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This paper presents a pulse shaping method robust to insufficient synchronization in orthogonal frequency division multiplexing
with offset quadrature amplitude modulation (OFDM/OQAM) systems over doubly dispersive (DD) channels.The proposed pulse
is designed as a linear combination of several well localizedHermite functions.The coefficients optimization problem ismodeled as
a nonconvex constrained fractional programming problem based on the signal-to-interference ratio (SIR) maximization criterion.
An efficient iterative algorithm is applied to simplify the problem to a series of quadratically constrained quadratic program (QCQP)
problemswhich can be solved by semidefinite relaxation (SDR)method. Simulation results show that the proposed pulse is superior
to traditional pulses with respect to SIR performance overDD channels in the presence of carrier frequency offset (CFO) and timing
offset (TO).

1. Introduction

Multicarrier (MC) transmission is employed in various com-
munication systems due to its robustness against time dis-
persion caused by multipath propagation. The systems are
generally lattice structures formed by time-frequency shifts
of a prototype pulse. Orthogonal frequency division mul-
tiplexing (OFDM) is a conventional MC technology for
some advantages of efficient implementation through FFT
technique and a simple equalization in frequency domain.
However, in OFDM systems, the cyclic prefix (CP) used
to prevent intersymbol interference (ISI) will cost a loss
of spectral efficiency and increase the power consumption.
Moreover, the rectangular prototype pulse which exhibits a
sinc-shaped frequency response will result in serious inter-
carrier interference (ICI) in frequency dispersion channels.

In order to counteract the drawbacks of OFDM systems,
some pulse-shaping OFDM (PS-OFDM) systems have been
proposed [1–4]. These systems are more robust to frequency
dispersion caused by Doppler effect and carrier frequency
offset (CFO) by employing prototype pulses with lower
sidelobe and faster spectral decay. However, the underlying

requirement in PS-OFDM systems is that the prototype
pulses must be orthogonal or biorthogonal to each other.
From frame theory, a well localized orthogonal pulses set
cannot be achieved for unit density structures due to Balian-
Low theorem. In the literature,many lattice structures employ
half lattice density which results in a loss of bandwidth
efficiency.

Recently, Filter Bank Multicarrier (FBMC) technology
has been intensively studied as an alternative to OFDM
in order to improve the robustness against various disper-
sive channels and to increase the bandwidth efficiency [5].
Among all the FBMC systems, the most popular one is the
OFDM/OQAM which has already been introduced in the
TIA’s Digital Radio Technical Standards and considered in
WRAN (IEEE802.22) [6]. Its principle is to introduce a half
symbol duration time offset between the real and imaginary
parts of a QAM constellation and transmit them separately
on each subcarrier. With this offset QAM approach, the
orthogonality constraint only holds in real field. Therefore,
a well localized pulse can be introduced in OFDM/OQAM
systems with unit lattice density.
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The time and frequency dispersion of the DD channel is
susceptible to cause ISI and ICI in multicarrier transmission.
In addition, OFDM/OQAM systems suffer from high sen-
sitivity to some desynchronization like CFO and TO [7, 8].
CFO is mainly caused by the different local oscillators of
the transmitter and receiver. TO may occur when the actual
sampling instant at the receiver is different from the optimal
one. Normally, CFO and TO estimation is carried out prior
to the demodulation. However, the estimation is usually not
perfect.Therefore, design of robust pulses to insufficient syn-
chronization over DD channels is an attractive research topic.
In [9], the WSSUS pulse shape optimization is translated to
a convex constraint quasi-convex maximization problem. In
[10], a pulse shape robust toDoppler effect is constructedwith
optimized combination of Hermite functions. In [11], a novel
cost function for optimization of the filter bank prototype
pulse is proposed to achieve robust performance over DD
channels. In [12], an OFDM/QAM pulse that is optimal with
respect to interference due to CFO is introduced.

In this paper, a robust prototype pulse modeled as
the linear combination of normalized Hermite functions is
proposed for OFDM/OQAM systems. The proposed pulse is
designed to be robust to channel dispersion and insufficient
synchronization. Firstly, the exact SIR expression of the
demodulated symbol versus CFO and TO is derived in the
assumption of wide sense stationary uncorrelated scattering
(WSSUS) channel. Then, the coefficients of Hermite func-
tions are optimized based on SIR maximization criterion.
Finally, the optimization problem is simplified to a series of
QCQP problems by using an effective iterative algorithm. By
taking into account the semidefinite relaxation, the QCQP
problems can be translated to semidefinite programming
(SDP) problems which are easy to be solved. Theoretical
analysis and simulation results show that the proposed
pulse outperforms traditional pulses especially in the case of
seriously dispersive channels with large CFO and TO.

The rest of this paper is organized as follows. The system
model of OFDM/OQAM is described in the next section.
In Section 3, design of the robust pulse is formulated as
a SIR maximization problem. In Section 4, the proposed
optimization algorithm is presented and performance of the
optimal pulse is tested by numerical simulations in Section 5.
Finally, some conclusions are drawn in Section 6.

2. System Model

Instead of using complex symbols in OFDM/QAM systems,
the real-valued symbols modulated by offset QAM are trans-
mitted on each subcarrier in OFDM/OQAM scheme. With
the synthesis basis functions obtained by the time-frequency
translated version of the prototype pulse, the transmitted
baseband signal can be written in the following analytic form
[6]:

𝑠 (𝑡) = ∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘𝑒

𝑗𝜙
𝑚𝑘

𝑒
𝑗2𝜋𝑚𝐹0𝑡

𝑔 (𝑡 − 𝑘𝜏0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔
𝑚,𝑘

(𝑡)

, (1)

where 𝜙𝑚𝑘 = (𝜋/2)(𝑚 + 𝑘) is the phase term related to
the staggering rule of OQAM, 𝐹0 is the intercarrier spacing,

𝜏0 is the symbol duration time (𝐹0𝜏0 = 1/2), 𝑀 is the
subcarrier number which is supposed to be even, and 𝑎𝑚,𝑘

denotes the real-valued symbol located on the𝑚th subcarrier
at time instant 𝑘𝜏0. The symbols are obtained by introducing
half a symbol spacing between the real and imaginary parts
of the QAM complex-valued symbols. They are assumed to
be independent and identically distributed with zero mean
and average energy 𝜎

2
𝑎
. 𝑔(𝑡) denotes the real-valued even

prototype pulse in this paper.
Assuming a distortion-free channel, the following or-

thogonality condition is required for complete reconstruction
of the data symbols:

⟨𝑔𝑚,𝑘 (𝑡) , 𝑔𝑛,𝑙 (𝑡)⟩𝑅

= R {(𝑗)
𝑘−𝑙+𝑚−𝑛+(𝑘−𝑙)(𝑛+𝑚)

𝐴𝑔 ((𝑛 −𝑚) 𝜏0, (𝑙 − 𝑘) 𝐹0)}

= 𝛿 (𝑚− 𝑛, 𝑘 − 𝑙) ,

(2)

where R{⋅} is the real part operator and 𝛿(⋅, ⋅) denotes the
2D Kronecker delta function. And 𝐴𝑔(𝜏, 𝜐), the ambiguity
function of 𝑔(𝑡), is defined by

𝐴𝑔 (𝜏, 𝜐) = ∫

𝑅

𝑔(𝑡 +

𝜏

2
)𝑔

∗
(𝑡 −

𝜏

2
) 𝑒

−𝑗2𝜋𝜐𝑡
𝑑𝑡. (3)

It is observed that 𝐴𝑔(𝜏, 𝜐) is real-valued as long as 𝑔(𝑡)
is an even function [6]. Hence, the orthogonality can be
ensured by finding a real and even prototype pulse of which
the ambiguity function satisfies

𝐴𝑔 (2𝑢𝜏0, 2V𝐹0) = 𝛿 (𝑢, V) , (𝑢, V) ∈ Z. (4)

The baseband doubly dispersive channel can be modeled
as a random time-varying system 𝐻 with impulse response
ℎ(𝑡, 𝜏) [13]. Therefore, considering the noiseless case, the
received signal can be expressed as

𝑟 (𝑡) = 𝐻 [𝑠 (𝑡)]

= ∫

𝜏max

0
∫

𝑓
𝑑

−𝑓
𝑑

𝐻(𝜏, V) 𝑠 (𝑡 − 𝜏) 𝑒
𝑗2𝜋V𝑡

𝑑𝜏 𝑑V,
(5)

where 𝜏max and 𝑓𝑑 are the maximum multipath delay spread
and Doppler frequency, respectively.We denote 𝜃 = 𝜏max×𝑓𝑑

as the channel spread factor. In general, practical wireless
channels are usually underspread and satisfy 𝜃 ≪ 1. The
delay-Doppler spread function 𝐻(𝜏, V) is the Fourier trans-
form of ℎ(𝑡, 𝜏) with respect to 𝑡. In the WSSUS assumption,
the channel is characterized by the second-order statistics of
𝐻(𝜏, V), that is, the scattering function 𝑆𝐻(𝜏, V):

𝐸 [𝐻 (𝜏, V)𝐻∗
(𝜏

󸀠V󸀠
)]

= 𝑆𝐻 (𝜏, V) 𝛿 (𝜏 − 𝜏
󸀠
) 𝛿 (V− V󸀠

) ,

(6)

where 𝐸[⋅] denotes the expectation operator. Moreover, it
is assumed that 𝐸[𝐻(𝜏, V)] = 0. In this paper, we set
∫

𝜏
∫V 𝑆𝐻(𝜏, V)𝑑𝜏𝑑V = 1, which means that the channel has no

overall path loss.
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Figure 1: Baseband equivalent of an OFDM/OQAM system with𝑀 subcarriers in the presence of CFO and TO.

At the receiver, the demodulated signal 󵱰𝑎𝑚0 ,𝑘0
for time-

frequency position (𝑚0, 𝑘0) is performed by a projection of
the received signal 𝑟(𝑡) onto the set of functions {𝑔𝑚0 ,𝑘0

(𝑡)}

with the modified inner product. Consider

󵱰𝑎𝑚0 ,𝑘0
= ⟨𝑟 (𝑡) , 𝑔𝑚0 ,𝑘0

(𝑡)⟩
𝑅

= R {∫

𝑅

𝑟 (𝑡) 𝑔
∗

𝑚0 ,𝑘0
(𝑡) 𝑑𝑡}

= ∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘 ⟨𝐻 (𝑔𝑚,𝑘 (𝑡)) , 𝑔𝑚0 ,𝑘0

(𝑡)⟩
𝑅
.

(7)

3. Pulse Design and SIR Criterion

3.1. Effects of TO, CFO, and DD Channels. Considering the
insufficient synchronization, we introduce a timing offset
Δ𝑡 and a carrier frequency offset Δ𝑓. Then, the baseband
equivalent of an OFDM/OQAM system with 𝑀 subcarriers
in the presence of CFO and TO is depicted in Figure 1. In
general, the demodulated data symbol before the real part
extraction can be expressed as

𝑎𝑚0 ,𝑘0

= ⟨𝑒
𝑗2𝜋Δ𝑓𝑡

𝑟 (𝑡) , 𝑔𝑚0 ,𝑘0
(𝑡 − Δ𝑡)⟩

= ∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘 ⟨𝑒

𝑗2𝜋Δ𝑓𝑡
𝐻(𝑔𝑚,𝑘 (𝑡)) , 𝑔𝑚0 ,𝑘0

(𝑡 − Δ𝑡)⟩

= ∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘Θ

Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘
,

(8)

where ΘΔ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘
is given in (A.1) (see Appendix A). If we set

𝑚 = 𝑚0 and 𝑘 = 𝑘0, then the desired section of the data
symbol can be expressed as

𝑎𝑚0 ,𝑘0
Θ

Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚0,𝑘0

= 𝑎𝑚0 ,𝑘0
𝑒

𝑗2𝜋[Δ𝑓(Δ𝑡+𝑘0𝜏0)+𝑚0𝐹0Δ𝑡]
∫

𝜏

∫

V
𝑒

𝑗2𝜋[V(Δ𝑡+𝑘0𝜏0)−𝑚0𝐹0𝜏]
𝐻(𝜏,

V) 𝐴𝑔

∗
(𝜏 −Δ𝑡, V+Δ𝑓) 𝑑𝜏 𝑑V

= 𝑒
𝑗2𝜋[Δ𝑓(Δ𝑡+𝑘0𝜏0)+𝑚0𝐹0Δ𝑡]

Λ𝐻 (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓) 𝑎𝑚0 ,𝑘0
.

(9)

Equation (9) shows that the desired section of the data
symbol at the receiver is rotated by a phasor 2𝜋[Δ𝑓(Δ𝑡 +

𝑘0𝜏0) + 𝑚0𝐹0Δ𝑡], which is caused by the CFO and TO.
To compensate the phase rotation, the demodulated data
symbol 𝑎𝑚0 ,𝑘0

is equalized with a single complex-tap. We can
assume the equalizer to be a simple one-tap zero-forcing (ZF)
equalizer at each subcarrier and each time instant, which
eventually leads the equalized data symbol after real-part-
taken operation to

𝑎
ZF
𝑚0 ,𝑘0

= ∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘R

{

{

{

Θ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘

𝐻
󸀠

𝑚0𝑘0

}

}

}

, (10)

where 𝐻
󸀠

𝑚0𝑘0
= 𝑒

𝑗2𝜋[Δ𝑓(Δ𝑡+𝑘0𝜏0)+𝑚0𝐹0Δ𝑡] is the ZF equalizer
coefficient at the (𝑚0, 𝑘0) subcarrier. It is then easy to separate
the equalized data symbol into the useful part and ICI/ISI
part; that is,

𝑎
ZF
𝑚0 ,𝑘0

= 𝑎𝑚0𝑘0
R

{

{

{

Θ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚0 ,𝑘0

𝐻
󸀠

𝑚0𝑘0

}

}

}

+ ∑

𝑘 ̸=𝑘0

∑

𝑚 ̸=𝑚0

𝑎𝑚,𝑘R
{

{

{

Θ
Δ𝑡,Δ𝑓

𝑚0,𝑘0 ;𝑚,𝑘

𝐻
󸀠

𝑚0𝑘0

}

}

}

= R {Λ𝐻 (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓)} 𝑎𝑚0𝑘0
+ 𝐽𝑚0𝑘0

.

(11)

Concerning the useful portion, the desired symbol is atten-
uated by Λ𝐻(𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓) which is caused by the DD
channel, TO, and CFO.
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By taking into account the statistically independent prop-
erty of the data symbols 𝑎𝑚,𝑘 and theWSSUS assumption, the

total energy of the equalized symbol can be calculated as (see
Appendix A)

𝐸𝑟 (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓) =

1
2
𝜎
2
𝑎
∑

𝑘∈Z

𝑀−1
∑

𝑚=0
∫

𝜏

∫

V
𝑆𝐻 (𝜏, V)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴𝑔 ((𝑘 − 𝑘0) 𝜏0 + 𝜏 − Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V + Δ𝑓)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝜏 𝑑V. (12)

Then, the desired signal energy can be calculated as

𝐸𝑆 (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓)

=

1
2
𝜎
2
𝑎
∫

𝜏

∫

V
𝑆𝐻 (𝜏, V)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴𝑔 (𝜏 − Δ𝑡, V + Δ𝑓)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝜏 𝑑V.

(13)

The interference energy can be calculated as

𝐸𝐼 (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓) =

1
2
𝜎
2
𝑎
∑

𝑘 ̸=𝑘0

∑

𝑚 ̸=𝑚0

∫

𝜏

∫

V
𝑆𝐻 (𝜏, V)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴𝑔 ((𝑘 − 𝑘0) 𝜏0 + 𝜏 − Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V + Δ𝑓)

󵄨
󵄨
󵄨
󵄨
󵄨

2
𝑑𝜏 𝑑V. (14)

Hence, the SIR expression is defined by

SIR (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓) =

𝐸𝑆

𝐸𝐼

. (15)

Equations (13)–(15) illustrate that the SIR depends on
the prototype pulse through its ambiguity function when the
channel scattering function, CFO, and TO are confirmed.
Various prototype pulses, such as square-root raised-cosine
(SRRC) [14] and isotropic orthogonal transform algorithm
(IOTA) [15] pulses and Hermite pulse (HP) design based on
the Hermite functions [16], have been studied. With SRRC
pulse, one can get good frequency attenuation property, while
IOTA and HP pulses lead to good and identical time and fre-
quency localization. Additionally, the authors in [17] realized
a Nyquist pulse in both time and frequency, which is referred
to as optimal finite duration pulse (OFDP), by minimizing
the out-of-band energy of a time-limited pulse. However,
the above pulses are highly sensitive to desynchronization
over DD channels. Therefore, in this paper, we search for
the optimal prototype pulse based on SIR maximization
criterion:

𝑔opt (𝑡) = argmax
𝑔(𝑡)

SIR. (16)

3.2. SIR Maximization Criterion Based on the Optimal Pulse.
The optimal pulse is researched as a linear combination of
several Hermite functions which are maximally localized in
both time and frequency [18].The 𝑛th orderHermite function
ℎ𝑛(𝑡) is given by

ℎ𝑛 (𝑡) = (

21/4

√2𝑛
𝑛!

)𝐻𝑛 (
√2𝜋𝑡) 𝑒−𝜋𝑡

2
, (17)

where 𝐻𝑛(𝑡) is the 𝑛th order Hermite polynomial which can
be computed recursively by 𝐻0(𝑡) = 1, 𝐻1(𝑡) = 2𝑡, and
𝐻𝑛+1(𝑡) = 2𝑡𝐻𝑛(𝑡) − 2𝑛𝐻𝑛−1(𝑡). We note that the Hermite

function corresponding to 𝑛 = 0 is the Gaussian pulse
and provides the best time and frequency localization. It
has been proved that ℎ𝑛(𝑡) is the eigenvector of its Fourier
transformation: 𝐹{ℎ𝑛(𝑡)} = 𝜆𝑛ℎ𝑛(𝑡). Moreover, 𝜆𝑛 = 𝑒

−𝑗𝑛𝜋/2 is
the corresponding eigenvalue.Therefore, if we choose 𝑛 = 2𝑙,
𝑙 = 0, 1, 2, . . ., both ℎ𝑛(𝑡) and its Fourier transformation are
real and even functions. Finally, the proposed optimal pulse
can be expressed as

𝑔 (𝑡) =

𝐿−1
∑

𝑙=0
𝛼𝑙ℎ2𝑙 (𝑡) . (18)

Equation (18) indicates that the 𝐿 most concentrated
Hermite functions are used. The coefficients 𝛼𝑙 are assumed
real. Substituting (18) into (3), we obtain

𝐴𝑔 (𝜏, 𝜐) =

𝐿−1
∑

𝑙=0

𝐿−1
∑

𝑞=0
𝛼𝑙𝛼𝑞𝐴 𝑙𝑞 (𝜏, 𝜐) , (19)

where 𝐴 𝑙𝑞(𝜏, 𝜐) = ∫
𝑅
ℎ2𝑙(𝑡 + 𝜏/2)ℎ2𝑞

∗
(𝑡 − 𝜏/2)𝑒−𝑗2𝜋𝜐𝑡

𝑑𝑡 and
they can be calculated according to [19]. Using (13), (14), (15),
and (19), after a few steps of straightforward manipulations,
we obtain

SIR =

∑0≤𝑙,𝑞,𝑙󸀠,𝑞󸀠≤𝐿−1 𝛼𝑙𝛼𝑞𝛼𝑙󸀠𝛼𝑞󸀠𝑆 (𝑙, 𝑞, 𝑙
󸀠
, 𝑞

󸀠
)

∑0≤𝑙,𝑞,𝑙󸀠 ,𝑞󸀠≤𝐿−1 𝛼𝑙𝛼𝑞𝛼𝑙󸀠𝛼𝑞󸀠𝐼 (𝑙, 𝑞, 𝑙
󸀠
, 𝑞

󸀠
)

(20)

with

𝑆 (𝑙, 𝑞, 𝑙
󸀠
, 𝑞

󸀠
) = ∫

𝜏

∫

V
𝑆𝐻 (𝜏, V) 𝐴 𝑙𝑞 (𝜏 −Δ𝑡, V+Δ𝑓)

⋅ 𝐴
∗

𝑙󸀠𝑞󸀠
(𝜏 −Δ𝑡, V+Δ𝑓) 𝑑𝜏 𝑑V,

(21)

𝐼 (𝑙, 𝑞, 𝑙
󸀠
, 𝑞

󸀠
) = ∫

𝜏

∫

V
𝑆𝐻 (𝜏, V)

⋅ ∑

𝑘 ̸=𝑘0

∑

𝑚 ̸=𝑚0

𝐴 𝑙𝑞 ((𝑘 − 𝑘0) 𝜏0 + 𝜏 − Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V + Δ𝑓)

⋅ 𝐴
∗

𝑙󸀠𝑞󸀠
((𝑘 − 𝑘0) 𝜏0 + 𝜏−Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V+Δ𝑓) 𝑑𝜏 𝑑V.

(22)
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To precisely evaluate the SIR, it is sufficient to consider
only the energy perturbation from neighboring symbols with
negligible performance loss by employing the well localized
pulses. Therefore, we consider |𝑘 − 𝑘0| ≤ 4 and |𝑚 −

𝑚0| ≤ 4 in (22). Finally, the optimization task amounts
to finding the coefficients 𝛼𝑙 so that the objective function
SIR(𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓) is maximized.

4. Optimization Strategy and Algorithm

4.1. Optimization Problem Formulation. The optimization of
the prototype pulse is achieved by the optimization of the
coefficients 𝛼𝑙 that maximize the SIR expression in (20). In
order to get simplified, easier-to-manipulate expressions, let
a denote the 𝐿 × 1 column vector containing the coefficients
to be optimized: a = [𝛼0 𝛼2 ⋅ ⋅ ⋅ 𝛼𝐿−1]

𝑇. Then, we introduce
the𝐿2×1 column vectorw = a⊗a, where⊗ denotes thematrix
Kronecker product. As a function of w, the SIR expression in
(20) can be reorganized in the following matrix form:

SIR =

w𝑇Sw
w𝑇Iw

, (23)

where S = (𝑠𝑖𝑗) and I = (𝑖𝑛𝑖𝑗) and 0 ≤ 𝑖, 𝑗 ≤ 𝐿
2
− 1 are

symmetric and positive definite (SPD) matrices, respectively,
defined by 𝑠𝑖𝑗 = 𝑆(𝑙, 𝑞, 𝑙

󸀠
, 𝑞

󸀠
) and 𝑖𝑛𝑖𝑗 = 𝐼(𝑙, 𝑞, 𝑙

󸀠
, 𝑞

󸀠
), where

𝑖 = 𝑙𝐿 + 𝑞 and 𝑗 = 𝑙
󸀠
𝐿 + 𝑞

󸀠. The ambiguity function 𝐴𝑔(𝜏, 𝜐)

can also be reorganized in the following matrix form:

𝐴𝑔 (𝜏, 𝜐) = a𝑇A (𝜏, 𝜐) a, (24)

where A(𝜏, 𝜐) = (𝑎𝑖𝑗) and 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1 is defined by 𝑎𝑖𝑗 =

𝐴 𝑖𝑗(𝜏, 𝜐). In [16], it has been proposed that the orthogonality
constraints (4) were applied at the origin position (𝑢, V) = 0
and other 𝐿 − 1 nearest grid points around it. The operation
relies on the good localization property of 𝑔(𝑡). Finally,
substituting (24) in (4), the coefficients a can be determined
by solving the resulting 𝐿 equations.

Since the ambiguity function is real-valued, the orthogo-
nality conditions in (4) can be transformed to

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴𝑔 (2𝑢𝜏0, 2V𝐹0)

󵄨
󵄨
󵄨
󵄨
󵄨

2
= 𝛿 (𝑢, V) . (25)

Substituting (19) into (25), we obtain

w𝑇B (𝑢, V)w = 𝛿 (𝑢, V) , (26)

where B(𝑢, V) = (𝑏𝑖𝑗) and 0 ≤ 𝑖, 𝑗 ≤ 𝐿
2
− 1, and it is defined by

𝑏𝑖𝑗 = 𝐴 𝑙𝑞(2𝑢𝜏0, 2V𝐹0)𝐴 𝑙󸀠𝑞󸀠(2𝑢𝜏0, 2V𝐹0), where 𝑖 = 𝑙𝐿 + 𝑞 and
𝑗 = 𝑙

󸀠
𝐿 + 𝑞

󸀠.
Considering the effect of time and frequency dispersion

in DD channels, the constraints on the nulls of the ambiguity
function are not necessary [11].Therefore, we simply relax the
constraint (26) to w𝑇B(0, 0)w = 1. Besides the orthogonality
constraints on w, there are some other inherent constraints
due to the operation of matrix Kronecker product. After
some computations, reported inAppendix B, we find that two
kinds of equality constraints and one inequality constraint are

introduced: Cw = 0, w𝑇D𝑖𝑗w = 0, and Gw ≥ 0. Eventually,
the optimization problem can be formulated as follows:

(P) : max
w

w𝑇Sw
w𝑇Iw

s.t. 𝐶1: w𝑇B (0, 0)w = 1

𝐶2: w𝑇D𝑖𝑗w = 0, 0 ≤ 𝑖, 𝑗 ≤ 𝐿
2
− 1

𝐶3: Cw = 0

𝐶4: Gw ≥ 0.

(27)

4.2. Iterative Algorithm for SIR Maximization. As the opti-
mization problem (P) is a fractional programming problem,
the objective function (OF) is nonconvex in this case. This
kind of problem is NP-hard generally. In order to solve the
problem, it is convenient to adopt Dinkelbach’s parametric
approach [20]. By defining Ω as the set of feasible solutions
of problem (P), the equivalent parametric problem associated
with this problem can be expressed as

𝐹 (𝜆) = max
w∈Ω

[𝑓 (𝜆,w) =w𝑇Sw −𝜆w𝑇Iw] ,

w (𝜆) = argmax
w∈Ω

𝑓 (𝜆,w) .
(28)

If there exists 𝜆∗
≥ 0 for which 𝐹(𝜆

∗
) = 0, it has been

proved that w∗
= w(𝜆∗

) is the optimal solution of problem
(P) [20].Then, an effective iterative algorithmwhich is known
as Dinkelbach’s method is proposed in Algorithm 1.

By employing the above iterative algorithm, problem (P)
can be transformed to a series of QCQP problems as follows:

max
w

w𝑇
(S−𝜆𝑖−1I)w,

s.t. 𝐶1, 𝐶2, 𝐶3, 𝐶4.
(29)

However, considering the variety of 𝜆, the optimization
problem in (29) is a nonconvex quadratic program problem.
Fortunately, the semidefinite relaxation (SDR) method can
be applied to generate the suboptimal solutions with quite
encouraging results [21]. It is crucial for the SDR method to
observe thatw𝑇Hw = Tr(H(ww𝑇

)), where Tr(⋅) stands for the
trace of a matrix. To get simplified expressions, we introduce
a matrix variableM = ww𝑇, which is equivalent toM being a
rank-one and positive semidefinite (PSD) matrix. Therefore,
we can obtain the following equivalent formulation of (29):

max
M

Tr ((S−𝜆𝑖−1I)M)

s.t. 𝐶1: Tr (B (0, 0)M) = 1

𝐶2: Tr (D𝑖𝑗M) = 0, 0 ≤ 𝑖, 𝑗 ≤ 𝐿
2
− 1

𝐶3: Tr (C𝑇
𝐶M) = 0

𝐶4: Gw ≥ 0

𝐶5: M≻0, rank (M) = 1.

(30)
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Input: 𝐿outer (the maximum number of iterations)
𝜀outer > 0 (the convergence tolerance)

(1) Calculating the largest eigenvalue 𝛽 of I−1S and the corresponding eigenvector 𝜉. If 𝜉 ∈ Ω, terminate.
The eigenvector 𝜉 is the globally optimal solution in this case; otherwise go to Step (2)

(2) 𝑖 ← 0, 𝜆0 ← 0
(3) do while 𝑖 < 𝐿outer and 𝑓(𝜆𝑖−1,w∗

𝑖
) > 𝜀outer

(4) 𝑖 ← 𝑖 + 1
(5) Solving 𝐹(𝜆

𝑖−1) to obtain the optimal solution w∗

𝑖
(inner loop)

(6) 𝜆𝑖 ← w∗

𝑖

𝑇Sw∗

𝑖
/w∗

𝑖

𝑇Iw∗

𝑖

(7) end do
(8) return

Algorithm 1: Iterative algorithm for SIR maximization.

In the equation,M≻0 indicates thatM is PSD. It is clear that
except for the nonconvex rank-one constraint rank(M) = 1 in
𝐶5, the remaining problem is convex. Finally, by dropping the
nonconvex constraint, we can obtain a relaxed semidefinite
programming (SDP) problem, which can be efficiently solved
using the general purpose CVX package [22].

5. Numerical Results

In this section, the SIR performance of the proposed pulse-
shaping algorithm is evaluated. The set of prototype pulses
such as Hermite, IOTA, SRRC, and OFDP will serve as a
basis for our comparison. The CP-OFDM with rectangular
pulse is also included for comparison. The experiments are
established through a 20MHz channel for OFDM/OQAM
systems where 𝑀 = 256 subcarriers and 4-QAM are
employed. The one-tap ZF equalizer is used at the output of
the demodulator to compensate the phase rotation caused by
CFO and TO. The WSSUS channel with exponential power
delay profile and U-shape Doppler spectrum is adopted.
The rectangular time-frequency lattice is set to adapt to the
channel property, that is, 𝜏0/𝐹0 = 𝜏max/𝑓𝑑. Therefore, the
transmission pattern of the system is fixed. In addition, Δ𝑓
and Δ𝑡 are normalized to 𝐹0 and 𝜏0, respectively.

The time and frequency responses of the optimal pulse
are shown in Figure 2 when the channel spread factor is fixed
to 0.01 and both of the normalized CFO and TO are fixed
to 0.05. In the figure, the curves of rectangular pulse and
OFDP are included for comparison. It is clear that the OFDP
yields a better result in frequency domain. On the other
hand, the optimal pulse has a better SIR performance in the
presence of desynchronization over DD channels which will
be confirmed in the following simulations.

It is obvious that the SIR performance will be improved
while increasing the number 𝐿 of Hermite functions. Nev-
ertheless, the improvement decreases with 𝐿. Meanwhile,
increasing 𝐿 will induce computational complexity and even
cause instability in the optimization process.Thus, we choose
𝐿 = 5 as a compromise.

Figure 3 shows the SIR performance of the considered
prototype pulses as a function of the channel spread factor

𝜃 when the synchronization is perfect (i.e., Δ𝑓 = Δ𝑡 =

0). In the simulation, the optimization is redone for each
set of 𝜃. From the figure, it can be seen that the optimal
design significantly outperforms other prototype pulseswhen
𝜃 ≥ 0.006. However, the SIR is about only 27 dB when
𝜃 = 0 due to the fact that the constraints on the nulls of
the ambiguity function of the proposed pulse are abandoned.
The Hermite pulse and IOTA pulse lead to approximately the
same performance, so IOTA is not included in the following
comparisons.

The SIR curves as a function of the normalized CFO
are presented in Figures 4 and 5 for the case where timing
is perfect. In the scenario, we set the channel spread factor
𝜃 = 0.003 in Figure 4 and 𝜃 = 0.018 in Figure 5. The optimal
pulse is uniquely determined by a fixed CFO𝑓𝑒 which is set to
0.05 in the simulations. From the figures, an improvement of
the robustness against the CFO can be addressed by using the
optimal pulse. By varying 𝑓𝑒, we can get a series of optimal
pulses and the corresponding maximum SIR. Then, the SIR
upper bound can be obtained which shows the improvement
margin for a given CFO. It can also be concluded that when
the optimal pulse is employed, more SIR performance gain
can be obtained for larger CFO and channel spread factor.

Figures 6 and 7 show the SIR results for the case when
Δ𝑓 = 0. The results are given as a function of the normalized
TO for a fixed channel spread factor 𝜃 = 0.003 in Figure 6
and 𝜃 = 0.018 in Figure 7. In the simulations, we set the
optimized point 𝑡𝑒 = 0.03. As is shown in the figures, except
for the rectangular pulse in OFDM, the optimal pulse has
the highest SIR at the optimized point. CP-OFDM perfectly
suppresses the interference caused by TO within cyclic prefix
but performs poorly over DD channels. By varying 𝑡𝑒, we can
also get a SIR upper bound. Similar results can be concluded
that more SIR performance gain can be obtained for larger
TO and channel spread factor.

We also note that, in Figures 4 and 6, where the small
value of channel spread factor is used, the optimal pulse
performs slightly inferior to other pulses in the small CFO
and TO regions. However, the SIR level is still higher than
20 dB.
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Figure 2: Pulse shapes in time and frequency domain.
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Figure 3: SIR as a function of channel spread factor with perfect
synchronization.

Figure 8 gives the SIR comparison where the same
increment step for CFO and TO is set. we set 𝜃 = 0.01
and the optimized point 𝑡𝑒 = 𝑓𝑒 = 0.05. The result
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(d
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Hermite pulse
SRRC
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Upper bound

OFDP

Figure 4: SIR as a function of normalized CFO for Δ𝑡 = 0 over a
DD channel with 𝜃 = 0.003.

confirms once again the efficiency of our method to acquire
a prototype pulse robust to insufficient synchronization over
DD channels.
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Figure 5: SIR as a function of normalized CFO for Δ𝑡 = 0 over a
DD channel with 𝜃 = 0.018.
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Figure 6: SIR as a function of normalized TO for Δ𝑓 = 0 over a DD
channel with 𝜃 = 0.003.

6. Conclusion

In this paper, we have proposed a procedure for designing
prototype pulses for OFDM/OQAM systems that are optimal
with respect to SIR performance over doubly dispersive
channels with insufficient synchronization. Based on SIR
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Figure 7: SIR as a function of normalized TO for Δ𝑓 = 0 over a DD
channel with 𝜃 = 0.018.
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Figure 8: SIR as a function of the equivalent CFO and TO with 𝜃 =

0.01.

maximization criterion, the pulse design procedure has been
formulated as a nonconvex fractional programming problem
which was efficiently solved by employing an iterative algo-
rithm. Numerical simulations demonstrated that the optimal
pulse provides a significant performance gainover traditional
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pulses. The advantage is especially prominent in the case of
seriously dispersive channels with large carrier frequency and
timing offset.

Appendices

A. Derivation of (12)

Consider

Θ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘
= ⟨𝑒

𝑗2𝜋Δ𝑓𝑡
𝐻(𝑔𝑚,𝑘 (𝑡)) , 𝑔𝑚0 ,𝑘0

(𝑡 − Δ𝑡)⟩ = ∫

𝑡

𝑒
𝑗2𝜋Δ𝑓𝑡

∫

𝜏

∫

V
𝐻(𝜏, V) 𝑔𝑚,𝑘 (𝑡 − 𝜏) 𝑒

𝑗2𝜋V𝑡
𝑔

∗

𝑚0 ,𝑘0
(𝑡 − Δ𝑡) 𝑑𝜏 𝑑V 𝑑𝑡

= 𝑒
𝑗(𝜙
𝑚𝑘

−𝜙
𝑚0𝑘0 )

𝑒
𝑗2𝜋𝑚0𝐹0Δ𝑡

∫

𝜏

∫

V
∫

𝑡

𝐻(𝜏, V) 𝑒𝑗2𝜋𝑚𝐹0(𝑡−𝜏)
𝑒

𝑗2𝜋(Δ𝑓𝑡−𝑚0𝐹0𝑡+V𝑡)
𝑔

∗
(𝑡 − Δ𝑡 − 𝑘0𝜏0) 𝑔 (𝑡 − 𝜏 − 𝑘𝜏0) 𝑑𝑡 𝑑𝜏 𝑑V

= 𝑒
𝑗(𝜙
𝑚𝑘

−𝜙
𝑚0𝑘0 )

𝑒
𝑗2𝜋[((𝑚−𝑚0)𝐹0+Δ𝑓)(Δ𝑡+𝑘0𝜏0)+𝑚0𝐹0Δ𝑡]

∫

𝜏

∫

V
𝐻(𝜏, V)

⋅ 𝑒
𝑗2𝜋[V(Δ𝑡+𝑘0𝜏0)−𝑚𝐹0𝜏]

𝐴
∗

𝑔
((𝑘 − 𝑘0) 𝜏0 + 𝜏−Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V+Δ𝑓) 𝑑𝜏 𝑑V.

(A.1)

By taking into account the ZF equalizer coefficient𝐻󸀠

𝑚0𝑘0
, we

can obtain

Θ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘

𝐻
󸀠

𝑚0𝑘0

= 𝑒
𝑗(𝜙
𝑚𝑘

−𝜙
𝑚0𝑘0 )

𝑒
𝑗2𝜋(𝑚−𝑚0)𝐹0(Δ𝑡+𝑘0𝜏0)

∫

𝜏

∫

V
𝐻(𝜏, V)

⋅ 𝑒
𝑗2𝜋[V(Δ𝑡+𝑘0𝜏0)−𝑚𝐹0𝜏]

𝐴
∗

𝑔
((𝑘 − 𝑘0) 𝜏0 + 𝜏

−Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V+Δ𝑓) 𝑑𝜏 𝑑V

= 𝑒
𝑗(𝜙
𝑚𝑘

−𝜙
𝑚0𝑘0 )

Ξ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘
.

(A.2)

We assume that the spreading function𝐻(𝜏, V) is circular-
symmetric (real and imaginary sections are uncorrelated and
have the same variance). Then,

𝐸

{
{

{
{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

R
{

{

{

Θ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘

𝐻
󸀠

𝑚0𝑘0

}

}

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
}
}

}
}

}

= 𝐸{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

R {𝑒
𝑗(𝜙
𝑚𝑘

−𝜙
𝑚0𝑘0 )

Ξ
Δ𝑡,Δ𝑓

𝑚0,𝑘0 ;𝑚,𝑘
}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
}

=

1
2
𝐸{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Ξ
Δ𝑡,Δ𝑓

𝑚0,𝑘0 ;𝑚,𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
} .

(A.3)

Considering the statistically independent property of
symbols 𝑎𝑚,𝑘 and the WSSUS assumption, the total energy of
the equalized symbol can be calculated as

𝐸𝑟 (𝜏max, 𝑓𝑑, Δ𝑡, Δ𝑓)

= 𝐸

{
{

{
{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘R

{

{

{

Θ
Δ𝑡,Δ𝑓

𝑚0 ,𝑘0 ;𝑚,𝑘

𝐻
󸀠

𝑚0𝑘0

}

}

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
}
}

}
}

}

=

1
2
𝐸

{

{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑘∈Z

𝑀−1
∑

𝑚=0
𝑎𝑚,𝑘Ξ

Δ𝑡,Δ𝑓

𝑚0,𝑘0 ;𝑚,𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2
}

}

}

=

𝜎
2
𝑎

2
∑

𝑚

∑

𝑘

∫

𝜏1

∫

V1
∫

𝜏2

∫

V2
𝐸 {𝐻

∗
(𝜏1, V1)𝐻 (𝜏2, V2)}

⋅ 𝑒
−𝑗2𝜋𝑚𝐹0(𝜏2−𝜏1)

𝑒
𝑗2𝜋(Δ𝑡+𝑘0𝜏0)(V2−V1)

⋅ 𝐴𝑔 ((𝑘 − 𝑘0) 𝜏0 + 𝜏1 − Δ𝑡, (𝑚 − 𝑚0) 𝐹0 + V1 + Δ𝑓)

⋅ 𝐴
∗

𝑔
((𝑘 − 𝑘0) 𝜏0 + 𝜏2 − Δ𝑡,

(𝑚 − 𝑚0) 𝐹0 + V2 + Δ𝑓) 𝑑𝜏1 𝑑V1 𝑑𝜏2 𝑑V2

=

1
2
𝜎
2
𝑎
∑

𝑘∈Z

𝑀−1
∑

𝑚=0
∫

𝜏

∫

V
𝑆𝐻 (𝜏, V) ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴𝑔 ((𝑘 − 𝑘0) 𝜏0 + 𝜏 − Δ𝑡,

(𝑚 − 𝑚0) 𝐹0 + V + Δ𝑓)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝜏 𝑑V.

(A.4)

B. Constraints Caused by the Operation of
Matrix Kronecker Product

While referring to the expression of w, we deduce that

(1) 𝑤(𝑖+1)𝐿+𝑗 = 𝑤𝑗𝐿+𝑖+1, 0 ≤ 𝑖 ≤ 𝐿 − 2, 0 ≤ 𝑗 ≤ 𝑖;

(2) |𝑤𝑖𝐿+𝑗+1|
2
= 𝑤𝑖𝐿+𝑖𝑤(𝑗+1)𝐿+𝑗+1, 0 ≤ 𝑖 ≤ 𝐿 − 2, 𝑖 ≤ 𝑗 ≤

𝐿 − 2;

(3) 𝑤𝑖𝐿+𝑖 = |𝛼2𝑖|
2
≥ 0, 0 ≤ 𝑖 ≤ 𝐿 − 1.

From (1), the equality constraint can be summarized by
Cw = 0, where C is a 𝐿

2
× 𝐿

2 matrix defined by C =

[C𝑇

0 ⋅ ⋅ ⋅ C𝑇

𝐿−2 0𝑇
]

𝑇

. [C𝑖] is a (𝑖 + 1) × 𝐿
2 matrix given by

[C𝑖]𝑚𝑛
=

{
{
{
{

{
{
{
{

{

1 𝑛 = (𝑖 + 1) 𝐿 + 𝑚

−1 𝑛 = 𝑚𝐿 + 𝑖 + 1

0 otherwise.

(B.1)
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From (2), we can deduce the kind of equality constraint:
w𝑇D𝑖𝑗w = 0, where D𝑖𝑗 is a 𝐿

2
× 𝐿

2 matrix defined by D𝑖𝑗 =

[0𝑇

𝑖𝐿×𝐿2 E𝑖𝑗

𝑇 0𝑇

(𝐿−(𝑖+1))𝐿×𝐿2]
𝑇

. E𝑖𝑗 is a 𝐿 × 𝐿
2 matrix given by

[E𝑖𝑗]𝑚𝑛
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1 𝑚 = 𝑗 + 1, 𝑛 = 𝑖𝐿 + 𝑗 + 1

−0.5 𝑚 = 𝑖, 𝑛 = (𝑗 + 1) 𝐿 + 𝑗 + 1

−0.5 𝑚 = (𝑗 + 1) 𝐿 + 𝑗 + 1, 𝑛 = 𝑖

0 otherwise.

(B.2)

From (3), we can deduce the inequality constraint: Gw ≥

0, where G is a 𝐿2 × 𝐿
2 matrix defined by

[G]𝑚𝑛 =

{

{

{

1 𝑛 = 𝑚 (𝐿 + 1) , 0 ≤ 𝑚 ≤ 𝐿 − 1

0 otherwise.
(B.3)
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