉ PS(𝑈
𝑖
) and

𝑡 ∉ PS(𝑈).
Only the skyline probability of the tuples dominated by

𝑡 will be affected if we delete 𝑡. Suppose 𝑡new dominated
by 𝑡 is a tuple in another sensor node which will possibly
be interleaved with tuples in 𝑈

𝑖
at the base station, and let

𝑃sky(𝑡new) indicate the skyline probability of 𝑡new. There are
two possible cases to consider.

Case 1. 𝑡new itself forms a new 𝜏new because the tuples that
dominate 𝑡 must dominate 𝑡new as well. Thus, it can be
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Figure 2: Example of PS query is not decomposable.

deduced that 𝑃sky(𝑡new) = 𝑃(𝑡new) × ∏
𝑇
(1 − 𝑃(𝜏

𝑡

𝑘
)) < 𝑝 and

𝑡new will not be judged as the skyline tuple by mistake.

Case 2. 𝑡new is a member of an existed 𝜏 that does exist in
𝑈
𝑖
named 𝜏new. Due to the mutual exclusiveness of tuple

members in 𝜏, 𝑡new may appear in a possible world if and only
if no other members of 𝜏new coexist in this possible world.
By formula (2), it can be proved that 𝑃sky(𝑡new) = 𝑃(𝑡new) ×

∏
𝑇
(1 − 𝑃(𝜏

𝑡new
𝑘

)) < 𝑝. Also, 𝑡new will not be judged as the
skyline tuple by mistake.

Theorem 6 pointed out the tuples in the subset 𝑈
𝑖
that

must not belong to the skyline of 𝑈 clearly; that is, it pointed
out the tuples that may be the skyline tuples of 𝑈. Theorem 7
evidenced that we can delete the tuples in 𝑈

𝑖
which will not

affect the calculation of the skyline of 𝑈. Not all the tuples
which do not belong to 𝑈

𝑖
can be deleted. The tuples that do

not satisfy the conditions above will affect the calculation of
skyline probability of other tuples, so we should hold them.

4. DPPS Algorithm

In this section, we propose the notions of candidate data,
irrelevant data, and relevant data according to Theorems
6 and 7. Next, we take the PS query as a test case to
derive candidate data and relevant data meanwhile prune the
irrelevant data. Thus, irrelevant data tuples pruned in local
sensor nodes will never appear in the final answer set.

Definition 8 (candidate data). In the sensing data subset 𝑈
𝑖
⊆

𝑈 on sensor node, the tuples which are candidate data (CD)
of the Probabilistic Skyline query satisfy the conditions:

𝑃 (𝑡) × ∏

𝑇

(1 − 𝑃 (𝜏
𝑡

𝑘
)) > 𝑝. (3)
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// input: The message set of child node 𝑀
𝑆
, the local sensing data 𝑅,

// the threshold value 𝑝

// output: The data set 𝑆 which will be submitted to the parent node
For each element 𝑚 in 𝑀

𝑆
Do

𝑡𝑒𝑚𝑝𝐶𝐷 = 𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑚.𝐶𝐷;
𝑡𝑒𝑚𝑝𝑅𝐷 = 𝑡𝑒𝑚𝑝𝑅𝐷 + 𝑚.𝑅𝐷;

end For
𝑡𝑒𝑚𝑝𝐶𝐷 = 𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑅;
For each element 𝑡 in 𝑡𝑒𝑚𝑝𝐶𝐷 Do

𝑡𝑒𝑚𝑝 = 1;
𝑛 = 𝑡.𝑔𝑒𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑁𝑢𝑚𝑏𝑒𝑟(𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑡𝑒𝑚𝑝𝑅𝐷); // get the number 𝑛 of 𝜏

𝑡

𝑡𝑒𝑚𝑝𝑇 = 𝑡.𝑔𝑒𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑇(𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑡𝑒𝑚𝑝𝑅𝐷); // and all 𝜏
𝑡 dominate 𝑡

For each 𝜏
𝑡 in 𝑡𝑒𝑚𝑝𝑇 Do

calculate 𝑃(𝜏
𝑡

𝑘
); // get 𝜏

𝑡

𝑘
’s domination probability

end For
If ∏
𝑇
(1 − 𝑃(𝜏

𝑡

𝑘
))/(1 − 𝑃(𝜏

𝑡

𝑥
)) < 𝑝 Then

𝑡𝑒𝑚𝑝𝐶𝐷.𝐷𝑒𝑙𝑒𝑡𝑒(𝑡); // delete ID from CD set
Else If 𝑃(𝑡) × ∏(1 − 𝑃(𝜏

𝑡

𝑘
)) ≤ 𝑝 Then

𝑡𝑒𝑚𝑝𝑅𝐷.𝐴𝑑𝑑(𝑡); // transmit RD to RD set from CD set
𝑡𝑒𝑚𝑝𝐶𝐷.𝐷𝑒𝑙𝑒𝑡𝑒(𝑡);

end If
end For
For each element 𝑡 in 𝑡𝑒𝑚𝑝𝑅𝐷 Do

𝑡𝑒𝑚𝑝 = 1;
𝑛 = 𝑡.𝑔𝑒𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑁𝑢𝑚𝑏𝑒𝑟(𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑡𝑒𝑚𝑝𝑅𝐷); // get the number 𝑛 of 𝜏

𝑡

𝑡𝑒𝑚𝑝𝑇 = 𝑡.𝑔𝑒𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑇(𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑡𝑒𝑚𝑝𝑅𝐷); // and all 𝜏
𝑡 dominate 𝑡

For each 𝜏
𝑡 in 𝑡𝑒𝑚𝑝𝑇 Do

calculate 𝑃(𝜏
𝑡

𝑘
);

end For
If ∏
𝑇
(1 − 𝑃(𝜏

𝑡

𝑘
))/(1 − 𝑃(𝜏

𝑡

𝑥
)) < 𝑝 Then

𝑡𝑒𝑚𝑝𝑅𝐷.𝐷𝑒𝑙𝑒𝑡𝑒(𝑡); // delete ID from RD set
end If

end For
return 𝑆 = ⟨𝑡𝑒𝑚𝑝𝑅𝐷 + 𝑡𝑒𝑚𝑝𝐶𝐷⟩;

Algorithm 1: Query processing on sensor node.

Definition 9 (irrelevant data). In the sensing data subset 𝑈
𝑖
⊆

𝑈 on sensor node, the tuples which are irrelevant data (ID) of
the Probabilistic Skyline query satisfy the conditions:

∏
𝑇

(1 − 𝑃 (𝜏
𝑡

𝑘
))

1 − 𝑃 (𝜏𝑡
𝑥
)

< 𝑝 (for any 𝜏
𝑡

𝑥
∈ 𝑇) . (4)

Definition 10 (relevant data). In the sensing data subset 𝑈
𝑖

⊆

𝑈 on sensor node, the tuples which are relevant data (RD) of
the Probabilistic Skyline query satisfy the conditions:

𝑃 (𝑡) × ∏ (1 − 𝑃 (𝜏
𝑡

𝑘
)) ≤ 𝑝 (for any 𝜏

𝑡

𝑥
∈ 𝑇) ,

∏
𝑇

(1 − 𝑃 (𝜏
𝑡

𝑘
))

1 − 𝑃 (𝜏𝑡
𝑥
)

≥ 𝑝.

(5)

Algorithm 1 sketches the process of data aggregation, data
classification, and the ID filtering on sensor nodes. First, the
algorithm merges all the data tuples sent by child nodes.
In other words, it merges CD into candidate data set and
merges RD into relevant data set (Lines 4–7); second, the
algorithm adds the local data tuple to the candidate data set
(Line 8); and, then, the skyline probability of each tuple in

the candidate data set and relevant data set will be calculated.
Meanwhile, the tuples will be classified according to the
definitions to removing ID and signing RD and CD (Lines
9–33); in the end, the partial relevant data set and candidate
data set will be submitted to the parent node (Line 34).

For data classification in a candidate data set, our algo-
rithm works as follows: first, it initializes the cumulative
probability variable (Line 10); second, the value of 𝑛 is
calculated, where 𝑛 is the number of 𝜏

𝑡 that can dominate the
tuple 𝑡 (Line 11); third, it finds out all 𝜏𝑡 that dominate 𝑡 (Line
12), after which each 𝜏

𝑡’s dominant probability is calculated
(Lines 13–15).Then, the data tuples are classified based on the
definitions above. In this procedure, tuples which are ID are
deleted while tuples which are RD are transferred from the
candidate data set to the relevant data set (Lines 16–22).

The process of data classification in a relevant data set
is similar to the former. At first, the cumulative probability
variable is initialized (Line 24); second, the value of 𝑛 is
calculated (Line 25); third, it finds out all 𝜏

𝑡 that dominate
𝑡 (Line 26); next, the dominant probability of each 𝜏

𝑡 will be
worked out (Lines 27–29); finally, the algorithmdeletes 𝑡 from
the relevant data set if it is ID (Lines 30–33).
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// input: The message set of child node 𝑀
𝑆
, the threshold value 𝑝.

// output: The data set 𝑆 which will be submitted to the parent node
For each element 𝑚 in 𝑀

𝑆
Do

𝑡𝑒𝑚𝑝𝐶𝐷 = 𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑚.𝐶𝐷;
𝑡𝑒𝑚𝑝𝑅𝐷 = 𝑡𝑒𝑚𝑝𝑅𝐷 + 𝑚.𝑅𝐷;

end For
For each element 𝑡 in 𝑡𝑒𝑚𝑝𝐶𝐷 Do

𝑡𝑒𝑚𝑝 = 1;
𝑛 = 𝑡.𝑔𝑒𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑁𝑢𝑚𝑏𝑒𝑟(𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑡𝑒𝑚𝑝𝑅𝐷); // get the number 𝑛 of 𝜏

𝑡

𝑡𝑒𝑚𝑝𝑇 = 𝑡.𝑔𝑒𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑇(𝑡𝑒𝑚𝑝𝐶𝐷 + 𝑡𝑒𝑚𝑝𝑅𝐷); // and all 𝜏
𝑡 dominate 𝑡

For each 𝜏
𝑡 in 𝑡𝑒𝑚𝑝𝑇 Do

calculate 𝑃(𝜏
𝑡

𝑘
);

end For
If ∏
𝑇
(1 − 𝑃(𝜏

𝑡

𝑘
))/(1 − 𝑃(𝜏

𝑡

𝑥
)) ≤ 𝑝 Then

𝑡𝑒𝑚𝑝𝐶𝐷.𝐷𝑒𝑙𝑒𝑡𝑒(𝑡); // delete ID and RD from CD set
end If

end For
return 𝑆 = ⟨𝑡𝑒𝑚𝑝𝐶𝐷⟩;

Algorithm 2: Query processing on base station.

In consideration of the running example in Theorem 5,
we assume that the WSN is a two-tier hierarchical topology
network. Let tuples 𝑡

1
, 𝑡
2
, and 𝑡

5
in 𝑈
1
be collected by sensor

nodes 𝑖. In the meantime, let 𝑡
3
and 𝑡
4
in 𝑈
2
be collected

by sensor node 𝑗. According to Algorithm 1, we can firstly
calculate the Local Skyline Probability (denoted as 𝑃sky

𝐿

) of
the tuples and then get the result that 𝑃sky

𝐿

(𝑡
1
) = 0.15,

𝑃sky
𝐿

(𝑡
2
) = 0.3, 𝑃sky

𝐿

(𝑡
5
) = 0.4, 𝑃sky

𝐿

(𝑡
3
) = 0.2, and 𝑃sky

𝐿

(𝑡
4
) =

0.64.Thus, the data classification on node 𝑖 is that 𝑡
1
is ID, 𝑡

2
is

RD, and 𝑡
5
is CD. Similarly, 𝑡

3
is ID and 𝑡

4
is CD on node 𝑗. As

a result, tuples 𝑡
2
, 𝑡
5
onnode 𝑖 and 𝑡

4
onnode 𝑗 are transmitted

to the base station.
The process of query processing on base station is

described in detail in Algorithm 2. To begin with, the
algorithm merges all the data tuples sent by child nodes;
that is to say, it merges CD into the candidate data set and
merges RD into the relevant data set (Lines 3–6); second, the
skyline probability of each tuple in the candidate data set will
be calculated; then, ID are removed from candidate data set
(Lines 7–17); finally, the rest data tuples in candidate data set
are the final result of PS (Line 18).

For removing ID and RD in a candidate data set, it
first initializes the cumulative probability variable (Line 8);
second, the value of 𝑛 is calculated (Line 9); third, it finds
out all 𝜏

𝑡 that dominates 𝑡 (Line 10); then, the dominant
probability of each 𝜏

𝑡 will be calculated (Lines 11–13); last,
the tuple which is not CD is removed from the candidate set
(Lines 14–17).

For example, on base station, the process of our running
example above works as follows: first, tuples 𝑡

4
and 𝑡
5
are

merged in candidate data set; 𝑡
2
is merged in RD. Second, we

have 𝑃sky
𝐿

(𝑡
4
) = 0.24 and 𝑃sky

𝐿

(𝑡
5
) = 0.4.Third, delete 𝑡

4
from

candidate data set. Finally, we get the last result that 𝑡
5
is the

skyline result, which illustrates the correctness and feasibility
of our algorithm.

5. Experimental Evaluations

In our experiments, 𝑛 sensor nodes were generated randomly
in a region with an area of 𝑛; thus, the average area of each
node is 1. The communication radius between two nodes
was set to be 2√2, and the maximum packet transmitted
between two nodes was stipulated to be 48 bytes. All the
experiments were conducted on a computer with Intel Core
i7-3770 CPU 3.40GHz and 8.00GB RAM. We conducted
our evaluation on the standard test data sets of PS query, in
which the probability for each tuple was generated uniformly.
The performance of the algorithm is mainly studied on
independence data and anticorrelated data.

Three parameters are mainly investigated in our experi-
ments, which are the number of sensor nodes, the dimensions
of sensing data, and the threshold value of the PS query. The
algorithm adjusted the values of the parameters to minimize
the overall data transmission in the network. The overall
data transmission is calculated by the communication cost
sent by all the sensor nodes in the network; that is, it is
calculated by the dimensionality of sensing data × numbers ×

hop count. The communication costs of DPPS and CA were
mainly explored with a number of sensor nodes which range
from 600 to 1000, with the default number equaling 600.The
dimensions of the sensing data range from 2 to 6 with the
default dimension equaling 2. The threshold value of the PS
query ranges from 0.1 to 0.3, which is 0.1 by default.

Under the independent and anticorrelation distribution,
the data communication cost of DPPS and CA affected by
the change of sensor nodes number is shown in Figure 3. In
this figure, we found that a large number of sensor nodes
lead to more communication cost. The increase speed of
DPPS is slower than CA’s. As the number of sensing data
increases due to the more sensor nodes, the communication
cost of CA increases fast. However, the unnecessary sensing
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Figure 3: The communication cost influenced by nodes’ number.
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Figure 4: The communication cost influenced by data dimensions.

data are filtered in DPPS which directly leads to a less
communication cost and amuch slower rate of increasement.
The communication cost in independent distribution is close
to the one in anticorrelation distribution, which explains that
data distribution has less impact on communication cost. In
other words, the confidence of sensing data is the primary
factor which affects the communication cost.

The data communication cost of both the algorithms,
under the two kinds of data distribution, affected by the
change of sensor data dimensionality is revealed in Figure 4.
Obviously, the bigger the dimensionality is, the more the
communication cost is.The reason is that, with the increment
of data dimension, the probability of tuples dominated by
others is decreased, which led to an increment in the number
of skyline tuples and the data communication cost. The
communication cost of DPPS is smaller than CA’s, which
further verified the effectiveness of DPPS. In addition, we

can draw a conclusion that it is the confidence of sensing
data which plays the primary role in communication cost
affection.

Under the two different distributions, the data com-
munication cost of DPPS and CA affected by the change
of threshold value is shown in Figure 5. In the figure, we
can see that a larger threshold value usually leads to less
communication cost. It is intuitive, since the larger the
threshold value is, the smaller the PS query result set will
be. That actually results in a less communication cost. The
communication cost of DPPS is always less than CA’s, which
proved the effectiveness of DPPS in a very great degree. In
a similar way, the results demonstrated the confidence is the
primary factor again.

All the results showed that DPPS precedes CA in all
changes of sensor node number, the sensing data dimension,
and the PS threshold value. It can be widely used in sensor
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Figure 5: The communication cost influenced by threshold value.

networks since it can improve efficiency and reduce the
communication cost significantly.

6. Conclusion

In this paper, we explored deeply the requirements of PS
query algorithm in WSNs and summarized the existing
problems in the WSNs. According to the characteristics of
applications in WSNs, we firstly studied the basic properties
of PS query and theoretically proved that the algorithm is
not decomposable. Then, an efficient algorithm, Distributed
Processing of Probabilistic Skyline (DPPS) query in WSNs,
was put forward. DPPS can classify the sensing data on sensor
nodes and discard the irrelevant data which will not affect the
result of the PS query.Thereby, the DPPS can reduce the data
transmission cost significantly in WSNs. Finally, the algo-
rithmwas verified by simulation experiments, and the results
showed that the performance of DPPS comparedwith the CA
is significantly improved in saving the communication cost in
network.
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[4] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline
operator,” in Proceedings of the 17th International Conference on
Data Engineering (ICDE ’01), pp. 421–430, April 2001.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive sky-
line computation in database systems,” ACM Transactions on
Database Systems, vol. 30, no. 1, pp. 41–82, 2005.

[6] L. Chen and X. Lian, “Efficient processing of metric skyline
queries,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 21, no. 3, pp. 351–365, 2009.

[7] Y. Tao and D. Papadias, “Maintaining sliding window skylines
on data streams,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 3, pp. 377–391, 2006.

[8] M. Morse, J. M. Patel, and W. I. Grosky, “Efficient continuous
skyline computation,” Information Sciences, vol. 177, no. 17, pp.
3411–3437, 2007.

[9] G. Wang, J. Xin, L. Chen, and Y. Liu, “Energy-efficient reverse
skyline query processing over wireless sensor networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 7,
pp. 1259–1275, 2012.

[10] H. Chen, S. Zhou, and J. Guan, “Towards energy-efficient
skyline monitoring in wireless sensor networks,” in Wireless
Sensor Networks, vol. 4373 of Lecture Notes in Computer Science,
pp. 101–116, Springer, Berlin, Germany, 2007.

[11] J. Xin,G.Wang, L. Chen,X. Zhang, andZ.Wang, “Continuously
maintaining sliding window skylines in a sensor network,” in
Advances in Databases: Concepts, Systems and Applications: 12th
International Conference on Database Systems for Advanced



10 Mathematical Problems in Engineering

Applications, DASFAA 2007, Bangkok, Thailand, April 9–12,
2007. Proceedings, vol. 4443 of Lecture Notes in Computer
Science, pp. 509–521, Springer, Berlin, Germany, 2007.

[12] J. Xin, G.Wang, andX. Zhang, “Energy-efficient Skyline queries
over sensor network using mapped skyline filters,” in Advances
in Data and Web Management: Joint 9th Asia-Pacific Web
Conference, APWeb 2007, and 8th International Conference, on
Web-Age Information Management, WAIM 2007, Huang Shan,
China, June 16–18, 2007. Proceedings, vol. 4505 of Lecture Notes
in Computer Science, pp. 144–156, Springer, Berlin, Germany,
2007.

[13] B. Chen, W. Liang, and J. X. Yu, “Energy-efficient skyline query
optimization in wireless sensor networks,” Wireless Networks,
vol. 18, no. 8, pp. 985–1004, 2012.

[14] H. Shen, Z. Chen, andX.Deng, “Location-based skyline queries
in wireless sensor networks,” in Proceedings of the International
Conference on Networks Security, Wireless Communications and
Trusted Computing (NSWCTC ’09), pp. 391–395, IEEE, Hubei,
China, April 2009.

[15] J. Xin, G. Wang, L. Chen, and V. Oria, “Energy-efficient evalua-
tion of multiple Skyline queries over a wireless sensor network,”
in Database Systems for Advanced Applications, vol. 5463 of
Lecture Notes in Computer Science, pp. 247–262, Springer,
Berlin, Germany, 2009.

[16] Y. J. Roh, I. Song, J. H. Jeon, K. G. Woo, and M. H. Kim,
“Energy-efficient two-dimensional skyline query processing in
wireless sensor networks,” in Proceedings of the IEEE Consumer
Communications and Networking Conference (CCNC ’13), pp.
294–301, IEEE, Las Vegas, Nev, USA, January 2013.

[17] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines
on uncertain data,” in Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB ’07), pp. 15–26,
Vienna, Austria, September 2007.

[18] X. Ding, X. Lian, L. Chen, and H. Jin, “Continuous monitoring
of skylines over uncertain data streams,” Information Sciences,
vol. 184, no. 1, pp. 196–214, 2012.

[19] W.Zhang, X. Lin, Y. Zhang,W.Wang, and J. X. Yu, “Probabilistic
skyline operator over sliding windows,” in Proceedings of the
25th International Conference on Data Engineering (ICDE ’09),
pp. 1060–1071, IEEE, Shanghai, China, April 2009.

[20] M. J. Atallah and Y. Qi, “Computing all skyline probabilities
for uncertain data,” in Proceedings of the 28th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems
(PODS ’09), pp. 279–287, Providence, RI, USA, July 2009.

[21] C. Böhm, F. Fiedler, A. Oswald, C. Plant, and B.Wackersreuther,
“Probabilistic skyline queries,” in Proceedings of the 18th ACM
Conference on Information and Knowledge Management (CIKM
’09), pp. 651–660, 2009.
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