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The 𝐻
2
control scheme and passivity theory are applied to investigate the stability criterion of continuous-time linear stochastic

system subject to mixed performance. Based on the stochastic differential equation, the stochastic behaviors can be described as
multiplicative noise terms. For the considered system, the 𝐻

2
control scheme is applied to deal with the problem on minimizing

output energy. And the asymptotical stability of the system can be guaranteed under desired initial conditions. Besides, the
passivity theory is employed to constrain the effect of external disturbance on the system. Moreover, the Itô formula and Lyapunov
function are used to derive the sufficient conditions which are converted into linear matrix inequality (LMI) form for applying
convex optimization algorithm. Via solving the sufficient conditions, the state feedback controller can be established such that the
asymptotical stability and mixed performance of the system are achieved in the mean square. Finally, the synchronous generator
system is used to verify the effectiveness and applicability of the proposed design method.

1. Introduction

In real circumstance, the external disturbance usually causes
kinds of the poor control performance and instability of the
dynamic systems. For achieving the good control perfor-
mance of the disturbed systems, many control schemes [1–
3] have been proposed to constrain the effect of external
disturbance on the systems. In [3–6], the𝐻

∞
control scheme

is proposed to achieve the attenuation 𝛾 based on the relation
between state and disturbance. On the other hand, the
passivity theory was applied to deal with the disturbance
attenuation performance of the systems in [7, 8]. With
setting the power supply function [9], passivity theory can
be converted into various constrains including 𝐻

∞
control

scheme,𝐻
2
control scheme, positive real theory, and several

passive constraints. Thus, the passivity theory becomes the
powerful and general tool to discuss the disturbance attenu-
ation performance of the systems.

Recently, themixed controlmethod [10, 11] via combining
the 𝐻

2
and 𝐻

∞
control schemes has been proposed to

solve the control problems subject to required performances.
Generally, the 𝐻

2
control scheme is applied to minimize the

output energy of the system and to guarantee the stability of
the system under initial conditions.The attenuation perform-
ance is discussed via 𝐻

∞
control scheme with given atten-

uation 𝛾 for the worst case of external disturbance input.
In [12], the mixed 𝐻

2
/𝐻
∞

performance of uncertain space-
craft systems is achieved via designed PID tracking controller.
Based on mixed 𝐻

2
/𝐻
∞

performance control method, the
stability and performance of robotic manipulator have been
discussed in [13]. In addition to mixed𝐻

2
/𝐻
∞

performance
control scheme, the passivity theory was also applied to
discuss the mixed performance of the system via combining
the 𝐻

2
control scheme or 𝐻

∞
control scheme. Referring

to [14, 15], passivity theory is used to analyze the stability
of system and 𝐻

2
control scheme is used to constrain the

concerned signal resources. However, most of the litera-
tures discussing mixed performance control problem are
focused on deterministic systems. Few papers [16] have
been proposed to study the mixed performance of stochastic
systems. Since the stochastic behavior usually exists in the
practical operating conditions, the investigation for mixed
performance control problem of stochastic system is worth
being discussed.
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Stochastic systems have received much attention since
stochastic differential equation is proposed with modeling
approach [17–21]. Through the modeling approach, the sto-
chastic behaviors can be described via themultiplicative noise
term structured by multiplying state and noise. The noise is
considered as Brownian motion [18, 19] to imitate natural
random variation. For analyzing the stability of stochastic
systems, the Itô formula [18] and Lyapunov function are
applied to derive the sufficient conditions. During the analyz-
ing process, the mean square calculation is the most useful
tool for solving the stability and stabilization problems of
stochastic system in the sense of mean square. According
to the modeling approach and Itô formula, many stability
criteria of the deterministic system have been extended to
stochastic cases.

For the above motivation and illustration, the mixed
𝐻
2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance controller design for linear

stochastic systems is discussed in this paper. The 𝐻
2
control

scheme applied in this paper is to minimize the output
energy of the system. Moreover, the asymptotical stability
of the system can be guaranteed under initial conditions via
𝐻
2
control scheme. For constraining the effect of external

disturbance on the system, the passivity theory is used with
general power supply function which decides the attenuation
performance index. Based on the Itô formula and Lyapunov
function, the sufficient conditions are derived such that the
asymptotical stability and mixed performance of the system
are guaranteed in the sense of mean square. For applying
convex optimization algorithm, the sufficient conditions are
converted into LMI form [22]. The main contribution of
this paper is to propose a mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance

controller design method for the linear stochastic systems.
Through the setting power supply function, the choice of
attenuation performance is more flexible and general than
previous mixed 𝐻

2
/𝐻
∞

performance methods. Finally, the
synchronous generator system with multiplicative noise is
applied to demonstrate the proposed design method.

This paper is organized as follows: In Section 2, the linear
stochastic systems and mixed performance control problem
are illustrated. Through the Itô formula and Lyapunov func-
tion, the sufficient conditions are derived in Section 3. A
numerical simulation is proposed in Section 4. Finally, the
conclusion is in Section 5.

2. System Description
and Definition Statement

In this paper, the linear stochastic system with external
disturbance is described as follows:

𝑑𝑥 (𝑡) = (A𝑥 (𝑡) + B𝑢 (𝑡) + EV (𝑡)) 𝑑𝑡

+ (A𝑥 (𝑡) + B𝑢 (𝑡)) 𝑑𝛽 (𝑡) ,
(1a)

𝑦 (𝑡) = C
1
𝑥 (𝑡) +D

1
V (𝑡) , (1b)

𝑧 (𝑡) = C
2
𝑥 (𝑡) +D

2
𝑢 (𝑡) , (1c)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝑦(𝑡) ∈ 𝑅

𝑚 is the measured
output vector, 𝑧(𝑡) ∈ 𝑅

𝑝 is the controlled output vector, 𝑢(𝑡) ∈

𝑅
𝑞 is the control input vector, V(𝑡) ∈ 𝑅

𝑚 is the disturbance
input vector, and 𝛽(𝑡) is a scalar of Brownian motion which
satisfies the independent increment properties [18], such as
𝐸{𝑑𝛽(𝑡)} = 0 and 𝐸{𝑑𝛽(𝑡)𝑑𝛽(𝑡)} = 1. 𝐸{⋅} denotes the
expected value of ⋅. The A, A, B, B, C

1
, C
2
, D
1
, D
2
, and E

are constant matrices with compatible dimensions.
For the stabilization problem of (1a), (1b), and (1c), the

following controller is proposed in this paper:

𝑢 (𝑡) = F𝑥 (𝑡) , (2)

where F is feedback gain with compatible dimensions. Sub-
stituting (2) into (1a), (1b), and (1c), the following closed-loop
system is formulated:

𝑑𝑥 (𝑡) = (A
𝑓
𝑥 (𝑡) + EV (𝑡)) 𝑑𝑡 + (A

𝑓
𝑥 (𝑡)) 𝑑𝛽 (𝑡) , (3a)

𝑦 (𝑡) = C
1
𝑥 (𝑡) +D

1
V (𝑡) , (3b)

𝑧 (𝑡) = C
2𝑓
𝑥 (𝑡) , (3c)

where A
𝑓
= A + BF, A

𝑓
= A + BF, and C

2𝑓
= C
2
+D
2
F.

For considering mixed performances, the 𝐻
2
control

scheme and passivity theory are applied. By setting the
power supply function, the passivity theory includes several
performance constraints [9]. In this paper, the general power
supply function is considered for providing flexible choice
of performance index to constrain the external disturbance
input.Thus, the general passive constraint is introduced as in
the following definition.

Definition 1. The closed-loop system (3a), (3b), and (3c) with
external disturbance input V(𝑡) and measured output 𝑦(𝑡) is
called passive if there exist knownmatrices S

1
, S
2
, and S

3
such

that

𝐸{2∫

𝑡𝑝

0

𝑦
𝑇
(𝑡) S
1
V (𝑡) 𝑑𝑡}

> 𝐸{∫

𝑡𝑝

0

𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) 𝑑𝑡 + ∫

𝑡𝑝

0

V𝑇 (𝑡) S
3
V (𝑡) 𝑑𝑡} ,

(4)

where 𝑡
𝑝
> 0.

Remark 2. According to the matrices S
1
, S
2
, and S

3
defined

by [9], the passivity theory is more general and flexible than
𝐻
∞

control scheme for constraining the effect of external
disturbance on the system. Besides, both of state-dependent
noise and input-dependent noise are considered for the
stochastic system in this paper. Thus, the proposed mixed
𝐻
2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance control design method is more

general and flexible than method in [16] for disturbance
attenuation performance of stochastic systems.

In addition, the 𝐻
2
control scheme is employed to

guarantee the stability of the closed-loop system (3a), (3b),
and(3c) under given initial condition. And, the output energy
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can also be minimized via achieving the 𝐻
2
performance.

Thus, the𝐻
2
performance is defined in the following defini-

tion.

Definition 3. The controller (2) is an 𝐻
2
performance mea-

surement if the following inequality is satisfied:

𝐸{∫

∞

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} < 𝛼. (5)

This definition can also be called as minimizing problem for
output with 𝛼.

Through the above definitions, the mixed performance of
(3a), (3b), and (3c) is discussed to minimize output energy
with constraining effect of external disturbance. Based on the
above illustration, the sufficient conditions are derived for
stability criterion of closed-loop system (3a), (3b), and (3c)
in the next section.

3. Mixed Controller Design for
Considered System

Applying the Lyapunov function and Itô formula, the suffi-
cient conditions are derived to analyze the stability of closed-
loop system (3a), (3b), and (3c). Furthermore, the sufficient
conditions are applied to find the feedback gain F to achieve
the mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance of (3a), (3b), and (3c).

For using convex optimization algorithm, the conditions
are converted into LMI problems for finding the feasible
solutions.

Theorem 4. Given matrices S
1
, S
2
, and S

3
, the closed-loop

system (3a), (3b), and (3c) is asymptotically stable and satisfies
the mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance in the sense of mean

square, if there exist positive scalar 𝛼, positive definite matrix
P, and feedback gain matrix F such that one has the following:

minimize 𝛼 subject to

[
C𝑇
1
S
2
C
1
+ A𝑇
𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓

∗

−S𝑇
1
C
1
+D𝑇
1
S
2
C
1
+ E𝑇P S

3
−D𝑇
1
S
1
− S
1
D
1
+D𝑇
1
S
2
D
1

] < 0, (6)

A𝑇
𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓
+ C𝑇
2𝑓
C
2𝑓

< 0, (7)

𝑥
𝑇
(0)P𝑥 (0) < 𝛼. (8)

Proof. Choose the following Lyapunov function:

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡)P𝑥 (𝑡) . (9)

And the derivation of the 𝑉(𝑥(𝑡)) along with trajectories of
(3a), (3b), and (3c) can be obtained by Itô formula [18], such
as

𝑑𝑉 (𝑥 (𝑡)) = 𝐿𝑉 (𝑥 (𝑡)) 𝑑𝑡 + 2𝑥
𝑇
(𝑡)A
𝑓
𝑥 (𝑡) 𝑑𝛽 (𝑡) , (10)

where

𝐿𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡) (A𝑇

𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓
) 𝑥 (𝑡)

+ V𝑇 (𝑡) (E𝑇P) 𝑥 (𝑡) + 𝑥
𝑇
(𝑡) (PE) V (𝑡) .

(11)

Arranging (11), one has

𝐿𝑉 (𝑥 (𝑡)) = [
𝑥 (𝑡)

V (𝑡)]
𝑇

[
A𝑇
𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓

∗

E𝑇P 0

] [
𝑥 (𝑡)

V (𝑡)] .

(12)

Let us take expectation of (10); one has the following equation
with the independent increment property as𝐸{𝑥(𝑡)𝑑𝛽(𝑡)} = 0

and 𝐸{V(𝑡)𝑑𝛽(𝑡)} = 0:

𝐸 {𝑑𝑉 (𝑥 (𝑡))} = 𝐸 {𝐿𝑉 (𝑥 (𝑡)) 𝑑𝑡} . (13)

In case as nonzero external disturbance V(𝑡) ̸= 0, the
following cost function can be defined with zero initial
conditions:

Γ (𝑥, V, 𝑡) = 𝐸{∫

𝑡𝑝

0

(𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) + V𝑇 (𝑡) S

3
V (𝑡)

− 2𝑦
𝑇
(𝑡) S
1
V (𝑡)) 𝑑𝑡}

= 𝐸{∫

𝑡𝑝

0

(𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) + V𝑇 (𝑡) S

3
V (𝑡) − 2𝑦

𝑇
(𝑡)

⋅ S
1
V (𝑡) + 𝐿𝑉 (𝑥 (𝑡))) 𝑑𝑡 − 𝑉 (𝑥 (𝑡

𝑝
))}

≤ 𝐸{∫

𝑡𝑝

0

Ψ (𝑥, V, 𝑡) 𝑑𝑡} ,

(14)

where

Ψ (𝑥, V, 𝑡) = 𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) + V𝑇 (𝑡) S

3
V (𝑡)

− 2𝑦
𝑇
(𝑡) S
1
V (𝑡) + 𝐿𝑉 (𝑥 (𝑡)) .

(15)

Substituting (3b) and (12) into (15), one has the following:

Ψ (𝑥, V, 𝑡) = [
𝑥 (𝑡)

V (𝑡)]
𝑇

Λ [
𝑥 (𝑡)

V (𝑡)] ,
(16)

where
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Λ = [
C𝑇
1
S
2
C
1
+ A𝑇
𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓

∗

−S𝑇
1
C
1
+D𝑇
1
S
2
C
1
+ E𝑇P S

3
−D𝑇
1
S
1
− S
1
D
1
+D𝑇
1
S
2
D
1

] . (17)

Obviously, (17) is equal to the left-hand side of inequality (6).
Thus, if the condition of this theorem is held then one can
find the Λ < 0 from (17). Since the Λ < 0, the Ψ(𝑥, V, 𝑡) < 0

is found from (16). Due to Ψ(𝑥, V, 𝑡) < 0, Γ(𝑥, V, 𝑘) < 0 can be
inferred from (14). And then, the following inequalities can
be found since Γ(𝑥, V, 𝑘) < 0:

𝐸{∫

𝑡𝑝

0

𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) + V𝑇 (𝑡) S

3
V (𝑡) − 2𝑦

𝑇
(𝑡) S
1
V (𝑡) 𝑑𝑡} < 0

(18a)

or

𝐸{2∫

𝑡𝑝

0

𝑦
𝑇
(𝑡) S
1
V (𝑡) 𝑑𝑡}

> 𝐸{∫

𝑡𝑝

0

𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) 𝑑𝑡 + ∫

𝑡𝑝

0

V𝑇 (𝑡) S
3
V (𝑡) 𝑑𝑡} .

(18b)

Because (18b) is equivalent to (4), the closed-loop system
(3a), (3b), and (3c) is passive with given S

1
, S
2
, and S

3
. Next,

the asymptotical stability of (3a), (3b), and (3c) is proven.
Assuming the disturbance input is zero (V(𝑡) = 0), (12) can
be rewritten as follows:

𝐿𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡) (A𝑇

𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓
) 𝑥 (𝑡) . (19)

Furthermore, the following relation can be derived with (3c):

𝐿𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡) (A𝑇

𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓
) 𝑥 (𝑡)

+ 𝑧
𝑇
(𝑡) 𝑧 (𝑡) − 𝑧

𝑇
(𝑡) 𝑧 (𝑡)

= 𝑥
𝑇
(𝑡) (A𝑇

𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓
+ C𝑇
2𝑓
C
2𝑓
) 𝑥 (𝑡)

− 𝑧
𝑇
(𝑡) 𝑧 (𝑡) < Ξ,

(20)

where Ξ = 𝑥
𝑇
(𝑡)(A𝑇
𝑓
P + PA

𝑓
+ A𝑇
𝑓
PA
𝑓
+ C𝑇
2𝑓
C
2𝑓
)𝑥(𝑡).

One can find that if condition (7) is held then Ξ < 0 can
easily be found. Based on the Ξ < 0, the 𝐿𝑉(𝑥(𝑡)) < 0 can
also be obtained from (20). Since 𝐿𝑉(𝑥(𝑡)) < 0 and V(𝑡) = 0,
the following inequality can be obtained from (13):

𝐸 {𝑑𝑉 (𝑥 (𝑡))} = 𝐸 {𝐿𝑉 (𝑥 (𝑡)) 𝑑𝑡} < 0. (21)

According to 𝐸{𝑑𝑉(𝑥(𝑡))} < 0 and referring to [17], the
closed-loop system (3a), (3b), and (3c) is asymptotically stable
in the sense of mean square with zero external disturbance.

Integrating both side of (13) from 0 to 𝑡
𝑔
, one has the

following equation with nonzero initial condition:

𝐸 {𝑥
𝑇
(𝑡
𝑔
)P𝑥 (𝑡

𝑔
)} − 𝐸 {𝑥

𝑇
(0)P𝑥 (0)}

= 𝐸{∫

𝑡𝑔

0

𝐿𝑉 (𝑥 (𝑡)) 𝑑𝑡}

= 𝐸{∫

𝑡𝑔

0

(Ξ − 𝑧
𝑇
(𝑡) 𝑧 (𝑡)) 𝑑𝑡} .

(22)

Also, (22) can be rewritten as follows:

𝐸 {𝑥
𝑇
(𝑡
𝑔
)P𝑥 (𝑡

𝑔
)} − 𝐸 {𝑥

𝑇
(0)P𝑥 (0)}

+ 𝐸{∫

𝑡𝑔

0

(𝑧
𝑇
(𝑡) 𝑧 (𝑡)) 𝑑𝑡} = 𝐸{∫

𝑡𝑔

0

Ξ𝑑𝑡} .

(23)

Since condition (7) is held, theΞ < 0 can easily be found. And
then, the following inequalities can also be obtained:

𝐸 {𝑥
𝑇
(𝑡
𝑔
)P𝑥 (𝑡

𝑔
)} − 𝐸 {𝑥

𝑇
(0)P𝑥 (0)}

+ 𝐸{∫

𝑡𝑔

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} < 0,

(24a)

𝐸 {𝑥
𝑇
(𝑡
𝑔
)P𝑥 (𝑡

𝑔
)} − 𝐸 {𝑥

𝑇
(0)P𝑥 (0)}

< −𝐸{∫

𝑡𝑔

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} .

(24b)

Due to the fact that the closed-loop system (3a), (3b), and (3c)
is asymptotically stable in the mean square, one can find that
the 𝑥(𝑡

𝑔
) → 0 as 𝑡

𝑔
→ +∞. Thus, the 𝑥𝑇(𝑡

𝑔
)P𝑥(𝑡
𝑔
) → 0

can also be foundwith 𝑡
𝑔
→ +∞. And (24b) can be rewritten

as in the following inequality:

𝐸{∫

+∞

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} < 𝐸 {𝑥

𝑇
(0)P𝑥 (0)} . (25)

Obviously, the 𝑥
𝑇
(0)P𝑥(0) is the upper bound of output

energy from (25). If condition (8) is satisfied, one has
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𝑥
𝑇
(0)P𝑥 (0) < 𝛼. (26)

From (25) and (26), the following relation can directly be
found:

𝐸{∫

+∞

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} < 𝛼. (27)

Since (27) is equivalent to (5), one can find that if con-
ditions (7) and (8) are held, then the 𝐻

2
performance of

closed-loop system is achieved. The proof of this theorem
is completed.

In Theorem 4, the stability problem of closed-loop sys-
tem(3a), (3b), and (3c) is discussed via finding the feasible
solutions. However, the conditions of Theorem 4 belong to
BMI (bilinear matrix inequality) problems which cannot
directly be calculated by convex optimization algorithm. For
this reason, the conditions of Theorem 4 are converted into
LMI problems in the next theorem.

Theorem 5. Given matrices S
1
, S
2
, and S

3
, the closed-loop

system (3a), (3b), and (3c) is asymptotically stable and satisfies
mixed𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performances in the sense of mean square

if there exist positive scalar 𝛼, positive definite matrix P, and
feedback gain matrix F such that one has the following:

minimize 𝛼 subject to

[
[
[

[

X𝑇A𝑇 + K𝑇B𝑇 + AX + BK ∗ ∗ ∗

−S𝑇
1
C
1
X + E𝑇 S

3
−D𝑇
1
S
1
− S𝑇
1
D
1

∗ ∗

AX + BK 0 −X ∗

√S
2
C
1
X √S

2
D
1

0 −I

]
]
]

]

< 0,

(28)

[

[

X𝑇A𝑇 + K𝑇B𝑇 + AX + BK ∗ ∗

AX + BK −X ∗

C
2
X +D

2
K 0 −I

]

]

< 0, (29)

[
−𝛼 𝑥

𝑇
(0)

𝑥 (0) −X ] < 0, (30)

whereX = P−1 andK = FX. I denotes the identity matrix with
approximate dimension.

Proof. Multiplying the both sides of (6) by [ P−1 ∗
0 I ], the

following inequality can be obtained:

[
P−1C𝑇
1
S
2
C
1
P−1 + P−1A𝑇

𝑓
+ A
𝑓
P−1 + P−1A𝑇

𝑓
PA
𝑓
P−1 ∗

−S𝑇
1
C
1
P−1 +D𝑇

1
S
2
C
1
P−1 + E𝑇 S

3
−D𝑇
1
S
1
− S𝑇
1
D
1
+D𝑇
1
S
2
D
1

] < 0. (31)

Applying Schur complement to (31), one has

[
[
[
[

[

P−1A𝑇
𝑓
+ P−1A𝑇

𝑓
∗ ∗ ∗

−S𝑇
1
C
1
P−1 + E𝑇 S

3
−D𝑇
1
S
1
− S𝑇
1
D
1

∗ ∗

A
𝑓
P−1 0 −P−1 ∗

√S
2
C
1
P−1 √S

2
D
1

0 −I

]
]
]
]

]

< 0.

(32)

According to A
𝑓
= A + BF and A

𝑓
= A + BF, one has the

following inequality from (32) with setting X = P−1 and K =

FX:

[
[
[

[

X𝑇A𝑇 + K𝑇B𝑇 + AX + BK ∗ ∗ ∗

−S𝑇
1
C
1
X + E𝑇 S

3
−D𝑇
1
S
1
− S𝑇
1
D
1

∗ ∗

AX + BK 0 −X ∗

√S
2
C
1
X √S

2
D
1

0 −I

]
]
]

]

< 0.

(33)

Thus, (28) is obtained from (33). And, one can find that if
(28) is satisfied, condition (6) can be held. Based on the above
procedure, condition (34) can easily be obtained. And, if (29)
is held, condition (7) can be satisfied. Thus, the proof of (29)
is omitted here.

Based on (8), one has the following inequality:

𝑥
𝑇
(0)P𝑥 (0) − 𝛼 < 0. (34)

Using Schur complement for (34), the following inequality
can be found with X = P−1:

[
−𝛼 𝑥

𝑇
(0)

𝑥 (0) −X ] < 0. (35)

Since (35) is equivalent to (30), one knows that if condition
(8) is held then (30) can also be satisfied. On the other hand,
if the conditions in this theorem are held then the conditions
inTheorem 4 are satisfied. And the asymptotical stability and
mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance of the closed-loop system

(3a), (3b), and (3c) are achieved in the sense of mean square.
Thus, the proof of the theorem is complete.

Applying the convex optimization algorithm, the feasible
solutions of Theorem 5 can directly be found to estab-
lish controller (2). Based on the proposed stability crite-
rion, the closed-loop system (3a), (3b), and (3c) driven
by designed controller is asymptotically stable and satisfies
mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖ty performance in the sense of mean

square. In the next section, the synchronous generator system
is utilized to verify the effectiveness and application of the
proposed design method.
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4. Simulation

Referring to [8], the dynamic equations of the synchronous
generator system are given as follows:

�̇�
1
(𝑡) = 2𝜋𝑓

0
𝑥
2
(𝑡) − 0.1V (𝑡) ,

�̇�
2
(𝑡) = −

𝐷

𝐻
𝑥
2
(𝑡)

+
𝜔
0

𝐻
(𝑃
𝑚
−

𝑉
𝑠

𝑥


𝑑Σ

(𝑥
3
(𝑡) + 𝐸



𝑞0
) sin (𝑥

1
(𝑡) + 𝛿

0
)

+

(𝑥
𝑑
− 𝑥


𝑑
)𝑉
2

𝑠

𝑥
𝑑Σ
𝑥


𝑑Σ

)

× sin (𝑥
1
(𝑡) + 𝛿

0
) cos (𝑥

1
(𝑡) + 𝛿

0
) ,

�̇�
3
(𝑡) = −

𝑥
𝑑Σ

𝑇
𝐷0
𝑥


𝑑Σ

(𝑥
3
(𝑡) + 𝐸



𝑞0
)

+
𝑥
𝑑
− 𝑥


𝑑

𝑇
𝐷0
𝑥


𝑑Σ

𝑉
𝑠
cos (𝑥

1
(𝑡) + 𝛿

0
) +

𝑘
𝐴
𝑥
𝑎𝑑

𝑇
𝐷0
𝑅
𝑓

(𝑢
0
+ 𝑢 (𝑡)) ,

(36)

where 𝑥
1
(𝑡) is the angular position of the rotor of the

generator with respect to synchronously rotating reference,
which is selected here to be the infinite bus; 𝑥

2
(𝑡) is the

angular velocity of the rotor, 𝑥
3
(𝑡) is the electromotive force

the 𝑞-axis of the generator, 𝑢(𝑡) is control input, and V(𝑡)
is a zero mean white noise with unit variance. And, the
parameters of the synchronous generator system (36) are
given as 𝑓

0
= 50Hz, 𝐷 = 0.8, 𝐻 = 8 s, 𝜔

0
= 1 p.u., 𝑃

𝑚
=

0.79 p.u., 𝑉
𝑠
= 1 p.u., 𝑥

𝑑Σ
= 1.1808 p.u., 𝑥

𝑑Σ
= 2.3108 p.u.,

𝐸


𝑞0
= 1.2723 p.u., 𝛿

0
= 60
∘, 𝑥
𝑑
= 1.5 p.u., 𝑥

𝑑
= 0.3 p.u.,

𝑇
𝐷0

= 3 s, 𝑘
𝐴
= 10, 𝑅

𝑓
= 0.0045 p.u., 𝑢

0
= 7.2942 × 10

−4 p.u.,
and 𝑥
𝑎𝑑

= 1.3 p.u. Base on the linearization technique applied
in [8], the linear equation of (36) can be obtained with
equilibrium point as 𝑥ep(𝑡) = [0 0 0]

𝑇. Considering the
stochastic behavior, the constant matrices A and B of the
multiplicative noise terms are assumed as follows:

A = [

[

1 0 0

0 0 0

0 0 0

]

]

, B = 96.2963. (37)

Based on the stochastic modeling approach, one has the
following dynamic linear stochastic equation to characterize
the local trajectories of (36) with added multiplicative noise
term around equilibrium point:

𝑑𝑥 (𝑡) = (A𝑥 (𝑡) + B𝑢 (𝑡) + EV (𝑡)) 𝑑𝑡

+ (A𝑥 (𝑡) + B𝑢 (𝑡)) 𝑑𝛽 (𝑡) ,
(38)

where A = [
0 314.1593 0

−0.1009 −0.1 −0.0957

−0.3121 0 −0.6937

], B = [
0

0

962.963

], and

E = [0.1 0 0]
𝑇. Moreover, the measured output 𝑦(𝑡) and

controlled output 𝑧(𝑡) for (38) are given as in the following
equations:

𝑦 (𝑡) = C
1
𝑥 (𝑡) +D

1
V (𝑡) ,

𝑧 (𝑡) = C
1
𝑥 (𝑡) +D

2
𝑢 (𝑡) ,

(39)

where C
1

= C
2

= [1 0 0] and D
1

= D
2

= 1. With
given S

1
= 1, S

2
= 1, and S

3
= 0.98 and initial condition

𝑥(0) = [30
∘
0.1 0]

𝑇, the following feasible solutions can
be obtained via using LMI Toolbox of MATLAB to solve the
sufficient conditions inTheorem 5:

P = [

[

1.9325 13.6451 −0.0139

13.6451 160.5379 −0.2368

−0.0139 −0.2368 0.0005

]

]

,

F = [2.3515 37.9586 −0.0863] ,

𝛼 = 3.5641.

(40)

With obtained feedback gain matrix F, the linear controller
can be designed as follows:

𝑢 (𝑡) = F𝑥 (𝑡) . (41)
In order to emphasize the advantages of the proposed

design method, the approaches proposed by [6, 16] are also
applied to control the synchronous generator system (36)
with added multiplicative noise term (37). Studying [16], the
mixed 𝐻

2
/𝐻
∞

performance controller design method has
been proposed for state-dependent noised systems. Applying
[16], the following controller can be obtained via setting the
𝛾
2
= 1.01 performance index for𝐻

∞
control scheme and the

same initial condition 𝑥(0) = [30
∘
0.1 0]

𝑇:

𝑢 (𝑡) = F𝑥 (𝑡) , (42)

where F = [1.9878 27.8338 −0.0771].
Besides, the state feedback 𝐻

∞
control for stochastic

systems has been developed in [6]without considering the𝐻
2

performance.And, the following controller can be established
by [6] with 𝛾

2
= 1.01 performance index for 𝐻

∞
control

scheme:
𝑢 (𝑡) = F𝑥 (𝑡) , (43)

where F = [0.0384 3.2799 −0.0151].
Applying controller (41) to the synchronous generator

system (36) with addedmultiplicative noise term, the simula-
tion results are presented by Figures 1–3 with initial condition
as 𝑥(0) = [30

∘
0.1 0]

𝑇. From the figures, system (36) driven
by (41) is asymptotically stable in themean square. In order to
check the achievement of mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance,

the ratio value of the following functions can be obtained by
introducing simulation responses:

𝐸 {2 ∫
𝑡𝑝

0
𝑦
𝑇
(𝑡) S
1
V (𝑡) 𝑑𝑡}

𝐸 {∫
𝑡𝑝

0
𝑦
𝑇
(𝑡) S
2
𝑦 (𝑡) 𝑑𝑡 + ∫

𝑡𝑝

0
V𝑇 (𝑡) S

3
V (𝑡) 𝑑𝑡}

= 1.002,

(44)

∫

𝑡𝑝

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) = 0.2293. (45)
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Since the ratio value of (44) is bigger than one, one can find
that Definition 1 is satisfied with given matrices as S

1
= 1,

S
2
= 1, and S

3
= 0.98. Hence, the passivity of considered

system is achieved by designed controller (41). Besides, (41)
shows that the output energy of system is smaller than 𝛼 =

3.5641. Thus, the inequality of Definition 3 can be satisfied.
On the other hand, the simulated responses of (36) driven

by (42) and (43) are also shown in Figures 1–3. From these
responses, the overshoot of (43) is the biggest among the
others because the 𝐻

2
performance is not considered. Thus,

one can find that the control performance of (43) is the
worst case in this simulation. In addition, the requirements
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Figure 3: Responses of state 𝑥

3
(𝑡).

for attenuation performance and 𝐻
2
performance of (36)

driven by (42) are achieved. However, the overshoot and
setting time of (41) are smaller than ones of (42). Therefore,
in this simulation, the state responses of the proposed design
method are better than that driven by the approaches in
[6, 16]. Based on the results, the asymptotical stability and
mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance of the stochastic system

(36) are achieved by designed controller (41).

5. Conclusions

In this paper, the𝐻
2
control scheme was applied to minimize

the output energy and to stabilize the considered system with
initial condition. In addition, the disturbance attenuation
performance of the system was discussed via the passivity
theory with general power supply function. Through the
𝐻
2
control scheme and passivity theory, the stability cri-

terion for the linear stochastic system has been proposed
subject to mixed 𝐻

2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance. Furthermore,

the Lyapunov function and Itô formula were employed to
derive the sufficient conditions which have been converted
into LMI problems. Thus, the feasible solutions can directly
be found via convex optimization algorithm for establishing
the controller such that the asymptotical stability and mixed
𝐻
2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance of linear stochastic system are

achieved in the sense ofmean square.Through the simulation
results, the proposed design method is useful and effective
for stabilizing linear stochastic systems subject to mixed
𝐻
2
/𝑝𝑎𝑠𝑠𝑖V𝑖𝑡𝑦 performance.
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