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The optimal control of flockingmodels with random inputs is investigated from a numerical point of view.The effect of uncertainty
in the interaction parameters is studied for a Cucker-Smale type model using a generalized polynomial chaos (gPC) approach.
Numerical evidence of threshold effects in the alignment dynamic due to the random parameters is given. The use of a selective
model predictive control permits steering of the system towards the desired state even in unstable regimes.

1. Introduction

The aggregate motion of a multiagent system is frequently
seen in the real world. Common examples are schools of
fishes, swarms of bees and herds of sheep, natural phenomena
that inspired important applications in many fields such as
biology, engineering and economy [1]. As a consequence, the
significance of new mathematical models, for understanding
and predicting these complex dynamics, is widely recognized.
Several heuristic rules of flocking have been introduced as
alignment, separation, and cohesion [2, 3]. Nowadays these
mathematical problems, and their constrained versions, are
deeply studied from both the microscopic viewpoint [4–7]
and their kinetic and mean-field approximations [8–13]. We
refer to [1] for a recent introduction on the subject.

In an applicative framework a fundamental step for the
study of such models is represented by the introduction of
stochastic parameters reflecting the uncertainty due to wide
range of phenomena, such as the weathers influence during
an experiment, temperature variations, or even human errors.
Therefore quantifying the influence of uncertainties on the
main dynamics is of paramount importance to build more
realistic models and to give better predictions of their behav-
ior. In the modeling of self-organized system, different ways
to include random sources have been studied and analyzed;
see, for example, [3, 14–17]. In this paper we focus on

the case where the uncertainty acts directly in the parameter
characterizing the interaction dynamic between the agents.

We present a numerical approach having roots in the
numerical techniques for uncertainty quantification (UQ)
and model predictive control (MPC). Among the most
popular methods for UQ, the generalized polynomial chaos
(gPC) has recently received deepest attentions [18]. Jointly
with StochasticGalerkin (SG) this class of numericalmethods
is usually applied in physical and engineering problems,
for which fast convergence is needed. Applications of gPC-
Galerkin schemes to flocking dynamics, and their controlled
versions, are almost unexplored in the actual state of art.

We give numerical evidence of threshold effects in the
alignment dynamic due to the random parameters. In par-
ticular the presence of a negative tail in the distribution of
the random inputs leads to the divergence of the expected
values for the system velocities. The use of a selective model
predictive control permits steering of the system towards the
desired state even in such unstable regimes.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce briefly a Cucker-Smale dynamic with
interaction function depending on stochastic parameters and
analyze the system behavior in the case of uniform interac-
tions. The gPC approach is then summarized in Section 3.
Subsequently, in Section 4 we consider the gPC scheme in
a constrained setting and derive a selective model predictive
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approximation of the system. Next, in Section 5 we report
several numerical experiments which illustrate the different
features of the numerical method. Extensions of the present
approach are finally discussed in Section 6.

2. Cucker-Smale Dynamic with
Random Inputs

We introduce a Cucker-Smale type [10] differential system
depending on a random variable 𝜃 ∈ Ω ⊆ R with a given
distribution 𝑓(𝜃). Let (𝑥

𝑖
, V
𝑖
) ∈ R2𝑑, 𝑑 ≥ 1, evolving as

follows:

𝑥̇
𝑖 (𝜃, 𝑡) = V

𝑖 (𝜃, 𝑡)

V̇
𝑖 (𝜃, 𝑡) =

𝐾 (𝜃, 𝑡)

𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
) (V
𝑗 (𝜃, 𝑡) − V

𝑖 (𝜃, 𝑡)) ,

(1)

where 𝐾 is a time-dependent random function character-
izing the uncertainty in the interaction rates and 𝐻(⋅, ⋅)

is a symmetric function describing the dependence of the
alignment dynamic from the agents positions. A classical
choice of space-dependent interaction function is related to
the distance between two agents

𝐻 (𝑥, 𝑦) =
1

(𝜁2 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
2
)
𝛾
, (2)

where 𝛾 ≥ 0 and 𝜁 > 0 are given parameters. Mathematical
results concerning the system behavior in the deterministic
case (𝐾 ≡ 1) can be found in [10]. In particular unconditional
alignment emerges for 𝛾 < 1/2. Let us observe that, even for
the model with random inputs (1), the mean velocity of the
system is conserved in time

V (𝜃, 𝑡) =
1
𝑁

𝑁

∑

𝑖=1
V
𝑖 (𝜃, 𝑡) ,

𝑑

𝑑𝑡
V (𝜃, 𝑡) = 0,

(3)

since the symmetry of 𝐻 implies

𝑁

∑

𝑖,𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
) V
𝑗 (𝜃, 𝑡) =

𝑁

∑

𝑖,𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
) V
𝑖 (𝜃, 𝑡) . (4)

Therefore for each 𝑡 ≥ 0 we haveV(𝜃, 𝑡) = V(𝜃, 0).

2.1. The Uniform Interaction Case. To better understand
the leading dynamic let us consider the simpler uniform
interaction case when 𝐻 ≡ 1, leading to the following
equation for the velocities:

V̇
𝑖 (𝜃, 𝑡) =

𝐾 (𝜃, 𝑡)

𝑁

𝑁

∑

𝑗=1
(V
𝑗 (𝜃, 𝑡) − V

𝑖 (𝜃, 𝑡))

= 𝐾 (𝜃, 𝑡) (V (𝜃, 0) − V
𝑖 (𝜃, 𝑡)) .

(5)

The differential equation (5) admits an exact solution
depending on the random input 𝜃.More precisely if the initial
velocities are deterministically known we have that

V
𝑖 (𝜃, 𝑡) = V+ (V

𝑖 (0) −V) exp{− ∫

𝑡

0
𝐾 (𝜃, 𝑠) 𝑑𝑠} , (6)

whereV = V(0) is the mean velocity of the system. In what
follows we analyze the evolution of (6) for different choices of
𝐾(𝜃, 𝑡) and of the distribution of the random variable 𝜃.

Example 1. Let us consider a random scattering rate written
in terms of the following decomposition:

𝐾 (𝜃, 𝑡) = 𝑘 (𝜃) ℎ (𝑡) , (7)

where ℎ(𝑡) is a nonnegative function depending on 𝑡 ∈ R+.
The expected velocity of the 𝑖th agent is defined by

V
𝑖 (𝑡) = E

𝜃
[V
𝑖 (𝜃, 𝑡)] = ∫

Ω

V
𝑖 (𝜃, 𝑡) 𝑓 (𝜃) 𝑑𝜃. (8)

Then each agent evolves its expected velocity according to

V
𝑖 (𝑡)

= ∫
Ω

[V+ (V
𝑖 (0) −V) exp{−𝑘 (𝜃) ∫

𝑡

0
ℎ (𝑠) 𝑑𝑠}]

⋅ 𝑓 (𝜃) 𝑑𝜃.

(9)

For example, let us choose 𝑘(𝜃) = 𝜃, where the random
variable is normally distributed; that is, 𝜃 ∼ N(𝜇, 𝜎

2
). Then,

for each 𝑖 = 1, . . . , 𝑁, we need to evaluate the following
integral:

V+
V
𝑖 (0) − V

√2𝜋𝜎2

⋅ ∫
R

exp{−𝜃 ∫

𝑡

0
ℎ (𝑠) 𝑑𝑠} exp{−

(𝜃 − 𝜇)
2

2𝜎2 } 𝑑𝜃.

(10)

The explicit form is easily found through standard tech-
niques and yields

V
𝑖 (𝑡) = V+ (V

𝑖 (0) −V)

⋅ exp{−𝜇 ∫

𝑡

0
ℎ (𝑠) 𝑑𝑠 +

𝜎
2

2
(∫

𝑡

0
ℎ (𝑠) 𝑑𝑠)

2
} .

(11)

From (11) we observe a threshold effect in the asymptotic
convergence of the mean velocity of each agent towardV. It
is immediately seen that if

∫

𝑡

0
ℎ (𝑠) 𝑑𝑠 >

2𝜇

𝜎2 (12)

it follows that, for 𝑡 → +∞, the expected velocity V
𝑖
diverges.

In particular, if ℎ(𝑠) ≡ 1 we have that the solution starts to
diverge as soon as 𝑡 > 𝜇/𝜎

2. Note that this threshold effect is
essential due to the negative tail of the normal distribution.
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In fact, if we now consider a random variable taking only
nonnegative values, for example, exponentially distributed
𝜃 ∼ Exp(𝜆) for some positive parameter 𝜆 > 0, from (9) we
obtain

V
𝑖 (𝑡) = V+ (V

𝑖 (0) −V) ∫

+∞

0
𝑒
−𝜃𝑡

𝜆𝑒
−𝜆𝜃

𝑑𝜃, (13)

which corresponds to

V
𝑖 (𝑡) = V+ (V

𝑖 (0) −V)
𝜆

𝑡 + 𝜆
, (14)

and therefore V
𝑖
(𝑡) → V as 𝑡 → ∞. Then independently

from the choice of the rate 𝜆 > 0 we obtain for each agent
convergences toward the average initial velocity of the system.
Finally, in case of a uniform random variable 𝜃 ∼ 𝑈([𝑎, 𝑏])we
obtain

V
𝑖 (𝑡) = V+ (V

𝑖 (0) −V) ∫

𝑏

𝑎

1
𝑏 − 𝑎

𝑒
−𝜃𝑡

𝑑𝜃; (15)

that is,

V
𝑖 (𝑡) = V+

V
𝑖 (0) − V

𝑏 − 𝑎
(

𝑒
−𝑎𝑡

𝑡
−

𝑒
−𝑏𝑡

𝑡
) , (16)

which implies the divergence of the system in time as soon as
𝑎 ∈ R assumes negative values.

Example 2. Next we consider a random scattering rate with
time-dependent distribution function; that is,

𝐾 (𝜃, 𝑡) = 𝜃 (𝑡) (17)

with 𝜃(𝑡) ∼ 𝑓(𝜃, 𝑡). As an example we investigate the
case of a normally distributed random parameter with given
mean and time-dependent variance: 𝜃 ∼ N(𝜇, 𝜎

2
(𝑡)). It is

straightforward to rewrite 𝜃 as a translation of a standard
normal-distributed variable 𝜃; that is,

𝜃 = 𝜇 + 𝜎 (𝑡) 𝜃, (18)

where 𝜃 ∼ N(0, 1). The expected velocities read

V
𝑖 (𝑡) = V+

(V
𝑖 (0) − V)

√2𝜋

⋅ ∫
R

exp{−𝜇𝑡 − 𝜃 ∫

𝑡

0
𝜎 (𝑠) 𝑑𝑠} exp{−

𝜃
2

2
} 𝑑𝜃,

(19)

which correspond to

V
𝑖 (𝑡)

= V

+ (V
𝑖 (0) −V) exp{−𝜇𝑡 +

1
2

(∫

𝑡

0
𝜎 (𝑠) 𝑑𝑠)

2
} .

(20)

Similarly to the case of a time-independent normal
variable a threshold effect occurs for large times; that is, the
following condition on the variance of the distribution

(∫

𝑡

0
𝜎 (𝑠) 𝑑𝑠)

2
> 2𝜇𝑡 (21)

implies the divergence of system (5). As a consequence
instability can be avoided by assuming a variance decreasing
sufficiently fast in time.The simplest choice is represented by
𝜎(𝑡) = 1/𝑡

𝛼 for some 𝛼 ∈ [1/2, 1). Condition (21) becomes

(
𝑡
1−𝛼

1 − 𝛼
)

2

> 2𝜇𝑡. (22)

For example, if 𝛼 = 1/2 the previous condition implies
that the system diverges for each 𝜇 < 2.

3. A gPC Based Numerical Approach

In this section we approximate the Cucker-Smale model
with random inputs using a generalized polynomial chaos
approach. For the sake of claritywe first recall somebasic facts
concerning gPC approximations.

3.1. Preliminaries on gPC Approximations. Let (Ω,F, 𝑃) be a
probability space, that is, an ordered triple with Ω any set,F
a 𝜎-algebra, and 𝑃 : F → [0, 1] a probability measure onF,
where we define a random variable

𝜃 : (Ω,F) 󳨀→ (R,BR) , (23)

with BR the Borel set of R. Moreover let us consider 𝑆 ⊂

R𝑑, 𝑑 ≥ 1, and [0, 𝑇] ⊂ R certain spatial and temporal
subsets. For the sake of simplicity we focus on real-valued
functions depending on a single random input

𝑔 (𝑥, 𝜃, 𝑡) : 𝑆 × Ω × 𝑇 󳨀→ R
𝑑
, 𝑔 ∈ 𝐿

2
(Ω,F, 𝑃) . (24)

In any case it is possible to extend the setup of the
problem to a 𝑝-dimensional vector of random variables 𝜃 =

(𝜃1, . . . , 𝜃𝑝); see [19]. Let us consider now the linear space
of polynomials of 𝜃 of degree up to 𝑀, namely, P

𝑀
(𝜃).

From classical results in approximation theory it is possible
to represent the distribution of random functions with
orthogonal polynomials {Φ

𝑘
(𝜃)}
𝑀

𝑘=0, that is, an orthogonal
basis of 𝐿

2
(Ω,F, 𝑃):

E
𝜃

[Φ
ℎ (𝜃) Φ

𝑘 (𝜃)] = E
𝜃

[Φ
ℎ (𝜃)

2
] 𝛿
ℎ𝑘

(25)

with 𝛿
ℎ𝑘

as the Kronecker delta function. Assuming that
the probability law 𝑃(𝜃

−1
(𝐵)), ∀𝐵 ∈ BR, involved in the

definition of the introduced function 𝑔(𝑥, 𝜃, 𝑡), has finite
second-order moment, then the complete polynomial chaos
expansion of 𝑔 is given by

𝑔 (𝑥, 𝜃, 𝑡) = ∑

𝑚∈N

𝑔
𝑚 (𝑥, 𝑡) Φ

𝑚 (𝜃) . (26)
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According to the Cameron-Martin theorem and to the
Askey scheme, results that pave a connection between ran-
dom variables and orthogonal polynomials [18, 20, 21], we
chose a set of polynomials which constitutes the optimal basis
with respect to the distribution of the introduced random
variable in agreement with Table 1.

Let us consider now a general formulation for a randomly
perturbed problem

D (𝑥, 𝑡, 𝜃; 𝑔) = 𝑓 (𝑥, 𝑡, 𝜃) , (27)

where we indicated withD a differential operator. In general
the randomness introduced in the problem by 𝜃 acts as a
perturbation ofD, of the function 𝑔, or occurs as uncertainty
of the initial conditions. In this work we focus on the first
two aspects assuming that initial positions and velocities are
deterministically known.

The generalized polynomial chaos method approximates
the solution 𝑔(𝑥, 𝜃, 𝑡) of (27) with its 𝑀th-order polynomial
chaos expansion and considers the Galerkin projections of
the introduced differential problem; that is,

E
𝜃

[D (𝑥, 𝑡, 𝜃; 𝑔) ⋅ Φ
ℎ (𝜃)] = E

𝜃
[𝑓 (𝑥, 𝜃, 𝑡) ⋅ Φ

ℎ (𝜃)] ,

ℎ = 0, 1, . . . , 𝑀.

(28)

Due to the Galerkin orthogonality between the linear
space P

𝑀
and the error produced in the representation of

𝑔(𝑥, 𝜃, 𝑡) with a truncated series, from (28) we obtain a set of
𝑀 + 1 purely deterministic equations for the expansion coef-
ficients 𝑔

𝑚
(𝑥, 𝑡). These subproblems can be solved through

classical discretization techniques. From the numerical point
of view through a gPC-type method it is possible to achieve
an exponential order of convergence to the exact solution of
the problem, unlike Monte Carlo techniques for which the
order is 𝑂(1/√𝑀) where 𝑀 is the number of samples.

3.2. gPC Approximation of the Alignment Model. We apply
the described gPC decomposition to the solution of the
nonhomogeneous differential equation V

𝑖
(𝜃, 𝑡) in (6) and to

the stochastic scattering rate 𝐾(𝜃, 𝑡); that is,

V𝑀
𝑖

(𝜃, 𝑡) =

𝑀

∑

𝑚=0
V̂
𝑖,𝑚 (𝑡) Φ

𝑚 (𝜃) ,

𝐾
𝑀

(𝜃, 𝑡) =

𝑀

∑

𝑙=0
𝐾̂
𝑙 (𝑡) Φ

𝑙 (𝜃) ,

(29)

where
V̂
𝑖,𝑚 (𝑡) = E

𝜃
[V
𝑖 (𝜃, 𝑡) Φ

𝑚 (𝜃)]

𝐾̂
𝑙 (𝑡) = E

𝜃
[𝐾 (𝜃, 𝑡) Φ

𝑙 (𝜃)] .

(30)

We obtain the following polynomial chaos expansion:

𝑑

𝑑𝑡

𝑀

∑

𝑚=0
V̂
𝑖,𝑚

Φ
𝑚 (𝜃) =

1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

⋅

𝑀

∑

𝑙,𝑚=0
𝐾̂
𝑙 (𝑡) (V̂

𝑗,𝑚
− V̂
𝑖,𝑚

) Φ
𝑙 (𝜃) Φ

𝑚 (𝜃) .

(31)

Table 1: The different gPC choices for the polynomial expansions.

Probability law of 𝜃 Expansion polynomials Support
Gaussian Hermite (−∞, +∞)

Uniform Legendre [𝑎, 𝑏]

Beta Jacobi [𝑎, 𝑏]

Gamma Laguerre [0, +∞)

Poisson Charlier N

Multiplying the above expression by an orthogonal ele-
ment of the basis Φ

ℎ
(𝜃) and integrating with respect to the

distribution of 𝜃

E
𝜃

[

𝑀

∑

𝑚=0

𝑑

𝑑𝑡
V̂
𝑖,𝑚

Φ
𝑚 (𝜃) Φ

ℎ (𝜃)] = E
𝜃

[

[

1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

⋅

𝑀

∑

𝑙,𝑚=0
𝐾̂
𝑙 (𝑡) (V̂

𝑗,𝑚
− V̂
𝑖,𝑚

) Φ
𝑙 (𝜃) Φ

𝑚 (𝜃) Φ
ℎ (𝜃)]

]

(32)

we find an explicit system of ODEs

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡) =

1
󵄩󵄩󵄩󵄩Φ
ℎ

󵄩󵄩󵄩󵄩
2

𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
(V̂
𝑗,𝑚

− V̂
𝑖,𝑚

)

⋅

𝑀

∑

𝑙=0
𝐾̂
𝑙 (𝑡) 𝑒
𝑙𝑚ℎ

=
1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
(V̂
𝑗,𝑚

− V̂
𝑖,𝑚

) 𝐾̂
𝑚ℎ (𝑡) ,

(33)

where 𝑒
𝑙𝑚ℎ

= E
𝜃
[Φ
𝑙
(𝜃)Φ
𝑚

(𝜃)Φ
ℎ
(𝜃)] and

𝐾̂
𝑚ℎ (𝑡) =

1
󵄩󵄩󵄩󵄩Φ
ℎ

󵄩󵄩󵄩󵄩
2

𝑀

∑

𝑙=0
𝐾̂
𝑙 (𝑡) 𝑒
𝑙𝑚ℎ

. (34)

We recall that the gPC numerical approach preserves the
mean velocity of the alignment model (5). In fact, from (33)
follows

𝑁

∑

𝑖=1

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡) =

1
𝑁

𝑁

∑

𝑗,𝑖=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) V̂𝑗,𝑚

−
1
𝑁

𝑁

∑

𝑗,𝑖=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) V̂𝑖,𝑚

= 0,

(35)

thanks to the symmetry of𝐻. More generally it can be shown
that if

1
𝑁

𝑁

∑

𝑖=1
V
𝑖 (𝜃, 𝑡) = V, (36)
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whereV is time-independent, then its gPC decomposition is
also mean-preserving since

1
𝑁

𝑁

∑

𝑖=1

𝑀

∑

𝑚=0
E
𝜃

[V
𝑖 (𝜃, 𝑡) Φ

𝑚 (𝜃)] Φ
𝑚 (𝜃)

=

𝑀

∑

𝑚=0
E
𝜃

[
1
𝑁

𝑁

∑

𝑖=1
V
𝑖 (𝜃, 𝑡) Φ

𝑚 (𝜃)] Φ
𝑚 (𝜃)

= V
𝑀

∑

𝑚=0
E
𝜃

[1 ⋅ Φ
𝑚 (𝜃)] Φ

𝑚 (𝜃) = V.

(37)

Remark 3. The gPC approximation (33) can be derived
equivalently without expanding the kernel function 𝐾(𝜃, 𝑡).
In this way one obtains

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡) =

1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
(V̂
𝑗,𝑚

− V̂
𝑖,𝑚

) 𝐾̂
𝑚ℎ

, (38)

where now

𝐾̂
𝑚ℎ (𝑡) =

1
󵄩󵄩󵄩󵄩Φ
ℎ

󵄩󵄩󵄩󵄩
2
E
𝜃

[𝐾 (𝜃, 𝑡) Φ
𝑚

Φ
ℎ
] . (39)

Note that since in general 𝑁 ≫ 𝑀, the overall computa-
tional cost is 𝑂(𝑀𝑁

2
).

4. Selective Control of the gPC Approximation

In order to stabilize the gPC approximation of the Cucker-
Smale type model (1) with random inputs, we introduce an
additional term which acts as control of the approximated
dynamic. More specifically we modify the approximation of
the alignment model (1) by introducing a control term 𝑢̂

ℎ
to

the ℎth component of its gPC approximation

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡)

=
1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) (V̂

𝑗,𝑚 (𝑡) − V̂
𝑖,𝑚 (𝑡))

+ 𝑢̂
ℎ
𝑄 (V̂
𝑖,ℎ

) .

(40)

The control 𝑢̂
ℎ
is a solution of

𝑢̂
ℎ

= arg min
𝑢̂ℎ∈U𝑏

[
1
2

∫

𝑇

0

1
𝑁

𝑁

∑

𝑖=1
(V̂
𝑖,ℎ (𝑡) − V̂

𝑑,ℎ
)
2

𝑑𝑡

+
]
2

∫

𝑇

0
𝑢̂
ℎ (𝑡)

2
𝑑𝑡] ,

(41)

where we assume to have, for each ℎ = 1, . . . , 𝑀, a
bounded control 𝑢̂

ℎ
having value in an admissible set U

𝑏
⊂

R𝑑; for example, in the one-dimensional case we consider
𝑢̂
ℎ

∈ [𝑢
ℎ,𝐿

, 𝑢
ℎ,𝑅

]. Parameter ] > 0 is a regularization term

and (V̂
𝑑,0, V̂𝑑,1, . . . , V̂𝑑,𝑀) are the desired values for the gPC

coefficients. For example,

V̂
𝑑,ℎ

= E
𝜃

[V
𝑑
Φ
ℎ (𝜃)] = V

𝑑
E [Φ
ℎ (𝜃)]

=
{

{

{

V
𝑑

ℎ = 0

0 ℎ = 1, . . . , 𝑀,

(42)

where V
𝑑
is a desired velocity.

Moreover the controller action is weighted by a bounded
function,

𝑄 : R
𝑑

󳨀→ R
𝑑
. (43)

Due to the dependence of the controller effect from the
single agent velocity, we refer to this approach as selective
control; see [22].

In order to tackle numerically the above problem, whose
direct solution is prohibitively expansive for large numbers of
individuals, we make use of model predictive control (MPC)
techniques, also referred to as receding horizon strategy or
instantaneous control [23]. These techniques have been used
in [8, 9, 22] in the case of deterministic alignment systems.

4.1. Selective Model Predictive Control. Let us split the time
interval [0, 𝑇] in 𝑁̃ time intervals of length Δ𝑡 with 𝑡

𝑛
= 𝑛Δ𝑡

with 𝑛 = 0, . . . , 𝑁̃ − 1. The basic idea of the model predictive
control approach is to consider a piecewise constant control

𝑢̂
ℎ (𝑡) =

𝑁̃−1
∑

𝑛=0
𝑢̂
𝑛

ℎ
𝜒
[𝑡
𝑛
,𝑡
𝑛+1
] (𝑡) . (44)

In this way it is possible to determine the value of the
control 𝑢̂

𝑛

ℎ
∈ R𝑑, solving for a state V̂

𝑖,ℎ
the (reduced)

optimization problem

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡) =

1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

⋅

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) (V̂

𝑗,𝑚 (𝑡) − V̂
𝑖,𝑚 (𝑡)) + 𝑢̂

ℎ
𝑄 (V̂
𝑖,ℎ (𝑡))

V̂
𝑖,ℎ

(𝑡
𝑛
) = V̂
𝑖,ℎ

,

𝑢̂
𝑛

ℎ
= argmin
𝑢̂ℎ∈U𝑏

∫

𝑡
𝑛+1

𝑡
𝑛

1
𝑁

⋅

𝑁

∑

𝑖=1
(
1
2

(V̂
𝑖,ℎ (𝑡) − V̂

𝑑,ℎ
)
2

+
]
2

𝑢̂
ℎ (𝑡)

2
) 𝑑𝑠.

(45)

Given the control 𝑢̂
𝑛

ℎ
on the time interval [𝑡

𝑛
, 𝑡
𝑛+1

], we let
V̂
𝑖,ℎ

evolve according to the dynamics

𝑑

𝑑𝑡
V̂
𝑖,ℎ

=
1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) (V̂

𝑗,𝑚 (𝑡) − V̂
𝑖,𝑚 (𝑡))

+ 𝑢̂
𝑛

ℎ
𝑄 (V̂𝑛
𝑖,ℎ

(𝑡))

(46)
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in order to obtain the new state V̂
𝑖,ℎ

= V̂
𝑖,ℎ

(𝑡
𝑛+1

). We again
solve (45) to obtain 𝑢̂

𝑛+1
ℎ

with the modified initial data and
we repeat this procedure until we reach 𝑁̃Δ𝑡 = 𝑇.

The reduced optimization problem implies a reduction of
the complexity of the initial problem since it depends only
on the single real-valued variable 𝑢̂

𝑛

ℎ
. On the other hand the

price to pay is that in general the solution of the problem is
suboptimal with respect to the full one ((40)-(41)).

The quadratic cost and a suitable discretization of (46)
allow an explicit representation of 𝑢̂

𝑛

ℎ
in terms of V̂

𝑖,ℎ
and V̂𝑛+1
𝑖,ℎ

,
as a feedback controlled system, as follows:

V̂𝑛+1
𝑖,ℎ

= V̂𝑛
𝑖,ℎ

+
Δ𝑡

𝑁

𝑁

∑

𝑗=1
𝐻
𝑛

𝑖𝑗

𝑀

∑

𝑚=0
𝐾̂
𝑛

𝑚ℎ
(V̂𝑛
𝑗,𝑚

− V̂𝑛
𝑖,𝑚

)

+ Δ𝑡𝑢̂
𝑛

ℎ
𝑄
𝑛

𝑖,ℎ
,

V̂𝑛
𝑖,ℎ

= V̂
𝑖,ℎ

,

𝑢̂
𝑛

ℎ
= −

Δ𝑡

]𝑁

𝑁

∑

𝑖=1
(V̂𝑛+1
𝑖,ℎ

− V̂
𝑑,ℎ

) 𝑄
𝑛

𝑖,ℎ
,

(47)

where 𝐻
𝑛

𝑖𝑗
≡ 𝐻(𝑥

𝑛

𝑖
, 𝑥
𝑛

𝑗
) and 𝑄

𝑛

𝑖,ℎ
≡ 𝑄(V̂𝑛

𝑖,ℎ
). Note that since

the feedback control 𝑢̂
𝑛

ℎ
in (47) depends on the velocities at

time 𝑛 + 1, the constrained interaction at time 𝑛 is implicitly
defined. The feedback controlled system in the discretized
form results in

V̂𝑛+1
𝑖,ℎ

= V̂𝑛
𝑖,ℎ

+
Δ𝑡

𝑁

𝑁

∑

𝑗=1
𝐻
𝑛

𝑖𝑗

𝑀

∑

𝑚=0
𝐾̂
𝑛

𝑚ℎ
(V̂𝑛
𝑗,𝑚

− V̂𝑛
𝑖,𝑚

)

−
Δ𝑡

2

]𝑁

𝑁

∑

𝑗=1
(V̂𝑛+1
𝑗,ℎ

− V̂
𝑑,ℎ

) 𝑄
𝑛

𝑗,ℎ
𝑄
𝑛

𝑖,ℎ
,

V̂𝑛
𝑖,ℎ

= V̂
𝑖,ℎ

.

(48)

Again the action of the control is substituted by an
implicit term representing the relaxation toward the desired
component of the velocity V̂

𝑑,ℎ
, and it can be inverted in a fully

explicit system.
Considering the scaling for the regularization parameter

] = 𝜅Δ𝑡, the previous scheme is a consistent discretization of
the following continuous system:

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡)

=
1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) (V̂

𝑗,𝑚 (𝑡) − V̂
𝑖,𝑚 (𝑡))

+
1

𝜅𝑁

𝑁

∑

𝑗=1
(V̂
𝑑,ℎ

− V̂
𝑗,ℎ (𝑡)) 𝑄 (V̂

𝑗,ℎ (𝑡)) 𝑄 (V̂
𝑖,ℎ (𝑡)) .

(49)

Now the control is explicitly embedded in the dynamic of
the ℎth component of the gPC approximation as a feedback
term, and the parameter 𝜅 > 0 determines its strength.

4.2. Choice of the Selective Control. For the specific choice of
weight function 𝑄(⋅) ≡ 1 we refer in general to nonselective
control. Note that in this case the action of the control is not
strong enough to control the velocity of each agent; indeed in
this case we are able only to control the mean velocity of the
system. In fact the control term is reduced to

1
𝜅

(V̂
𝑑,ℎ

− V̂
ℎ
) , (50)

where V̂
ℎ
is the ℎth coefficient of the expansion ofV; that is,

V̂
ℎ

=
1
𝑁

𝑁

∑

𝑗=1
V̂
𝑗,ℎ (𝑡) . (51)

Then, only the projections of themean velocity are steered
toward the respective components of the target velocity; that
is, as soon as 𝜅 → 0 it follows that V̂

ℎ
= V̂
𝑑,ℎ
. Therefore,

the choice of the selective function 𝑄(⋅) is of paramount
importance to ensure the action of the control on the single
agent.

In principle one can address directly the control problem
on the original system (1) as

𝑥̇
𝑖 (𝜃, 𝑡) = V

𝑖 (𝜃, 𝑡)

V̇
𝑖 (𝜃, 𝑡) =

𝐾 (𝜃, 𝑡)

𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
) (V
𝑗 (𝜃, 𝑡) − V

𝑖 (𝜃, 𝑡))

+ 𝑢𝑄 (V
𝑖 (𝜃, 𝑡)) ,

(52)

where the control term 𝑢 is solution of

𝑢 = argmin
𝑢∈U𝑏

[
1
2

∫

𝑇

0

1
𝑁

𝑁

∑

𝑖=1
(V
𝑖 (𝜃, 𝑡) − V

𝑑
)
2

𝑑𝑡

+
]
2

∫

𝑇

0
𝑢 (𝑡)

2
𝑑𝑡] .

(53)

Here V
𝑑

∈ R𝑑 is a target velocity, ] > 0 a regularization
parameter, andU

𝑏
the set of admissible control. Similarly to

previous subsection, through the approach presented in [8,
9, 22], we can derive the time-continuous MPC formulation
which explicitly embed the control term in the dynamic as
follows:

𝑥̇
𝑖 (𝜃, 𝑡) = V

𝑖 (𝜃, 𝑡)

V̇
𝑖 (𝜃, 𝑡)

=
𝐾 (𝜃, 𝑡)

𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
) (V
𝑗 (𝜃, 𝑡) − V

𝑖 (𝜃, 𝑡))

+
1

𝜅𝑁

𝑁

∑

𝑗=1
(V
𝑑

− V
𝑗 (𝜃, 𝑡)) 𝑄 (V

𝑗 (𝑡, 𝜃)) 𝑄 (V
𝑖 (𝑡, 𝜃)) .

(54)
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Now the gPC approximation of (54) can be obtained as in
Section 3 and leads to the set of ODEs

𝑑

𝑑𝑡
V̂
𝑖,ℎ (𝑡)

=
1
𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
)

𝑀

∑

𝑚=0
𝐾̂
𝑚ℎ (𝑡) (V̂

𝑗,𝑚 (𝑡) − V̂
𝑖,𝑚 (𝑡))

+
1

𝜅𝑁

𝑁

∑

𝑗=1
𝑅
ℎ

(V𝑀
𝑖

, V𝑀
𝑗

) ,

(55)

where

𝑅
ℎ

(V𝑀
𝑖

, V𝑀
𝑗

) =
1

󵄩󵄩󵄩󵄩Φ
ℎ

󵄩󵄩󵄩󵄩
2E𝜃 [(V

𝑑
− V𝑀
𝑗

) 𝑄 (V𝑀
𝑖

(𝜃, 𝑡))

⋅ 𝑄 (V𝑀
𝑗

(𝜃, 𝑡)) Φ
ℎ (𝜃)] .

(56)

In general systems (55) and (49), without further assump-
tions on the selective function 𝑄(⋅), are not equivalent. In
addition to the nonselective case, there exists at least one
choice of selective control that makes the two approaches
totally interchangeable. In fact, taking

𝑄 (V
𝑖
) =

V
𝑑

− V
𝑖

√(1/𝑁) ∑
𝑁

𝑗=1 (V
𝑑

− V
𝑗
)
2 (57)

and 𝑄(V
𝑖
) ≡ 0 if V

𝑗
= V
𝑑
, ∀𝑗 = 1, . . . , 𝑁, we have that 𝑄(⋅)

is bounded and the control term in (55) takes the following
form:

1
𝜅𝑁

𝑁

∑

𝑗=1
𝑅
ℎ

=
1

𝜅
󵄩󵄩󵄩󵄩Φ
ℎ

󵄩󵄩󵄩󵄩
2
E
𝜃

[(V
𝑑

− V𝑀
𝑖

(𝜃, 𝑡)) Φ
ℎ (𝜃)]

=
1
𝜅

(V̂
𝑑,ℎ

− V̂
𝑖,ℎ

) .

(58)

Similarly the control term in (49) reduces to

1
𝜅𝑁

𝑁

∑

𝑗=1
(V̂
𝑑,ℎ

− V̂
𝑗,ℎ (𝑡)) 𝑄 (V̂

𝑗,ℎ (𝑡)) 𝑄 (V̂
𝑖,ℎ (𝑡))

=
1
𝜅

(V̂
𝑑,ℎ

− V̂
𝑖,ℎ

) ,

(59)

and therefore system (55) coincides with (49). Note that as
𝜅 → 0 both systems are driven towards the controlled state
V̂
𝑖,ℎ

= V̂
𝑑,ℎ

which implies a strong control over each single
agent.

In Figure 1 we summarize the two equivalent approaches.
In the case of nonselective control and of selective func-
tion given by (57) the constrained gPC system can be
obtained from our initial unconstrained model (1) through
two different but equivalent methods. The first approximates
the solution of the Cucker-Smale type model via the gPC
projection and then introduces a control on the coefficients
of the decomposition through a MPC approach in order

Model

Control problem

MPC

gPC

gPC

Control problem

MPC

Constrained
gPC system

Figure 1: Sketch of the two numerical approaches to solve the
control problemwith uncertainty, combiningMPCand gPC. In both
cases, of nonselective control, that is, 𝑄(⋅) ≡ 1, and of selective
control with 𝑄(⋅) defined in (57), the two approaches are equivalent.

to steer each component to (V̂
𝑑,0, V̂𝑑,1, . . . , V̂𝑑,𝑀), whereas

the second method considers a constrained Cucker-Smale
problem (52), introduces its continuousMPC approximation,
and then computes the gPC expansion of the resulting system
of constrained differential equations.

Remark 4. We remark that the choice of 𝑄(⋅) stated in
(57), for which the two approaches sketched in Figure 1 are
identical, is equivalent to consider the constrained dynamic
(52), modified as follows:

𝑥̇
𝑖 (𝜃, 𝑡) = V

𝑖 (𝜃, 𝑡)

V̇
𝑖 (𝜃, 𝑡) =

𝐾 (𝜃, 𝑡)

𝑁

𝑁

∑

𝑗=1
𝐻 (𝑥
𝑖
, 𝑥
𝑗
) (V
𝑗 (𝜃, 𝑡) − V

𝑖 (𝜃, 𝑡))

+ 𝑢
𝑖
,

(60)

where the control term,𝑢
𝑖
, for each agent 𝑖 = 1, . . . , 𝑁, is given

by the minimization of the following functional:

𝐽 (V1, . . . , V𝑁; 𝑢1, . . . , 𝑢𝑁)

=
1
2

∫

𝑇

0

1
𝑁

𝑁

∑

𝑖=1
[(V
𝑖 (𝜃, 𝑡) − V

𝑑
)
2

+
]
2

𝑢
𝑖 (𝑡)

2
] 𝑑𝑡.

(61)

Since the functional is strictly convex, applying the (MPC)
procedure on a single time interval for the discretized
dynamic of (60)-(61), we obtain 𝑢

𝑖
in terms of feedback

control

𝑢
𝑖
=
1
𝜅

(V
𝑑

− V
𝑖
) , 𝑖 = 1, . . . , 𝑁. (62)
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Figure 2: Error convergence for increasing number of polynomials in the gPC decomposition approximation. (a) Convergence of the mean
error at two fixed times 𝑇 = 1 and 𝑇 = 5. (b) Convergence of the variance error. In both cases we considered a random time-independent
scattering 𝐾(𝜃, 𝑡) = 𝜃, where the random variable 𝜃 is normally distributed 𝑁(2, 1/2). The system of ODEs is solved through a 4th-order
Runge-Kutta with Δ𝑡 = 10−5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6

7

Va
ria

nc
e

Exact

×10−3

−1

t

M = 3

M = 4

M = 5

(a)

Er
ro

r

t

M = 3

M = 4

M = 5

100

10−5

10−10

10−15
0 0.5 1 1.5 2 2.5 3 3.5 4

(b)

Figure 3: Evolution of the variance error 𝐸
𝜎
2 (𝑡) defined in (63) for the gPC decomposition for the unconstrained model (5) with 𝐾(𝜃, 𝑡) =

𝜃 ∼ N(2, 1/2) over the time interval [0, 𝑇] with 𝑇 = 5 and time step Δ𝑡 = 10−5.

Thus the same considerations on the equivalence of the
approaches hold.

5. Numerical Tests

We present some numerical experiments of the behavior
of the flocking model in the case of a Hermite polynomial
chaos expansion. This choice corresponds to the assumption

of a normal distribution for the stochastic parameter in
the Cucker-Smale type equation (1) and in its constrained
behavior (49). Numerical results show that the introduced
selective control with the weight function (57) is capable
of driving the velocity to a desired state even in case of
a dynamic dependent on a normally distributed random
input, with fixed or time-dependent variance. In the uniform
interaction case, since the effect of agents’ positions does not
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Figure 4: (a) Sixth-order Hermite gPC decomposition solved through a 4th-order Runge-Kutta. (b) 10th-order Hermite gPC decomposition
solved through a 4th-order Runge-Kutta. In both cases the final time considered is 𝑇 = 6, with time step Δ𝑡 = 10−2.

influence the alignment we report only the results of the
agents’ velocities.

5.1. Unconstrained Case. In Figures 2 and 3 we present
numerical results for the convergence of the error using the
gPC scheme described in (33) for𝐻 ≡ 1 and solved through a
4th-order Runge-Kutta method. In particular Figure 2 shows
the behavior of the error with respect to increasing terms of
the gPC decomposition. Here we considered the average in
time of the error for the mean and the variance at time 𝑡 > 0
in the 𝐿

1 norm

𝐸V (𝑡) =
1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V
𝑖 (𝑡) − V𝑀

𝑖
(𝑡)

V
𝑖 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
𝜎
2 (𝑡) =

1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
2
𝑖

(𝑡) − 𝜎
2,𝑀
𝑖

(𝑡)

𝜎
2
𝑖

(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(63)

where

𝜎
2
𝑖

(𝑡) = E
𝜃

[(V
𝑖 (𝜃, 𝑡) − V

𝑖 (𝑡))
2
] (64)

with V
𝑖
(𝜃, 𝑡) and V

𝑖
(𝑡) defined in (6) and (8). Observe that if

the scattering rate 𝐾(𝜃, 𝑡) is of the from described in (7) with
ℎ(⋅) ≡ 1 and 𝑘(𝜃) ∼ N(𝜇, 𝜎

2
) then, in addition to the explicit

evolution for the expected velocity as in (9), we can obtain the
exact version for the evolution of the variance of the 𝑖th agent

𝜎
2
𝑖

(𝑡) = (V
𝑖 (0) −V)

2

⋅ (exp {−2𝜇𝑡 + 2𝜎
2
𝑡
2
} − exp {−2𝜇𝑡 + 𝜎

2
𝑡
2
}) .

(65)

In (63) we indicated with 𝜎
2,𝑀
𝑖

(𝑡) the approximated
variance

𝜎
2,𝑀
𝑖

(𝑡) =

𝑀

∑

ℎ=0
V̂2
𝑖,ℎ

(𝑡)E𝜃 [Φ
ℎ (𝜃)

2
] − V̂2
𝑖,0 (𝑡) . (66)

It is easily seen how the error decays spectrally for
increasing value of 𝑀; however the method is not capable
of going above a certain accuracy and therefore for large 𝑀

a threshold effect is observed. This can be explained by the
large integration interval we have considered in the numerical
computation and by the well-known loss of accuracy of
gPC for large times [19]. In the case of the error of the
variance (Figure 3) the gPC approximation exhibits a slower
convergence with respect to the convergence of the mean.
Next in Figure 4 we see how for large times the solution
of the differential equation (5) diverges and the numerical
approximation is capable of describing accurately its behavior
only through an increasing number of Hermite polynomials.

5.2. Constrained Uniform Interaction Case. In Figure 5 we
show different scenarios for the uniform interaction dynamic
with constraints. In the first row we represent the solution
for 𝑁 = 10 agents, whose dynamic is described by (49) with
V
𝑑

= 1; different values of 𝜅 originate different controls on
the average of the system, which however do not prevent the
system from diverging. In the second row we show the action
of selective control (57). It is evident that, with this choice,
we are able to control the system also in the case with higher
variance.
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Figure 5: Evolution of the uniform interaction alignment model (49) with 𝑁 = 10 agents, at 𝑡 = 0 distributed around V = 2 with unitary
variance, depending on a normal random parameter. Left column: 𝜃 ∼ N(2, 1). Right column: 𝜃 ∼ N(2, 0.5). The control term shows its
ability to steer the system towards desired velocity V

𝑑
= 1, with different intensities 𝜅 = 1 and 𝜅 = 0.1; when 𝜅 = ∞ the control has no

influence. First row shows the action of the control acting just on the average velocity, 𝑄 ≡ 1. Second row shows the action of selective control
with 𝑄(⋅) as in (57).

Observe that the numerical results are coherent with the
explicit solution of the controlled equation. Let us consider
the time-independent scattering rate 𝐾(𝜃, 𝑡) = 𝜃 ∼ N(𝜇, 𝜎

2
);

then from the equation

𝑑

𝑑𝑡
V
𝑖 (𝜃, 𝑡) = 𝜃 (V− V

𝑖 (𝜃, 𝑡)) +
1
𝜅

(V
𝑑

− V
𝑖 (𝜃, 𝑡)) (67)

we can compute the exact solution given V
𝑖
(𝜃, 0) = V

𝑖
(0):

V
𝑖 (𝜃, 𝑡)

=
𝜅V𝜃 + V

𝑑

𝜅𝜃 + 1

+ (V
𝑖 (0) −

𝜅V𝜃 + V
𝑑

𝜅𝜃 + 1
) exp {− (𝜃 +

1
𝜅

) 𝑡} .

(68)
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Figure 6: Solution of the uniform interaction case with time-dependent randomparameter 𝜃 distributed accordingly to a normal distribution
N(𝜇, 𝜎

2
(𝑡)), with a time-dependent standard deviation 𝜎(𝑡) = 1/𝑡

𝛼, and 𝛼 = 1/2. (a) We see the threshold for different values of 𝜇; that is,
for 𝜇 < 2 the system diverges. (b) Solution of the constrained model with 𝜅 = 0.1; observe that we are able to steer the system to the desired
velocity V

𝑑
= V, that is, the initial mean velocity of the system, using the selective control described in (57).

The asymptotic behavior of the expected value of (68) can
be studied similarly to what we did in Section 2.1. In other
words in order to prevent the divergence of the leading term
of the controlled expected exact solution we might study

exp{− (𝜇 +
1
𝜅

) 𝑡 +
𝜎
2
𝑡
2

2
} , (69)

which diverge if

𝑡 >
2
𝜎2 (𝜇 +

1
𝜅

) . (70)

Then for each fixed time we could select a regularization
parameter 𝜅 > 0 so as to avoid the divergence of (68).
Moreover we can observe that in the limit 𝜅 → 0 the
introduced selective control is capable of correctly driving the
system (67) for each 𝑡 > 0.

In Figure 6 we consider the system with random time-
dependent scattering rate 𝜃 ∼ N(𝜇, 𝜎

2
(𝑡)). The dynamic

shows how, for the choice of time-dependent variance
described within Example 2 in Section 2.1, that is, 𝜎(𝑡) = 1/𝑡

𝛼

with 𝛼 = 1/2, the convergence depends on the mean value
of the random input. In particular numerical experiments
highlight the threshold effect for 𝜇 = 2 which we derived in
Section 2. In the second figure we show that the action of the
selective control (57), with desired velocity V

𝑑
= V, is capable

of stabilizing the system anddriving the velocities towards the
desired state.

5.3. Constrained Space-Dependent Case. Next let us consider
the full space nonhomogeneous constrained problem (1) with

the interaction function defined in (2). In this case we assume
that 𝐾(𝜃) = 𝜃 with 𝜃 ∼ N(𝜇, 𝜎

2
). In Figures 7 and 8 we

consider a system of 𝑁 = 100 agents with Gaussian initial
position with zero mean and with variance 2 and Gaussian
initial velocities clustered around ±5 with variance 1/10. The
numerical results for (33) have been performed through a
10th-order gPC expansion. The dynamic has been observed
in the time interval [0, 5] with Δ𝑡 = 10−2. In Figure 8 we see
how the selective control is capable of driving the velocity
of each agent to the desired state V

𝑑
. In fact in case of no

control (see Figure 7) we have that the velocities of the system
naturally diverge.

6. Conclusions

We proposed a general approach for the numerical approx-
imation of flocking models with random inputs through
gPC. The method is constructed in two steps. First, the
randomCucker-Smale system is solved by gPC.The presence
of uncertainty in the interaction terms, which is a natural
assumption in this kind of problems, leads to threshold effects
in the asymptotic behavior of the system. Next a constrained
gPC approximation is introduced and approximated though
a selective model predictive control strategy. Relations under
which the introduction of the gPC approximation and the
model predictive control commute are also derived. The
numerical examples illustrate that the assumption of positiv-
ity of the mean value of the random input is not sufficient for
the alignment of the system but that a suitable choice of the
selective control is capable of stabilizing the system towards
the desired state. Extension of this technique to the case of
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Figure 7: Numerical solution of (49), with 𝛾 = 0.05 < 1/2, 𝜁 = 0.01, through a 10th-order gPC Hermite decomposition (33) with 𝜅 = ∞

with time step Δ𝑡 = 10−2. The random input is normally distributed 𝜃 ∼ N(2, 1).
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Figure 8: Numerical solution of (49), with 𝛾 = 0.05 < 1/2, 𝜁 = 0.01, through a 6th-order gPC Hermite decomposition for the selective
control (33) with time step Δ𝑡 = 10−2. Here we considered a normally distributed random input 𝜃 ∼ N(2, 1); the desired velocity is V

𝑑
= 0

and the control parameter is 𝜅 = 1.



14 Mathematical Problems in Engineering

a large number of interacting agents through mean-field and
Boltzmann approximations is actually under study.
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