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This paper addresses a special zone design problem for economic census investigators that is motivated by a real-world application.
This paper presented a heuristic multikernel growth approach via Constrained Delaunay Triangulation (CDT). This approach not
only solved the barriers problem but also dealt with the polygon data in zoning procedure. In addition, it uses a new heuristic
method to speed up the zoning process greatly on the premise of the required quality of zoning. At last, two special instances for
economic census were performed, highlighting the performance of this approach.

1. Introduction

Zone design is widely used as amethod of spatial partitioning
in geospatial sciences. It is similar to districting problem,
which is a classical topic in optimization research. Both of
the zone design and the districting problem use a certain of
optimize operations divide a geographical region into some
zones (or districts). The difference between them is to meet
different criteria or constraints, such as balance, compactness,
and contiguity. However, zone design pays more attention
to how to build a spatial auxiliary graph. Sometimes, the
zone design, also called district design or territory design, is
usually considered a strategic activity [1].The zone design has
a broad range of applications, such as in political redistricting
[2–7], sales territory alignment [8–10], school redistricting
[11], logistics districting [12–15], and delimitating zones for
land-use allocation and/or land acquisition and apportion-
ment [16–18].

Traditional methods for zone design mainly focus on the
complex geometries and spatial relationships between them.
However, there are still some problems to be solved, such as
nodes representation problem and geometrical barriers prob-
lem. Solving these problems from a GIScience perspective

may lead to a tractable solution, highlighting the importance
of geographical insights [19, 20]. The use of ordinary and
nonordinary Voronoi diagrams to solve districting problems
has been reported in many literatures [21–23]. Novaes et al.
[22] took advantage of the Voronoi diagram to detect the
spatial relationship and solved geometrical barriers problem
successfully. However, all above approaches are based on
point data but are not suitable for polygon data. Murray
and Tong [19] have raised the issue that only point-based
representations are too simplistic to represent more complex
vector objects like polygons in GIS. On the other hand, tradi-
tional methods make the shape of zones tend to be a circle or
a square [21, 24]. That no longer applies with the presence of
geometrical barriers problem. Another remarkable feature of
traditional districtingmethods is that running procedures for
optimizing the districting results usually cost too much time,
which is in seconds or minutes [25–27].

So it is hard to use the previous studies or existing opti-
mization software platform (such as CPLEX or MOSEK) to
find an effective solution. To solve problems in this paper, we
have to find a way different from the traditional ones. This
paper presented a heuristic multikernel growth approach via
Constrained Delaunay Triangulation (CDT) and introduced
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how to divide work zones for economic census investigators.
Section 2 reviewed some relative work. Section 3 detailed
how to construct an auxiliary graph for polygon data and
barrier data and how to heuristically grow and generate
spatial partitions. Section 4 gave some test to show function-
ality and performance of this method. Section 5 made some
conclusions and some further work.

2. Problems Definition

This paper discussed a special zoning problem for economic
census application. The objective of the problem is to parti-
tion a region into some census zones for investigators. Every
investigator takes charge of surveying the financial situation
of all companies in one zone. The partitioned zones should
be contiguous, compact, and balanced. The main constraints
presented are as follows: (1) contiguity makes sure that units
in every zone are geographically adjacent; (2) compactness
requires total travelling time in one zone as small as possible;
(3) balance ensures that the workloads of every investigator
are as equal as possible. The workload mainly includes
investigating time and travelling time. In our application, data
sources are polygon data and line obstacle data. Polygon data
stands for the shape of buildings, where companies located.
Some polygons are touching, but some of them are not
touching, while line obstacle data stands for fences or busy
roads which cannot be passed by. Additionally, it is difficult
for ordinary users to give some upper and lower limits on a
scalar attribute (e.g., investigating time and travelling time),
because they hope to use it as simple as possible. To solve
problems in this paper, we have to find a way different from
the traditional ones.

First problem is about how to generate auxiliary graph for
these touching or nontouching building polygons. Most of
literatures often use a point to represent a polygon and then
generate auxiliary graph based on these simplified points.
However, in most of cases, the auxiliary graph mentioned
above may not truly represent buildings’ connection and
touching relationships, because sometimes a polygon with
complex shapemay distort the connection and touching rela-
tionships of neighbor polygons.The partitions based on sim-
ple point-representationmay result in some errors. Although
Chou and Li [28, 29] and Rı́os-Mercado and Fernández [27]
discussed how to generate auxiliary graph directly based
on polygons, they only considered touching polygons rather
than nontouching polygons.Therefore, it is necessary to gen-
erate an auxiliary graph based on touching or nontouching
polygons. In this paper, we usedConstrainedDelaunayTrian-
gulation (CDT) to generate an Auxiliary Graph for nontouch-
ing Polygons (AGP). The shortest distance between discrete
polygons in the auxiliary graph is related to the shapes of
touching polygons, which would be described in Section 3.1.

The second problem is how to adjust AGP when line
obstacles are involved. Novaes et al. [22] discussed some
geometrical barriers problem, but they still focused on point
data based on Voronoi diagram.Their method is not suitable
for our polygon data based on CDT. In our application, geo-
graphical barriers may be polylines or polygons; they will
affect the connection of building polygons. When a barrier

crosses some edges of an auxiliary graph, these edges (paths)
will be cut. The adjusted graph is called auxiliary graph for
polygons and barriers (AGPB).

The third problem is how to speed up the zoning process.
In fact, spatial partition is a classical NP-hard problem. Most
of literatures adopt the multikernel growth approach. The
approach firstly selects a certain number of basic nodes as
“seeds” (centers) for some zones and then successively adds
every other node to its neighboring center until all have
been assigned [23]. In the optimization phase, they need
to constantly swap two adjacent nodes of zones in order
to achieve optimized zones. When it comes to too many
nodes, it is exhausted. It is feasible to consider at heuristics
[6, 8, 30, 31], such as Tabu Search [32, 33] and simulated
annealing [17, 34, 35]. The problem of traditional solutions
is that bad seeds selection would generate bad partitions
initiation. That means they often took more time to get
optimization partitions.The procedure usually spends a lot of
time after 20,000∼80,000 iterations [7]. In the paper, we use
some heuristic strategies about spatial structure information
to participate in the location of nodes and then avoided some
unnecessary iterations.

3. A Heuristic Zone Design Approach Based on
Constrained Delaunay Triangulation

There are two major phases in our method. Phase 1 is to
construct an auxiliary graph for polygons and barriers and
at last write them into XML files. Phase 2 is to use a spatial
heuristic strategy to realize multikernel growth.The heuristic
strategy continues to run as a simple optimization after all
nodes are allocated. A flow chart of the general procedure is
presented in Figure 1. Details of the steps are provided below.

3.1. Phase I: Auxiliary Graph Construction. The left part of
Figure 1 shows the flow chart of Phase I. The AGPB con-
struction is an optional operation. Users can input polygon
data and barriers data based on actual situations. Finally,
an auxiliary graph, which reflects the connectivity between
nodes, is written into XML files.

3.1.1. Construction of AGP. When polygon data is input,
topology checks and polygon-touching checks should be
made first of all. This can avoid polygons being overlapped
and can record nodes relation of touching. Then the AGP
construction should be made and it can be depicted as
follows: Firstly, DT is generated based on the vertexes of
polygons and then is adjusted as Constrained Delaunay
Triangulation (CDT) by counter lines of polygons. Secondly,
all the edges contained in the polygons are deleted. Thirdly,
shortest paths between the polygons are generated based on
these triangulations. The construction of AGP is generated
on CDT because a graph (DT) needs to be constructed by
using the vertexes of the polygon; in most cases, the counter
line of a polygon will intersect with the edges of DT. The
special CDT is generated as follows: counter lines of polygons
are seen as barrier lines and also as edges of triangulations
that are forcibly inserted. Then, triangulations in polygons
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Figure 1: Diagram of general procedure flow.
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Figure 2: Search the short path.

need to be deleted. After the deletion of all the triangulations
contained in the polygons, the polygons are attached in the
graph as nodes. The relationship between adjacent nodes can
be obtained by recursions.

In the third step above, the shortest paths between pol-
ygons are obtained by taking advantage of Delaunay Tri-
angles. In fact, after the second step of CDT construction,
triangles must connect two or three polygons. If three points
of a triangle belong to three different polygons, its three edges
are all likely to be the shortest paths between two polygons.
Therefore, all edges in this type of triangles should be stored
as candidates for the shortest path. If points of a triangulation
belong to two polygons, it must be such a situation that a
point belongs to a polygon and the other two points belong
to another polygon. In those cases, the shortest path may
not be the one with the edges existing in the triangle but
rather the vertical distance from a point to a line. In Figure 2,
we assume that there is a Delaunay Triangle connected with
two polygons, and vertex 𝐴(𝑥

𝑎
, 𝑦

𝑎
) belongs to one triangle

and vertexes 𝐵(𝑥
𝑏
, 𝑦

𝑏
) and 𝐶(𝑥

𝑐
, 𝑦

𝑐
) belong to the other one.

Assume that the edge 𝐴𝐷 stands for the shortest edge which
is from vertex𝐴 to the straight line determined by vertexes 𝐵
and𝐶.The location of vertex𝐷has two situations: either loca-
tion inside the edge 𝐵𝐶 or location outside the edge 𝐵𝐶. We
assume that the slope of straight line𝐵𝐶 is 𝑘. If point𝐷moves
from vertex 𝐵 along 𝑥-axis by 𝑑𝑥 units, it will move along 𝑦-
axis by 𝑑𝑦 = 𝑥

𝑏
+𝑘∗𝑑𝑥 units. Straight line𝐴𝐷 is perpendic-

ular to straight line 𝐵𝐶 and we obtain the formula as follows:

𝑦

𝑎
− 𝑦

𝑑

𝑥

𝑎
− 𝑥

𝑑

=

𝑦

𝑎
− (𝑦

𝑏
+ 𝑘 ∗ 𝑑𝑥)

𝑥

𝑎
− (𝑥

𝑏
+ 𝑑𝑥)

= −

1

𝑘

. (1)

Equation (1) can be further rearranged as follows:

𝑑𝑥 =

𝑘 ∗ (𝑦

𝑎
− 𝑦

𝑏
) + 𝑥

𝑎
− 𝑥

𝑏

1 + 𝑘

2
.

(2)

If 0 ≤ 𝑑𝑥 ≤ 𝑥
𝑐
− 𝑥

𝑏
, vertex 𝐷 is located between vertex 𝐵

and vertex 𝐶 and the shortest path in the triangulation is the
segment 𝐴𝐷.
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If 𝑑𝑥 > 𝑥
𝑐
−𝑥

𝑏
, vertex𝐷 is located in the extension line of

segment 𝐵𝐶 and the shortest path in the triangulation is the
segment 𝐴𝐶.

If 𝑑𝑥 < 0, vertex 𝐷 is located in the extension line of
segment 𝐶𝐵 and the shortest path in the triangulation is the
segment 𝐴𝐵.

3.1.2. Construction of AGPB. Further, the existing graph
should be adjusted when geographical barriers exist. After
the construction of AGP, we continue to put the vertexes of
geometrical barriers into the graph and construct AGPB. In
the process abovewe should find out all the edges intersecting
with counter lines of geometrical barriers. Assume that the
edge with the start point 𝐴 and end point 𝐵 needs to be
adjusted. According to the graph, the geometrical barriers
associated with points 𝐴 and 𝐵 can be found out and the set
of their vertexes is assumed to be noted as 𝐴aset and 𝐵aset,
respectively.

Assume that the line with start point 𝐴 and end point
𝐵 is defined as Line⟨𝐴,𝑋, 𝐵⟩ and 𝑋 stands for a point or
a line or the collection of both. For example, the Line⟨𝐶,
𝐷, 𝐸⟩ means points 𝐶, 𝐷, and 𝐸 form a line; the line of
Line⟨𝐴, Line⟨𝐶,𝐷, 𝐸⟩, 𝐵⟩ is composed of points 𝐴, 𝐶, 𝐷, 𝐸,
and 𝐵. SupposeO (defined as in (3)) is the set of barriers and
is defined as follows where the integer 𝑐 means the count of
geometrical barriers. Consider

O = {𝑂
1
, 𝑂

2
, . . . , 𝑂

𝑐
} (1 < 𝑐 < ∞) . (3)

𝑂

𝑖
(𝑖 = 1, . . . , 𝑐) represents a polygon or a line. Assume

that the line with the minimum length in a set 𝐿 of lines is
noted as Lineminlength{𝐿}. The shortest path function (noted
as Iter Line(⋅)) of points𝐴 and 𝐵 can be calculated as follows:

Iter Line (𝐴,𝑋, 𝐵) = Lineminlength {Line 𝛼 ⟨𝐴,𝑋, 𝐵⟩ ,

Line 𝛽 ⟨𝐴,𝑋, 𝐵⟩ , Line 𝛾 ⟨𝐴,𝑋, 𝐵⟩ ,

Line 𝛿 ⟨𝐴,𝑋, 𝐵⟩} .

(4)

As can be seen from the formula, the shortest path is
calculated by considering four cases. Calculations of four
cases are as follows:

(1) The shortest path is composed of three points, which
are point 𝐴, point 𝑋 from 𝐴aset, and point 𝐵. Mathe-
matical expression is as follows:

Line 𝛼 ⟨𝐴,𝑋, 𝐵⟩ = Lineminlength
{

{

{

Line ⟨𝐴,𝑋, 𝐵⟩

∈ 𝑅

2

| Line ⟨𝐴,𝑋, 𝐵⟩ ∩ (
𝑛

⋃

𝑗=1

𝑂

𝑗
) = 0, 𝑋 ∈ 𝐴aset

}

}

}

.

(5)

And we set a set 𝛼 as follows:

𝛼 =

{

{

{

𝑋 ∈ 𝐴aset | Line ⟨𝐴,𝑋, 𝐵⟩ ∩ (
𝑛

⋃

𝑗=1

𝑂

𝑗
) = 0

}

}

}

. (6)

(2) The shortest path is composed of three points, which
are point 𝐴, point 𝑋 from 𝐵aset, and point 𝐵. Mathe-
matical expression is as follows:

Line 𝛽 ⟨𝐴,𝑋, 𝐵⟩ = Lineminlength
{

{

{

Line ⟨𝐴,𝑋, 𝐵⟩

∈ 𝑅

2

| Line ⟨𝐴,𝑋, 𝐵⟩ ∩ (
𝑛

⋃

𝑗=1

𝑂

𝑗
) = 0, 𝑋 ∈ 𝐵aset

}

}

}

.

(7)

And we set a set 𝛽 as follows:

𝛽 =

{

{

{

𝑋 ∈ 𝐵aset | Line ⟨𝐴,𝑋, 𝐵⟩ ∩ (
𝑛

⋃

𝑗=1

𝑂

𝑗
) = 0

}

}

}

. (8)

(3) The shortest path is composed of four points, which
are point 𝐴, point 𝐾 from (𝐴aset-𝛼), point 𝐿 from
(𝐵aset-𝛽), and point 𝐵. Mathematical expression is as
follows:

Line 𝛾 ⟨𝐴,𝑋, 𝐵⟩ = Lineminlength
{

{

{

Line ⟨𝐴,𝐾, 𝐿, 𝐵⟩

∈ 𝑅

2

| Line ⟨𝐴,𝑋
1
, 𝑋

2
, 𝐵⟩ ∩ (

𝑛

⋃

𝑗=1

𝑂

𝑗
) = 0, 𝐾

∈ (𝐴aset-𝛼) , 𝐿 ∈ (𝐵aset-𝛽)
}

}

}

.

(9)

And we set a set 𝛾 as follows:

𝛾 =

{

{

{

𝑋

1
∈ (𝐴aset-𝛼) , 𝑋2

∈ (𝐵aset-𝛽) | Line ⟨𝐴,𝑋1, 𝑋2, 𝐵⟩ ∩ (
𝑛

⋃

𝑗=1

𝑂

𝑗
)

= 0

}

}

}

.

(10)

(4) An iterative process will be taken into account in this
case. One point in the (𝐴aset-𝛼-𝛾) and one point in
the (𝐵aset-𝛽-𝛾) are put into the function (𝐼) and a set
of lines (noted as sublines) can be obtained. Finally
select the shortest one from sublines, put points𝐴 to𝐵
into the first and last position of the shortest subline,
and the shortest path would be found out.The line on
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Figure 3: Search the short path around barriers.

behalf of the shortest path is composed of not less than
four points. Mathematical expression is as follows:

Line 𝛿 ⟨𝐴,𝑋, 𝐵⟩

= Lineminlength
{

{

{

Line ⟨𝐴, Line ⟨𝑀,𝑌,𝑁⟩ , 𝐵⟩

∈ 𝑅

2

| Line ⟨𝐴, Iter Line (𝐴, 𝑌, 𝐵) , 𝐵⟩ ∩ (
𝑛

⋃

𝑗=1

𝑂

𝑗
)

= 0, 𝑀 ∈ (𝐴aset-𝛼-𝛾) , 𝑁 ∈ (𝐵aset-𝛽-𝛾)
}

}

}

.

(11)

The Antonio example is used here to illuminate the new
method. Firstly the Delaunay Triangulation is created based
on points 𝐴, 𝐵, 𝐶, and 𝐷. Add vertexes of barriers 𝑂

1
and

𝑂

2
to adjust the DT. The DT after adjustment is shown in

Figure 3. According to DT, triangles 𝑡
1
, 𝑡
2
, 𝑡
3
, and 𝑡

4
are

found out. So 𝐴aset = {𝑐, 𝑑} and 𝐵aset = {𝑒, 𝑓}, where 𝑐, 𝑑,

𝑒, and 𝑓 represent vertexes of barriers shown in the figure.
Line 𝛼⟨𝐴,𝑋, 𝐵⟩, Line 𝛽⟨𝐴,𝑋, 𝐵⟩, and Line 𝛿⟨𝐴,𝑋, 𝐵⟩ do
not exist, while Line 𝛾⟨𝐴,𝑋, 𝐵⟩ = Line⟨𝐴, 𝑑, 𝑓, 𝐵⟩. So the
shortest path from point𝐴 to point 𝐵 is𝐴 → 𝑑 → 𝑓 → 𝐵.

Phase I mainly accomplishes operations for determining
the spatial relations of data. It is relatively independent of
Phase II. The graph obtained from Phase I can be stored
and used at any time in Phase II with different parameters.
Therefore, the design of two phases can save significant
amount of time during graph construction.

3.2. Phase II: The Heuristic Multikernel Growth

3.2.1. Problem Formulation. Before describing the heuristic
multikernel growth, it is necessary to formally specify the
problem formulation of interest. The problem formulation
can be specified from the follow three criteria: balance of
workloads, compactness of zones, and contiguity of nodes.

The following parameters are defined:

𝑁 = node set.
𝐸 = edge set.
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𝑖 = index of nodes.
𝑘 = index of nodes.
𝑗 = index of potential zones.
𝑚 = number of zones to plan.
𝑛

𝑖
= node 𝑖.

𝑤

𝑖
= workload of the node 𝑖.

𝑁

𝑗
= node set of the zone 𝑗.

𝑑

𝑖𝑘
= Euclidean distance between nodes 𝑖 and 𝑘.

𝑒

𝑖𝑘
= edge connecting nodes 𝑖 and 𝑘.

MST
𝑗
=minimum spanning tree of the potential zone

𝑗.
𝛼 = weight of compactness.

The following decision and auxiliary variables are defined:

𝑎

𝑖→ 𝑗
=

{

{

{

1, if node 𝑖 blongs to the district 𝑗

0, otherwise,

𝑏

𝑖𝑘→ 𝑗
=

{

{

{

1, if 𝑒
𝑖𝑘
blongs to the edge set of MST

𝑗

0, otherwise,

𝑒

𝑖↔𝑘

=

{

{

{

1, if node 𝑖 and 𝑘 are connected by an existing edge 𝑒
𝑖𝑘

0, otherwise.

(12)

The mathematical formulation is as follows:

Balance

Minimize (max {𝑊
1
, . . . ,𝑊

𝑗
, . . . ,𝑊

𝑚
}

−min {𝑊
1
, . . . ,𝑊

𝑗
, . . . ,𝑊

𝑚
}) ,

(13)

where

𝑊

𝑗
= ∑

𝑛𝑖∈𝑁𝑗

(𝑤

𝑗
∗ 𝑎

𝑖→ 𝑗
) + 𝛼 ∗ 𝐷

𝑗
1 ≤ 𝑗 ≤ 𝑚. (14)

Compactness

Minimize (max {𝐷
1
, . . . , 𝐷

𝑗
, . . . , 𝐷

𝑚
}) , (15)

where

𝐷

𝑗
= ∑

𝑛𝑖∈𝑁𝑗

∑

𝑛𝑘∈𝑁𝑗

(𝑑

𝑖𝑘
∗ 𝑎

𝑖→ 𝑗
∗ 𝑎

𝑘→𝑗
∗ 𝑏

𝑖𝑘→ 𝑗
)

1 ≤ 𝑗 ≤ 𝑚.

(16)

Contiguity. If a zone is an undirected graph whose nodes
stand for buildings of the zone, an edge 𝑒

𝑖𝑘
exists between

nodes 𝑖 and 𝑘 if and only if 𝑒
𝑖↔𝑘

= 1. A zone is contiguous
if and only if the graph is connected (a path exists between
every pair of adjacent nodes). A zone is feasible only if it is

contiguous. Constraint (17)means a node belongs to only one
zone while constraint (18) means a zone contains more than
one node:

∑

𝑗

𝑎

𝑖→ 𝑗
= 1, 𝑛

𝑖
∈ 𝑁 (17)

∑

𝑛𝑖∈𝑁𝑗

∑

𝑛𝑘∈𝑁𝑗

𝑒

𝑖↔𝑘
≥ 1. (18)

The formulations above are drove by a specific zone prob-
lem in the real-world application. The problem is different
from the traditional ones becausewe cannot give out the exact
bounds for varieties or constraints. So we cannot completely
use themethods of previouswork or the existing optimization
software platform (such as CPLEX or MOSEK) to solve the
problem. In this work, multikernel growth is employed as
a simple heuristic partition method. This method begins by
selecting a certain number of basic nodes as “kernels” for
the zones. The algorithm then successively adds, to each
kernel, neighboring basic nodes by primarily considering the
workload balance and compactness objectives.

3.2.2. A Heuristic Strategy. The specific multiobjective prob-
lem is solved in this work by the heuristic multikernel
growth method (AMKG for short) based on an auxiliary
graph. The contiguity objective is assumed to be achieved
as long as nodes are connected by edges in an auxiliary
graph. The balance and compactness objectives are achieved
by a heuristic strategy: the zone with the smallest workload
is selected and allocated with a specific basic node which
contains a relative large workload and is relatively close to
the zones. Furthermore, the specific basic node is found out
firstly from unallocated nodes around the zone otherwise,
if it failed to be got, from allocated nodes around the zone.
The specific basic node is selected by calculating the “cost”
which is defined by (19). To achieve the workload balance and
compactness objective, “kernels” are greedily allocated basic
nodes with the largest “cost” via an iterative procedure. The
“cost” of node 𝑖 can be defined as follows:

cost (𝑖, 𝑗) = 𝑤
𝑖
+ 𝛽 ∗

𝑤

𝑖

𝐷

𝑖𝑗

∗

𝐷

𝑊

, (19)

where 𝛽 stands for a positive number of type double, 𝐷
means the average distance value of the edges in graph
network,𝑊means the average value of workload, and 𝐷

𝑖𝑗
=

min
𝑛𝑖∈𝑁𝑗

(𝑑

𝑖𝑘
∗ 𝑎

𝑖󳨃→𝑗
∗ 𝑎

𝑘→𝑗
),

𝑎

𝑖󳨃→𝑗
=

{

{

{

0, if node 𝑖 blongs to district 𝑗

1, otherwise.
(20)

We can see from (19) that the compactness objective
can be generally achieved because 𝐷

𝑖𝑗
would be as small as

possible in the basic nodes allocation when the largest “cost”
is selected.

It shoud be noted that in the heuristic multikernel growth
the allocating basic node may be an unallocated one but may
be an already allocated one.The proposed algorithm is with a
certain degree of self-regulation andnot sensitive to the initial
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Figure 4: Kernels are growing.

choice of kernels. If allocating nodes must be unallocated
nodes and the initial kernels are baddly selected, some zones
would have no new unallocated node allocated in the process
of zones growth.Thefinal resultmaymake a serious deviation
from the balance object. For example, Figure 4(a) shows that
zone I with the minimun workload (which is 40) needs to
continue to be allocated nodes, but no unallocated nodes
can be allocated. The proposed heuristic multikernel growth
makes the zones growth “greedy” and “competitive.” The
zones with minimum workload may “eat” the adjacent node
which belonged to other zones. In Figure 4(a), zone I gets
the node with workload of 12 from zone II. Zone II needs to
be allocated nodes because its workload becomes minimum.
In accordance with the heuristic described previously the
nodes with workload of 14 and 10 were allocated to zone
II. According to the heuristic rules, the procedure would be
continued as in Figures 4(c) and 4(d) and the final results are
shown in Figure 4(e).

3.2.3. A Simple Optimization. The heuristic multikernel
growth also has a simple and quick procedure of optimization
for the result of nodes allocation after all nodes are allocated.
The most classic optimization procedure for zoning problem
may be the local search. It usually needs a huge time to
run and it is hard to know when to stop the optimiza-
tion procedure. The optimization procedure of the heuristic
multikernel growth follows the same heurisic strategy as
the nodes allocation. Its objective is to make the maximun
workload of zones as small as possible (see (21)). So it is simple
to be implemented and a little time comsuming:

Minimize (max {𝑊
1
, . . . ,𝑊

𝑗
, . . . ,𝑊

𝑚
}) . (21)

3.2.4. The Implementation. The improved multikernel
growth method includes three steps: (1) seeds selection;
(2) nodes allocation; (3) simple optimization. There exist
several approaches for determining a new configuration of
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Figure 5: Allocating the basic nodes.

zone centers. Kalcsics et al. [26] thought a commonly used
method was to solve in each territory resulting from the last
allocation phase a 1-median problem. But it would be very
complex, because much iteration should be taken to avoid
bad cases. In our method, the initial seeds should be nodes
which contain the largest number of companies. Of course it
may not be optimization to take the initial seeds as kernels.
If it is not optimization, this method will use a heuristic
algorithm to adjust kernels. Nodes allocation takes into
account three criteria: contiguity, balance, and compactness.
The contiguity objective is assumed to be achieved as long
as nodes are connected by edges in the graph. The balance
and compactness objectives are achieved step by step in
the allocation procedure. The general allocation procedure
of improved multikernel growth method is illustrated in
Figure 5. Zone 𝑗 with the minimum workload would be
selected to “grow.” The connected basic node 𝑖 with the
maximum cost(𝑖, 𝑗) will be selected and allocated to zone
𝑗. The simple optimization is similar to nodes allocation.
Both of them follow the same heuristic strategy, but the
main iteration of simple optimization is that if the first
node with maximum “cost” in the nodes sorted list enlarges
the minimum workload of zones or reduces the maximum
workload of zones, it should be switched; otherwise the next
node with the second maximum “cost” would be selected
and repeat that logic. The iterative procedure would be
continued until the maximum workload of zones could not
be smaller any more by the heuristic strategy.

Assuming that the number of graphs which kernels gen-
erate is noted as𝑔, theworkload of the 𝑖-sub graph (1 ≤ 𝑗 ≤ 𝑔)
is noted as𝑊

𝑗
. The main procedure of improved multikernel

growth is shown as follows:
(a) Take one graph, the workload of which is noted as
𝑊

𝑠𝑔
, and identify the number of kernels which is 𝑐

where

𝑐 = 𝑚 ∗

𝑊

𝑠𝑔

∑

𝑔

𝑖=1
𝑊

𝑖

. (22)

(b) Obtain 𝑐 nodes with the largest number of companies
as centers for zones, and take the number of compa-
nies as the initial workload of zones.

(c) Find out the zone (noted as 𝐾) with the minimum
workload and find out its adjacent nodes via auxiliary
subgraph firstly from unallocated nodes. If there are
no unallocated nodes, the algorithm will find out its

adjacent nodes from allocated ones; simultaneously
calculate their cost by (19).

(d) Allocate the node with the maximum cost to the zone
𝐾 and recalculate its workload𝑊

𝑗
.

(e) If all the nodes in the subgraph are allocated, turn to
step (c); otherwise continue.

(f) Take the zonewith theminimumworkload, and try to
“eat” its adjacent node with the biggest “cost.” If the
maximum workload is not smaller or the zone whose
basic unit is “eaten” becomes not continuous, another
adjacent node with the next biggest “cost” would be
tried.

(g) Continue step (f) until the maximumworkload could
not be smaller any more.

(h) Exit the procedure if the entire graph is handled;
otherwise turn to step (a).

4. Computational Experiments and Results

To test the performance of the proposed solution procedure,
a series of experiments were generated. All problem experi-
ments were solved on a 2.53GHz Pentium processor with 1.93
AGPB of RAM running with Windows XP as the operating
system. Our procedure model is solved based on ArcEngine
9.3. A real-world application from an economic census whose
operations consist of surveying the financial state of com-
panies within a service region was performed in this work.
Test data were all obtained from the real data of an economic
census in Beijing, China. We solved two different sizes of
instances, which are classified by number of nodes and zones:

Test one: 213 nodes and 3 zones.
Test two: 741 nodes and 3\4\5 zones.

Each instance has two phases. Phase I checked the topol-
ogy of polygons and got touching polygons recording zero
distance. Then AGP would be generated. After AGP was cre-
ated, we continued to turn the graph into AGPB wherever
geometrical barriers existed. In Phase II, the heuristic mul-
tikernel growth approach was performed. The nodes with
a relatively largest workload were selected as initial kernels.
Nodes allocation and simple optimization would be applied
following proposed heuristic strategy.

In test one, polygons were input and AGP was built in
Phase I. In Phase II, several experiments are repeated on
different values of parameters 𝛼 and 𝛽. In Test two, geo-
graphical barriers are considered. Therefore, AGPB was built
in Phase I. Several distances are solved based on different
numbers of zones with the same values of 𝛼 and 𝛽. Further,
a comparison test between considering barriers and non-
considering barriers is given in Section 4.2. This paper uses
the Standard Deviation of Workload Values of zones to
evaluate the balance of workload (STDEV 𝑤) and uses the
AVERAGE sum length of all MST edges in zones to evaluate
the compactness of zones (AVERAGE 𝑐). A smaller value of
STDEV 𝑤means a better balance result while a smaller value
of AVERAGE 𝑐 means a better compactness result. Finally,
time cost of instances was discussed.
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(a) Polygon data and workload

e

(b) Construct the AGP based on points

(c) Construct the AGP based on polygons

Figure 6: Generation of the auxiliary graph.

4.1. Test One. The test data of test one is selected by a random
rectangle from the economic census data. 213 buildings are
selected into the test data and 1189 companies are involved.
This indicates that there are 213 nodeswhose total workload is
1189, and the number of companies located in every building
is shown in Figure 6(a). Two spatial auxiliary graphs based on
polygon center points and polygons were, respectively, built

1
2

3

Figure 7: Result when 𝛼 = 0 and 𝛽 = 10 according to polygons.

as shown in Figures 6(b) and 6(c). In Figure 6(b), edge 𝑒 is
a spatial relational edge crossing a building polygon. Edge
𝑒 should not exist as a path in real world. What is more,
length of edges in Figure 6(b) is generally longer than that in
Figure 6(c) which could more accurately represent the true
path length.

In generation of the graph, triangles between polygons
were initially created and then AGP was created consecu-
tively. Figure 6(b) shows details of AGPB. Finally, we decided
to generate three zones from the test data.

In the first step of Phase II, we selected three nodes with
the largest number of companies as kernels. In the second
step, we set different values to 𝛼 and different results are
obtained. In Figure 7, we thought travel time on road can be
negligible relative to the investigation time in companies, so
we set 𝛼 = 0 and 𝛽 = 10. The average value of workload is
396.33 (the number of companies actually) and that of three
zones is 397, 396, and 396, respectively. This means that the
result has got a good balance of workload for zoning.We also
can find out that in Figure 7 continuity of zones has been held.
Compactness of zones is used to control the total travel time
in our application so it would be acceptable due to negligible
travel time.

When 𝛼 > 0, the workload content included the travel
cost and the compactness objective would take into account
the distance of edges between polygons by setting 𝛽 = 10.
We set different values for 𝛼 and the numerical results are
presented in Figure 8.The parameter 𝑛 stands for the number
of companies, 𝑑 for the average length of MST, and 𝑤 for the
workload in zones.

In Figure 8, we note that, in general, values of STDEV 𝑤
and AVERAGE 𝑐 almost have no large change with the
change of the value of 𝛼. Two charts (see Figure 8) are gen-
erated from test results and support the assumption stated
above. This indicates that the balance of workload and
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Figure 9: STDEV 𝑤 and AVERAGE 𝑑/m when 𝛽 = 100 and 𝛽 = 1000.

the compactness objectives are affected not too much by the
composition of workload content. In practical application,
the appropriate value of 𝛼 needs to be considered when
considering workload content and we can set its value as
a ratio of investigation time to travel time. With changes
in the value of 𝛼, standard deviation of workload is stable
and is always approximately 0.6 in most cases. The average
value of distances changes around 1250.This indicates that the
proposed heuristic works and holds the balance of workload
and compactness to a certain extent when 𝛽 is specified and
whatever value 𝛼 is.

To test the effect of the parameter 𝛽 in the heuristicmulti-
kernel growth, another twenty experiments were performed
with twenty different values of 𝛼 and two specific values of
𝛽. The test result of experiments is shown as in Figure 9. It is
noted that when the value of 𝛽 is relatively small, the balance
of workload is in general well held but the compactness is

badly achieved. This means that 𝛽 is a control to coordinate
compactness and balance objective. From Figure 9 we can
find out that a specific 𝛽 corresponds to a relatively specific
value of AVERAGE 𝑐. So in the real application we usually
specify 𝛽 by considering the travel time limits or means of
transportation.

4.2. Test Two. Test data of large instances are selected by
a random rectangle from the economic census data. There
are 741 polygon nodes whose total workload is 7107 and the
number of companies located in every building is shown in
Figure 10(a). In addition, we considered some busy roads or
fences through the test data as geographical barriers, which
can be seen in Figure 10(b). Finally, we aimed at generating
3\4\5 zones from the test data.

To illustrate the impact of geometrical barriers to the zon-
ing results, we have made comparison experiments without
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Figure 10: Test data and its auxiliary graph with geometrical barriers.
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Figure 11: Results of 3\4\5 zones with no barriers.

barriers but with the same parameters 𝛼 and 𝛽. In Figures
11 and 12, we could find out that geometrical barriers had
affected the zoning results.

The comparison between effects of zoning results also has
been made. Set 𝛼 = 0.08 and 𝛽 = 100, and effects of balance

and compactness between the 3\4\5 zones with barriers or
no barriers are shown in Table 1. We can see that geometrical
barriers have affected the zoning results mainly affecting the
distribution of members in zones but having relatively little
effect to zoning results.
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Figure 12: Results of 3\4\5 zones with barriers.

Table 1: Results of large instances.

𝛼 𝛽 Barriers Three zones Four zones Five zones
STDEV 𝑤 AVERAGE 𝑐 STDEV 𝑤 AVERAGE 𝑐 STDEV 𝑤 AVERAGE 𝑐

0.08 100 Do not exist 0.215094 12598.68 0.555236 9234.909 1.406661 7297.194
0.08 100 Exist 0.598867 11977.43 0.429749 9460.601 0.505428 7682.173

Table 2: Time cost in different instances.

Instances Parameters Barriers Phase I Phase II Total time

213 3
𝛼, 𝛽 = 10 Do not exist 15.406 s 6.25ms 15.412 s
𝛼, 𝛽 = 100 Do not exist 15.406 s 6.25ms 15.412 s
𝛼, 𝛽 = 1000 Do not exist 15.406 s 6.25ms 15.412 s

741 3 𝛼 = 0.08, 𝛽 = 100

Exist 53.875 s 46.875ms 53.922 s
Do not exist 52.921 s 53.125ms 52.974 s

741 4 𝛼 = 0.08, 𝛽 = 100

Exist 53.875 s 48.437ms 53.923 s
Do not exist 52.921 s 51.562ms 52.973 s

741 5 𝛼 = 0.08, 𝛽 = 100

Exist 53.875 s 48.438ms 53.923 s
Do not exist 52.921 s 51.563ms 52.973 s

Constrained Delaunay Triangulation can successfully
deal with our zoning problem with barriers (see Figures 11
and 12) while holding an acceptable quality of zoning.

4.3. Time Cost. For different situations, we may construct
different graphs by identifying the data types and existence
of barriers in Phase I and adopt the heuristic multikernel
growth in Phase II. In Sections 4.1 and 4.2, we observe that
acceptable results can be obtained. What is more, time cost
of the procedure is very low, which is one of notable features
discussed in this paper. In Table 2, time cost for instances
discussed above is presented.

Instances of 213 3 have been repeated for 20 times with
different values of 𝛼 and computational time of Phase II
is the average value of results from 20 repeated tests. We
can observe that the time cost in Phase II of the heuristic
multikernel growth is so little that it can be almost negligible
comparing with the time cost in the whole process of zoning.
In this zoning procedure, running times in our results are
in milliseconds while traditional methods usually consider a
few seconds or minutes to optimize zoning results [25–27].
The construction of the graph in Phase I consumed toomuch
computational time. Fortunately, however, the procedure of
Phase I is separate and does not interact with that of Phase
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II. Therefore, once the graph is built up and stored in a file,
there is no necessity to rebuild the auxiliary graph and the file
only needs to be read prior to the procedure of the proposed
heuristic strategy with different values of parameters 𝛼 and 𝛽.
Therefore, the average computational time will be decreased
greatly and can well meet our requirements of the special
zoning problem in the economic census.

5. Conclusions and Possible Further Work

This paper addresses a special zoning problem for economic
census that is motivated by a real-world application. Firstly,
we introduced the Constrained Delaunay Triangulation to
solve several problems such as polygon-based graph con-
struction problem and geographical barriers problem which
are generally countered in the zoning problem.The difficulty
of this NP-complete problem motivated us to propose the
heuristic multikernel growth following a heuristic strategy
to speed up the zoning process greatly in the premise of the
required quality of zoning. According to real-world instances,
we present problem formulations to optimize three criteria:
contiguity, compactness, and balance of workload among
zones.

Two special instances for economic census were per-
formed, highlighting the applicability of this approach. They
resulted in acceptable compact zones with considerable
balance of workload. Test one showed the partition results
of touching and nontouching polygons. Some experiments
showed how to determine the values of 𝛼 and 𝛽 and the
meanings of them; that is, the values of𝛼 determineworkload
composition while 𝛽 determines balance and compactness
object. Test one also showed that compactness would be bet-
ter achieved if 𝛽 is larger while balance object would become
worse. Test two showed that our method could successfully
solve zoning problem with barriers and still could achieve
some reasonable results. Test three in Section 4.3 showed that
our method could get optimized results within acceptable
time cost.

The simple spatial heuristic approach in this paper makes
a good performance in most of cases, but sometimes it
maybe results in bad compactness objective. The reason is
that the compactness objective is achieved byminimizing the
maximum length of MST constructed in the zones when the
kernels are growing without considering the shape of zones.
In the future, wewill do our efforts on the problem andmaybe
take into account the shape of zones for compactness.
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