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The aim of our study is to derive a relation of De Hoop-Knopoff type for displacement fields within context of thermoelastic
microstretch bodies. Then, as a consequence, an explicit expression of the body loadings equivalent to a seismic dislocation is
obtained. The results are extensions of those from the classical theory of elastic bodies.

1. Introduction

The theory of thermomicrostretch elastic solids was first elab-
orated by Eringen [1], and, in short, this is a theory of ther-
moelasticity with microstructure that includes intrinsic rota-
tions and microstructural expansion and contractions.

The purpose of this theory is to eliminate discrepancies
between classical elasticity and experiments, since the clas-
sical elasticity failed to present acceptable results when the
effects of material microstructure were known to contribute
significantly to the body’s overall deformations, for example,
in the case of granular bodies with large molecules (e.g.,
polymers), graphite, or human bones.

These cases are becoming increasingly important in the
design and manufacture of modern day advanced materials,
as small-scale effects become paramount in the prediction of
the overall mechanical behaviour of these materials.

Other intended applications of this theory are to com-
posite materials reinforced with chopped fibers and various
porous materials.

This theory can be useful in the applications which deal
with porous materials as geological materials, solid packed
granular materials, and many others.

On the other hand, materials which operate at elevated
temperatures will invariably be subjected to heat flow at
some time during normal use. Such heat flow will involve

a nonlinear temperature distribution which will inevitably
give rise to thermal stresses. For these reasons, the develop-
ment, design, and selection of materials for high temperature
applications require a great deal of care. The role of the
pertinent material properties and other variables which can
affect the magnitude of thermal stress must be considered.

The main difficulty of the thermomicrostretch materials
is the large number of the thermoelastic coefficients and, as
such, the problem of their determination in the laboratory.
Yet many authors consider that this problem will be solved in
the future.

Already, in the isotropic case, when the number of
coefficients decreases a lot, they are calculated as can be seen
in many works due to Eringen or Iesan.

The present paper must be considered a first step to a
better understanding of microstretch and thermal stress in
the study of above enumerated materials.

The reciprocity and representation relations that appear
in our study constitute powerful theoretical tools in the
assessment of the theory of seismic-sources mechanism, in
the studies connected with seismic wave propagation.

Also, we think that this paper is a good help to understand
the application of microstretch mechanism to earthquake
problems.

There are many results regarding the mechanism of
earthquake, as in [2–8].
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For instance, in [6], the authors establish a reciprocity
relation which forms the basis for a uniqueness result, a
continuous dependence of solutions upon initial data and
body loads and a variational characterization of solutions.
The effect of a concentrated heat supply and of a concentrated
heat volume charge density in an unbounded homogeneous
and isotropic electromagnetic body is investigated.

We find other results regarding thermoelasticity of non-
classical materials, as in [1, 9–12]. The main results of our
study are extensions of some similar results in the classical
elasticity in order to cover the thermoelasticity of micros-
tretch bodies (see the results due to Saccomandi in [13]).

2. Basic Equations

For convenience the notations and terminology chosen are
almost identical to those of our study [11]. Our paper is
concerned with an anisotropic and homogeneous material.

Let the body occupy, at time 𝑡 = 0, a properly regular
region 𝐵 of the three-dimensional Euclidian space, bounded
by the piece-wise smooth surface 𝜕𝐵 and we denote the
closure of 𝐵 by 𝐵. We refer the motion of the body to a fix
systemof rectangular Cartesian axes𝑂𝑥

𝑖
, 𝑖 = 1, 2, 3 and adopt

the Cartesian tensor notation. Points in 𝐵 are denoted by 𝑥
𝑗

and 𝑡 ∈ [0,∞) is temporal variable.Throughout this work the
Einstein summation convention over repeated indices is used.
The subscript 𝑗 after comma indicates partial differentiation
with respect to the spatial argument 𝑥

𝑗
. All Latin subscripts

are understood to range over the integers (1, 2, 3), while the
Greek indices have the range (1, 2). A superposed dot denotes
the derivatives with respect to the 𝑡—time variable. Also, the
spatial argument and the time argument of a function will be
omitted when there is no likelihood of confusion.

Let us denote by 𝑢
𝑖
the components of the displacement

vector and by 𝜑
𝑖
the components of the microrotation vector.

Also, we denote by 𝜔 the microstretch function and by
𝜃 the temperature measured from the constant absolute
temperature 𝑇

0
of the body in its reference state.

As usual, we denote by 𝑡
𝑖𝑗
the components of the stress

tensor and by𝑚
𝑖𝑗
the components of the couple stress tensor

over 𝐵. Also, we denote by 𝜆
𝑖
the components of the micros-

tress vector.
For clarity and simplicity in presentation, the regularity

hypotheses on the considered functions will be ommited.
On these grounds, the field equations in the dynamic

theory of thermoelasticity of microstretch bodies are as fol-
lows (see [1, 11, 14]):

(i) the equations of motion

𝑡
𝑗𝑖,𝑗

+ 󰜚𝐹
𝑖
= 󰜚𝑢̈
𝑖
,

𝑚
𝑗𝑖,𝑗

+ 𝜀
𝑖𝑗𝑘
𝑡
𝑗𝑘
+ 󰜚𝐺
𝑖
= 𝐼
𝑖𝑗
𝜑̈
𝑗
;

(1)

(ii) the balance of the equilibrated forces

𝜆
𝑖,𝑖
− 𝑠 + 󰜚𝐿 = 𝐽𝜔̈. (2)

The equation of energy is given by

󰜚𝑇
0
̇𝜂 = 𝑞
𝑖,𝑖
+ 󰜚𝑟. (3)

In the above equations we have used the following notations:

(i) 𝐹
𝑖
are the components of body force;

(ii) 𝐺
𝑖
are the components of body couple;

(iii) 𝐿 is the generalized external body load;
(iv) 𝑠 is the generalized internal body load;
(v) 󰜚 is the reference constant mass density;
(vi) 𝐽 and 𝐼

𝑖𝑗
= 𝐼
𝑗𝑖
are the coefficients of microinertia;

(vii) 𝜂 is the entropy per unit mass;
(viii) 𝑟 is the heat supply per unit mass;
(ix) 𝑞
𝑖
are the components of heat flux vector.

For an anisotropic and homogeneous microstretch ther-
moelastic material, the constitutive equations have the form:

𝑡
𝑖𝑗
= 𝐴
𝑖𝑗𝑟𝑠
𝜀
𝑟𝑠
+ 𝐵
𝑖𝑗𝑟𝑠
𝜇
𝑟𝑠
+ 𝐷
𝑖𝑗𝑟
𝛾
𝑟
+ 𝑎
𝑖𝑗
𝜔 − 𝐸

𝑖𝑗
𝜃,

𝑚
𝑖𝑗
= 𝐵
𝑟𝑠𝑖𝑗
𝜀
𝑟𝑠
+ 𝐶
𝑖𝑗𝑟𝑠
𝜇
𝑟𝑠
+ 𝐸
𝑖𝑗𝑟
𝛾
𝑟
+ 𝑏
𝑖𝑗
𝜔 − 𝐷

𝑖𝑗
𝜃,

𝜆
𝑖
= 𝐷
𝑟𝑠𝑖
𝜀
𝑟𝑠
+ 𝐸
𝑟𝑠𝑖
𝜇
𝑟𝑠
+ 𝐶
𝑖𝑗
𝛾
𝑗
+ 𝑑
𝑖
𝜔 − 𝐿

𝑖
𝜃,

𝑠 = 𝑎
𝑖𝑗
𝜀
𝑖𝑗
+ 𝑏
𝑖𝑗
𝜇
𝑖𝑗
+ 𝑑
𝑖
𝛾
𝑖
+ 𝑚𝜔 − 𝛼𝜃,

𝜂 = 𝜂
0
+ 𝐸
𝑖𝑗
𝜀
𝑖𝑗
+ 𝐷
𝑖𝑗
𝜇
𝑖𝑗
+ 𝐿
𝑖
𝛾
𝑖
+ 𝛼𝜔 +

𝑎

𝑇
0

𝜃,

𝑞
𝑖
= 𝑘
𝑖𝑗
𝜃
,𝑗
,

(4)

where 𝐴
𝑖𝑗𝑟𝑠

, 𝐵
𝑖𝑗𝑟𝑠

, 𝐶
𝑖𝑗𝑟𝑠

, 𝐷
𝑖𝑗𝑟
, 𝐸
𝑖𝑗𝑟
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, 𝑑
𝑖
, 𝐸
𝑖𝑗
, 𝐷
𝑖𝑗
, 𝐿
𝑖
,𝑚,

𝛼, 𝑎, and 𝑘
𝑖𝑗
are the characteristic constitutive coefficients.

The components of the strain tensors 𝜀
𝑖𝑗
, 𝜇
𝑖𝑗
, and 𝛾

𝑖
are

defined by means of the geometric equations:

𝜀
𝑖𝑗
= 𝑢
𝑗,𝑖
+ 𝜀
𝑖𝑗𝑘
𝜑
𝑘
, 𝜇

𝑖𝑗
= 𝜑
𝑗,𝑖
, 𝛾

𝑖
= 𝜔
,𝑖
, (5)

where 𝜀
𝑖𝑗𝑘

is the alternating symbol.
The constitutive coefficients obey the following symmetry

relations:

𝐴
𝑖𝑗𝑟𝑠

= 𝐴
𝑟𝑠𝑖𝑗
, 𝐶

𝑖𝑗𝑟𝑠
= 𝐶
𝑟𝑠𝑖𝑗
,

𝐶
𝑖𝑗
= 𝐶
𝑗𝑖
, 𝑘

𝑖𝑗
= 𝑘
𝑗𝑖
.

(6)

One can assume that a positive constant 𝜆
0
exists such that

𝐼
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
≥ 𝜆
0
𝜉
𝑖
𝜉
𝑖
, ∀𝜉

𝑖
. (7)

Also, the Second Law of Thermodynamics implies that

𝑘
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
≥ 0, ∀𝜉

𝑖
. (8)

We denote by 𝑡
𝑖
the components of surface traction, 𝑚

𝑖
the

components of surface couple, 𝑝 the microsurface traction,
and 𝑞 the heat flux. These quantities are defined by

𝑡
𝑖
= 𝑡
𝑗𝑖
𝑛
𝑗
, 𝑚

𝑖
= 𝑚
𝑗𝑖
𝑛
𝑗
,

𝑝 = 𝜆
𝑖
𝑛
𝑖
, 𝑞 = 𝑞

𝑖
𝑛
𝑖
,

(9)

at regular points of the surface 𝜕𝐵.
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Here, 𝑛
𝑖
are the components of the outward unit normal

of the surface 𝜕𝐵.
Along with the system of field equations (1)–(5) we

consider the following initial conditions:

𝑢
𝑖 (𝑥, 0) = 𝑢

0

𝑖
(𝑥) , 𝑢̇

𝑖 (𝑥, 0) = 𝑢
1

𝑖
(𝑥) ,

𝜑
𝑖 (𝑥, 0) = 𝜑

0

𝑖
(𝑥) , 𝜑̇

𝑖 (𝑥, 0) = 𝜑
1

𝑖
(𝑥) ,

𝜔 (𝑥, 0) = 𝜔
0
(𝑥) , 𝜔̇ (𝑥, 0) = 𝜔

1
(𝑥) ,

𝜃 (𝑥, 0) = 𝜃
0
(𝑥) ,

𝑥 ∈ 𝐵

(10)

and the following prescribed boundary conditions:

𝑢
𝑖
= 𝑢
𝑖

on 𝜕𝐵
1
× [0, 𝑡

0
) ,

𝑡
𝑖
= 𝑡
𝑖

on 𝜕𝐵
𝑐

1
× [0, 𝑡

0
) ,

𝜑
𝑖
= 𝜑
𝑖

on 𝜕𝐵
2
× [0, 𝑡

0
) ,

𝑚
𝑖
= 𝑚
𝑖

on 𝜕𝐵
𝑐

2
× [0, 𝑡

0
) ,

𝜔 = 𝜔 on 𝜕𝐵
3
× [0, 𝑡

0
) ,

𝑝 = 𝑝 on 𝜕𝐵
𝑐

3
× [0, 𝑡

0
) ,

𝜃 = 𝜃 on 𝜕𝐵
4
× [0, 𝑡

0
) ,

𝑞 = 𝑞 on 𝜕𝐵
𝑐

4
× [0, 𝑡

0
) ,

(11)

where 𝑡
0
is some instant that may be infinite.

Also, 𝜕𝐵
1
, 𝜕𝐵
2
, 𝜕𝐵
3
, and 𝜕𝐵

4
with respective complements

𝜕𝐵
𝑐

1
, 𝜕𝐵𝑐
2
, 𝜕𝐵𝑐
3
, and 𝜕𝐵𝑐

4
are subsets of the surface 𝜕𝐵 such that

𝜕𝐵
1
∩ 𝜕𝐵
𝑐

1
= 𝜕𝐵
2
∩ 𝜕𝐵
𝑐

2
= 𝜕𝐵
3
∩ 𝜕𝐵
𝑐

3
= 𝜕𝐵
4
∩ 𝜕𝐵
𝑐

4
= 0,

𝜕𝐵
1
∪ 𝜕𝐵
𝑐

1
= 𝜕𝐵
2
∪ 𝜕𝐵
𝑐

2
= 𝜕𝐵
3
∪ 𝜕𝐵
𝑐

3
= 𝜕𝐵
4
∪ 𝜕𝐵
𝑐

4
= 𝜕𝐵.

(12)

Also, 𝑢0
𝑖
, 𝑢1
𝑖
, 𝜑0
𝑖
, 𝜑1
𝑖
, 𝜔0, 𝜔1, 𝜃0, 𝑢

𝑖
, 𝑡
𝑖
, 𝜑
𝑖
,𝑚
𝑖
, 𝜔, 𝑝, 𝜃, and 𝑞

are prescribed functions in their domains.
By a solution of themixed initial boundary value problem

of the theory thermoelasticity of dipolar bodies with voids in
the cylinder Ω

0
= 𝐵 × [0, 𝑡

0
) we mean an ordered array (𝑢

𝑖
,

𝜑
𝑖
, 𝜔, and 𝜃) which satisfies (1), (2), and (3) for all (𝑥, 𝑡) ∈ Ω

0
,

the boundary conditions (11) and the initial conditions (10).

3. Main Results

Let 𝑢 and V be functions defined on𝐵×[0,∞) and continuous
on [0,∞) with respect to the time variable 𝑡 for each spatial
variable 𝑥 ∈ 𝐵.

We denote by 𝑢 ∗ V the convolution of 𝑢 and V; that is,

(𝑢 ∗ V) (𝑥, 𝑡) = ∫

𝑡

0

𝑢 (𝑥, 𝑡 − 𝜏) V (𝑥, 𝜏) 𝑑𝜏. (13)

Let us introduce the notations

𝑔 (𝑡) = 𝑡, ℎ (𝑡) = 1,

𝑓
𝑖
= 󰜚𝑔 ∗ 𝐹

𝑖
+ 󰜚 [𝑡𝑢

1

𝑖
(𝑥) + 𝑢

0

𝑖
(𝑥)] ,

𝑔
𝑖
= 󰜚𝑔 ∗ 𝐺

𝑖
+ 𝐼
𝑖𝑗
[𝑡𝜑
1

𝑗
(𝑥) + 𝜑

0

𝑗
(𝑥)] ,

𝑙 = 󰜚𝑔 ∗ 𝐿 + 𝐽 [𝑡𝜔
1
(𝑥) + 𝜔

0
(𝑥)] ,

𝑤 = 󰜚ℎ ∗ 𝑟 + 󰜚𝑇
0
𝜂
0
.

(14)

Following the same procedure used by Ieşan in [5], it is
easy to prove the following result that enables us to give an
alternative formulation of the initial boundary value problem
in which the initial data are incorporated into the field of
equations.

Theorem 1. The functions 𝑢
𝑖
, 𝜑
𝑗𝑘
, 𝜎, 𝜃, 𝜏

𝑖𝑗
, 𝜂
𝑖𝑗
, 𝜇
𝑖𝑗𝑘
, and 𝑞

𝑖

satisfy (1), (2), (3), and the initial conditions (10) if and only
if they satisfy the following system of equations:

𝑔 ∗ 𝑡
𝑗𝑖,𝑗

+ 𝑓
𝑖
= 󰜚𝑢
𝑖
,

𝑔 ∗ (𝑚
𝑗𝑖,𝑗

+ 𝜀
𝑖𝑗𝑘
𝑡
𝑗𝑘
) + 𝑔
𝑖
= 𝐼
𝑖𝑗
𝜑
𝑗
,

𝑔 ∗ (𝜆
𝑖,𝑖
− 𝑠) + 𝑙 = 𝐽𝜔,

ℎ ∗ 𝑞
𝑖,𝑖
+ 𝑤 = 󰜚𝑇

0
𝜂.

(15)

In our following estimations, we will use formulation (15)
of the mixed problem. We wish to find the behavior of the
considered medium when embedded in 𝐵 there is a disconti-
nuity surface Σ for the displacements, the microration vector,
the microstretch function, and the temperature. The sides of
Σ are denoted by Σ− and Σ+.

Let ]
𝑖
be the components of the unit normal vector of Σ,

directed from the side (−) to the side (+).
Then on surface Σ we have the conditions

𝑢
+

𝑖
− 𝑢
−

𝑖
= 𝑈
𝑖
, 𝑡

+

𝑗𝑖
]
𝑗
= 𝑡
−

𝑗𝑖
]
𝑗
,

𝜑
+

𝑖
− 𝜑
−

𝑖
= Φ
𝑖
, 𝑚

+

𝑖𝑗
]
𝑗
= 𝑚
−

𝑖𝑗
]
𝑗
,

𝜔
+
− 𝜔
−
= Ψ, 𝜆

+

𝑗
]
𝑗
= 𝜆
−

𝑗
]
𝑗
,

𝜃
+
− 𝜃
−
= Θ, 𝑞

+

𝑗
]
𝑗
= 𝑞
−

𝑗
]
𝑗
,

(16)

where 𝑓+ and 𝑓
− are the limits of the function 𝑓(𝑥) as 𝑥

approaches a point on the side (+) or (−) of the surface Σ,
respectively, and 𝑈

𝑖
, Φ
𝑖
, Ψ, and Θ are prescribed functions.

In this way we can consider (15) in the domain 𝐵 \ Σ.
Let us consider two different systems of loadings for the

body

G
(𝛼)

= {𝐹
(𝛼)

𝑖
, 𝐺
(𝛼)

𝑖
, 𝐿
(𝛼)
, 𝑟
(𝛼)
, 𝑢
(𝛼)

𝑖
, 𝜑
(𝛼)

𝑖
, 𝜔
(𝛼)

𝑖
, 𝜃
(𝛼)

,

𝑡
(𝛼)

𝑖
, 𝑚
(𝛼)

𝑖
, ℎ
(𝛼)

, 𝑞
(𝛼)
, 𝑈
𝑖
, Φ
𝑖
, Ψ, Θ} , 𝛼 = 1, 2

(17)
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and two corresponding solutions

S
(𝛼)

= {𝑢
(𝛼)

𝑖
, 𝜑
(𝛼)

𝑖
, 𝜔
(𝛼)
, 𝜃
(𝛼)
, 𝜀
(𝛼)

𝑖𝑗
, 𝜇
(𝛼)

𝑖𝑗
, 𝑡
(𝛼)

𝑖𝑗
, 𝑚
(𝛼)

𝑖𝑗
,

𝜆
(𝛼)

𝑖
, 𝑠
(𝛼)
, 𝑞
(𝛼)

𝑖
} , 𝛼 = 1, 2.

(18)

For the sake of simplicity, we now introduce the notations

𝑡
𝑖
= 𝑡
𝑖𝑗
𝑛
𝑗
, 𝑇

𝑖
= 𝑡
+

𝑖𝑗
]
𝑗
,

𝑚
𝑖
= 𝑚
𝑖𝑗
𝑛
𝑗
, 𝑀

𝑖
= 𝑚
+

𝑖𝑗
]
𝑗
,

𝜆 = 𝜆
𝑖
𝑛
𝑖
, Λ = 𝜆

+

𝑖
]
𝑖
,

𝑞 = 𝑞
𝑖
𝑛
𝑖
, 𝑄 = 𝑞

+

𝑖
]
𝑖
.

(19)

In the following theorem, we prove a reciprocity relation of
Betti type.

Theorem 2. If a microstretch thermoelastic body is subjected
to two systems of loadingsG(𝛼) then between the corresponding
solutions S(𝛼) there is the following reciprocity relation:

∫

𝐵

(𝑓
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝑔
(1)

𝑖
∗ 𝜑
(2)

𝑖
+ 𝑙
(1)

∗ 𝜔
(2)

−
1

𝑇
0

𝑔 ∗ 𝑤
(1)

∗ 𝜃
(2)
)𝑑𝑉

+ ∫

𝜕𝐵

𝑔 ∗ (𝑡
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝑚
(1)

𝑖
∗ 𝜑
(2)

𝑖
+ 𝜆
(1)

∗ 𝜔
(2)

−
1

𝑇
0

ℎ ∗ 𝑞
(1)

∗ 𝜃
(2)
)𝑑𝐴

− ∫

Σ

𝑔 ∗ (𝑇
(1)

𝑖
∗ 𝑈
(2)

𝑖
+𝑀
(1)

𝑖
∗ Φ
(2)

𝑖
+ Λ
(1)

∗ Ψ
(2)

−
1

𝑇
0

ℎ ∗ 𝑄
(1)

∗ Θ
(2)
)𝑑𝐴

= ∫

𝐵

(𝑓
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝑔
(2)

𝑖
∗ 𝜑
(1)

𝑖
+ 𝑙
(2)

∗ 𝜔
(1)

−
1

𝑇
0

𝑔 ∗ 𝑤
(2)

∗ 𝜃
(1)
)𝑑𝑉

+ ∫

𝜕𝐵

𝑔 ∗ (𝑡
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝑚
(2)

𝑖
∗ 𝜑
(1)

𝑖
+ 𝜆
(2)

∗ 𝜔
(1)

−
1

𝑇
0

ℎ ∗ 𝑞
(2)

∗ 𝜃
(1)
)𝑑𝐴

− ∫

Σ

𝑔 ∗ (𝑇
(2)

𝑖
∗ 𝑈
(1)

𝑖
+𝑀
(2)

𝑖
∗ Φ
(1)

𝑖
+ Λ
(2)

∗ Ψ
(1)

−
1

𝑇
0

ℎ ∗ 𝑄
(2)

∗ Θ
(1)
)𝑑𝐴.

(20)

Proof. In view of symmetry relations (6) and with the aid of
the constitutive relations (4), by direct calculations it is easy
to obtain

𝑡
(1)

𝑖𝑗
∗ 𝜀
(2)

𝑖𝑗
+ 𝑚
(1)

𝑖𝑗
∗ 𝜇
(2)

𝑖𝑗
+ 𝜆
(1)

𝑖
∗ 𝛾
(2)

𝑖
+ 𝑠
(1)

∗ 𝜔
(2)

− 󰜚𝜃
(1)

∗ 𝜂
(2)

= 𝑡
(2)

𝑖𝑗
∗ 𝜀
(1)

𝑖𝑗
+ 𝑚
(2)

𝑖𝑗

∗ 𝜇
(1)

𝑖𝑗
+ 𝜆
(2)

𝑖
∗ 𝛾
(1)

𝑖
+ 𝑠
(2)

∗ 𝜔
(1)

− 󰜚𝜃
(2)

∗ 𝜂
(1)
.

(21)

Let us introduce the notation

𝐼
𝛼𝛽

= ∫

𝐵

𝑔 ∗ [𝑡
(𝛼)

𝑖𝑗
∗ 𝜀
(𝛽)

𝑖𝑗
+ 𝑚
(𝛼)

𝑖𝑗
∗ 𝜇
(𝛽)

𝑖𝑗
+ 𝜆
(𝛼)

𝑖
∗ 𝛾
(𝛽)

𝑖

+ 𝑠
(𝛼)

∗ 𝜔
(𝛽)

− 󰜚𝜃
(𝛼)

∗ 𝜂
(𝛽)
] 𝑑𝑉

(22)

for 𝛼, 𝛽 = 1, 2

Based on identity (21) and notation (22), it is easy to see
that

𝐼
𝛼𝛽

= 𝐼
𝛽𝛼
. (23)

With the aid of the equations ofmotion and (15), we can write

𝑔 ∗ [𝑡
(𝛼)

𝑖𝑗
∗ 𝜀
(𝛽)

𝑖𝑗
+ 𝑚
(𝛼)

𝑖𝑗
∗ 𝜇
(𝛽)

𝑖𝑗
+ 𝜆
(𝛼)

𝑖
∗ 𝛾
(𝛽)

𝑖

+ 𝑠
(𝛼)

∗ 𝜔
(𝛽)

− 󰜚𝜃
(𝛼)

∗ 𝜂
(𝛽)
]

= 𝑔 ∗ [𝑡
(𝛼)

𝑗𝑖
∗ 𝑢
(𝛽)

𝑗
+ 𝑚
(𝛼)

𝑗𝑖
∗ 𝜑
(𝛽)

𝑗
+ 𝜆
(𝛼)

𝑖
∗ 𝜔
(𝛽)

−
1

𝑇
0

ℎ ∗ 𝑞
(𝛼)

𝑖
∗ 𝜃
(𝛽)
]

,𝑖

+ 𝑓
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝑔
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑖
+ 𝑙
(𝛼)

∗ 𝜔
(𝛽)

−
1

𝑇
0

𝑔 ∗ 𝑤
(𝛼)

∗ 𝜃
(𝛽)

− [󰜚𝑢
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝐼
𝑖𝑗
𝜑
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑗
+ 𝐽𝜔
(𝛼)

∗ 𝜔
(𝛽)
]

+
1

𝑇
0

𝑔 ∗ ℎ ∗ 𝑘
𝑖𝑗
𝜃
(𝛼)

,𝑖
∗ 𝜃
(𝛽)

,𝑗
.

(24)

By integrating in (24) and using the divergence theorem, we
are lead to

𝐼
𝛼𝛽

= ∫

𝐵

(𝑓
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝑔
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑖
+ 𝑙
(𝛼)

∗ 𝜔
(𝛽)

−
1

𝑇
0

𝑔 ∗ 𝑤
(𝛼)

∗ 𝜃
(𝛽)
)𝑑𝑉

+ ∫

𝜕𝐵

𝑔 ∗ (𝑡
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝑚
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑖
+ 𝜆
(𝛼)

∗ 𝜔
(𝛽)

−
1

𝑇
0

ℎ ∗ 𝑞
(𝛼)

∗ 𝜃
(𝛽)
)𝑑𝐴
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− ∫

Σ

𝑔 ∗ (𝑇
(𝛼)

𝑖
∗ 𝑈
(𝛽)

𝑖
+𝑀
(𝛼)

𝑖
∗ Φ
(𝛽)

𝑖
+ Λ
(𝛼)

∗ Ψ
(𝛽)

−
1

𝑇
0

ℎ ∗ 𝑄
(𝛼)

∗ Θ
(𝛽)
)𝑑𝐴.

(25)

Finally, introducing (25) into (22), we arrive at the desired
result (20).

It is easy to see that in the absence of the discontinuities
we obtain the generalization, in the context of the thermoe-
lasticity of thermoelastic microstretch bodies, of the previous
results established in the classical thermoelastodynamics.

Based on relation (20), we now calculate the thermome-
chanical body loadings equivalent to a given dislocation. To
this aim, we assume that 𝑢(2)

𝑖
, 𝜑(2)
𝑖
, 𝜔(2), and 𝜃(2), as functions

of (𝑡, 𝑥), where 𝑥 = (𝑥
𝑖
), are of class 𝐶∞(𝐵 × [0,∞)). Of

course, if the functions 𝑢(2)
𝑖
, 𝜑(2)
𝑖
, 𝜔(2), and 𝜃(2) are given, then

by means of (15), we can determine the functions 𝐹(2)
𝑖
, 𝐺(2)
𝑖
,

𝐿
(2), and 𝑟(2).
Now, we restrict our considerations only to the case when

𝑈
(2)

𝑖
= Φ
(2)

𝑖
= 0, 𝑖 = 1, 2, 3, Ψ(2) = Θ

(2)
= 0, and 𝜂

(2)

correspond to the faulted medium. Then, in the case of
identical boundary conditions, we obtain

∫

𝐵

󰜚 (𝐹
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝐺
(1)

𝑖
∗ 𝜑
(2)

𝑖
+ 𝐿
(1)

∗ 𝜔
(2)

−
1

𝑇
0

ℎ ∗ 𝑟
(1)

∗ 𝜃
(2)
)𝑑𝑉

= ∫

𝐵

󰜚 (𝐹
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝐺
(2)

𝑖
∗ 𝜑
(1)

𝑖
+ 𝐿
(2)

∗ 𝜔
(1)

−
1

𝑇
0

ℎ ∗ 𝑟
(2)

∗ 𝜃
(1)
)𝑑𝑉

− ∫

Σ

𝑔 ∗ (𝑇
(2)

𝑖
∗ 𝑈
(1)

𝑖
+𝑀
(2)

𝑖
∗ Φ
(1)

𝑖
+ Λ
(2)

∗ Ψ
(1)

−
1

𝑇
0

ℎ ∗ 𝑄
(2)

∗ Θ
(1)
)𝑑𝐴.

(26)

In view of (19), we have

𝑇
(2)

𝑖
= [𝐴
𝑖𝑗𝑚𝑛

𝜀
𝑚𝑛

+ 𝐵
𝑖𝑗𝑚𝑛

𝜇
𝑚𝑛

+ 𝐷
𝑖𝑗𝑚
𝛾
𝑚
+ 𝑎
𝑖𝑗
𝜔 − 𝐸

𝑖𝑗
𝜃] ]
𝑗
,

𝑀
(2)

𝑖
= [𝐵
𝑖𝑗𝑚𝑛

𝜀
𝑚𝑛

+ 𝐶
𝑖𝑗𝑚𝑛

𝜇
𝑚𝑛

+ 𝐸
𝑖𝑗𝑚
𝛾
𝑚
+ 𝑏
𝑖𝑗
𝜔 − 𝐷

𝑖𝑗
𝜃] ]
𝑗
,

Λ
(2)

= [𝐷
𝑚𝑛𝑖

𝜀
𝑚𝑛

+ 𝐸
𝑚𝑛𝑖

𝜇
𝑚𝑛

+ 𝐶
𝑖𝑗
𝛾
𝑗
+ 𝑑
𝑖
𝜔 − 𝐿

𝑖
𝜃] ]
𝑖
,

Θ
(2)

= 𝑘
𝑖𝑗
𝜃
,𝑖
]
𝑗
.

(27)

Taking into account the definition of the Dirac translated
measure, 𝛿, we can prove the relation of the following type:

𝜓
𝑖 (𝜉, 𝑡) = ∫

𝐵

𝜓
𝑖 (𝑥, 𝑡) 𝛿 (𝑥 − 𝜉) 𝑑𝑉,

𝜓
𝑖,𝑗 (𝜉, 𝑡) = ∫

𝐵

𝜓
𝑖 (𝑥, 𝑡) 𝛿,𝑗 (𝑥 − 𝜉) 𝑑𝑉

(28)

and then the relation (26) can be rewritten as follows:

∫

𝐵

󰜚 [(𝐹
(1)

𝑖
+F
𝑖
) ∗ 𝑢
(2)

𝑖
+ (𝐺
(1)

𝑖
+G
𝑖
) ∗ 𝜑
(2)

𝑖

+ (𝐿
(1)

+L) ∗ 𝜔
(2)

−
1

𝑇
0

∗ (𝑟
(1)

+R) ∗ 𝜃
(2)
] 𝑑𝑉

= ∫

𝐵

󰜚 (𝐹
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝐺
(2)

𝑖
∗ 𝜑
(1)

𝑖
+ 𝐿
(2)

∗ 𝜔
(1)

−
1

𝑇
0

ℎ ∗ 𝑟
(2)

∗ 𝜃
(1)
)𝑑𝑉.

(29)

In the above relations we have used the notations

F
𝑘
= −

1

󰜚
∫

Σ

[𝐴
𝑗𝑖𝑟𝑘

𝑈
(1)

𝑖
+ 𝐵
𝑗𝑖𝑟𝑘

Φ
(1)

𝑖
+ 𝐷
𝑗𝑘𝑟
Ψ
(1)
]

⋅ 𝛿
,𝑟 (𝑥 − 𝜉) ]𝑗𝑑𝐴𝜉,

G
𝑘
= −

1

󰜚
∫

Σ

[(𝐵
𝑗𝑖𝑟𝑘

𝑈
(1)

𝑖
+ 𝐶
𝑗𝑖𝑟𝑘

Φ
(1)

𝑖
+ 𝐸
𝑗𝑘𝑟
Ψ
(1)
) 𝛿
,𝑟 (𝑥 − 𝜉)

+ 𝜀
𝑚𝑛𝑘

(𝐴
𝑗𝑖𝑚𝑛

𝑈
(1)

𝑖
+ 𝐵
𝑗𝑖𝑚𝑛

Φ
(1)

𝑖
+ 𝐷
𝑗𝑚𝑛

Ψ
(1)
)

⋅ 𝛿 (𝑥 − 𝜉)] ]𝑗𝑑𝐴𝜉,

L = −
1

󰜚
∫

Σ

[(𝐷
𝑗𝑖𝑚

𝑈
(1)

𝑖
+ 𝐸
𝑗𝑖𝑚

Φ
(1)

𝑖
+ 𝐶
𝑗𝑚
Ψ
(1)
) 𝛿
,𝑚

⋅ (𝑥 − 𝜉) + (𝑎𝑗𝑖𝑈
(1)

𝑖
+ 𝑏
𝑗𝑖
Φ
(1)

𝑖
+ 𝑑
𝑗
Ψ
(1)
)

⋅ 𝛿 (𝑥 − 𝜉)] ]𝑗𝑑𝐴𝜉,

R =
1

󰜚
∫

Σ

𝑇
0
[(𝐸
𝑗𝑖
𝑈
(1)

𝑖
+ 𝐷
𝑗𝑖
Φ
(1)

𝑖
+ 𝐿
𝑗
Ψ
(1)
) 𝛿 (𝑥 − 𝜉)

− 𝑘
𝑖𝑗
𝛿
,𝑖 (𝑥 − 𝜉)] ]𝑗𝑑𝐴𝜉.

(30)

In order to illustrate theoretical results derived in the
previous sections, we present some numerical results taking
into account the initial conditions given in relations (10).

Figure 1 shows the 3D variation of displacement with
respect to time and space. Because we are interested only
in the positive values of time, it is observed that the dis-
placement increases sharply with 𝑥. The 3D variation of
microstretch functionwith respect to time and space is shown
in Figure 2. It is observed that for an increasing of time
the microstretch function tends to become constant and the
microstretch surface becomes a parallel plane with 𝑥𝑂𝑡.
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Figure 1: The variation of 𝑢(𝑥, 𝑡).
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Figure 2: The variation of 𝜔(𝑥, 𝑡).

In Figure 3 the 3D variation of microrotation function is
represented and Figure 4 shows the variation of the tempera-
turewith increasing𝑥 under the effects of thermoelastic body.

Figure 5 presents the displacement profiles 𝑢(𝑥, 𝑡) against
𝑥 at different times. The displacement achieves a maximum
for all chosen times for 𝑥 ∈ (−2.5; −2.35) The displacement
is an increasing function with respect to space fot 𝑥 ∈

[−5; −2.5] ∪ [3.4; 6.3], it is a decreasing function with respect
to space for 𝑥 ∈ (−2.5; 3.4) and tends to a steady-state.

Figure 6 presents the microstretch profiles 𝜔(𝑥, 𝑡) against
𝑥 at different times. The microstretch is an increasing func-
tion with respect to time. It is clear that the microstretch
function is not stable.

The profiles of microrotation function 𝜙(𝑥, 𝑡) over space
are shown in Figure 7 for four values of time. The microro-
tation function, as it results from Figure 4, is a decreasing
function with respect to time.
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Figure 3: The variation of 𝜙(𝑥, 𝑡).
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Figure 4: The variation of 𝜃(𝑥, 𝑡).

Figure 8 presents the temperature profiles 𝜃(𝑥, 𝑡) against
𝑥 at different times.Themedium temperature is an increasing
function with respect to time for 𝑥 > 0.

Based on papers by Eringen [1, 14] and Kumar et al. [12]
and based on the simulations performed in the laboratory of
virtual engineering, we have used the following characteristic
constitutive coefficients for the microstretch thermoelastic
materials (in the isotropic case):

𝜆 = 9.4 ⋅ 10
10Nm−2, 𝜇 = 4 ⋅ 10

10NM−2,

𝜌 = 1.74 ⋅ 10
3 Kgm−3, 𝜅 = 10

10Nm−2,

𝛼 = 0.779 ⋅ 10
−9N, 𝜂 = 1.22 kJ/mol,

𝑎
1
= 0.779 ⋅ 10

−9N, 𝑎
2
= 0.19 ⋅ 10

−19
,
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Figure 5: The behavior of 𝑢(𝑥, 𝑡) at different values of time.
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Figure 6: The behavior of 𝜔(𝑥, 𝑡) at different values of time.

𝑏
1
= 0.72 ⋅ 10

−17
, 𝑐

1
= 0.227 ⋅ 10

−11
,

𝑑
1
= 0.723 ⋅ 10

−19
, 𝑒

1
= 0.315 ⋅ 10

−17
,

𝑎
3
= 1.7 ⋅ 10

−4
, 𝑏

2
= 1.26 ⋅ 10

−6
,

𝑐
2
= 0.97 ⋅ 10

−5
; 𝑐

3
= 0.779 ⋅ 10

−9
;

𝑒
2
= 1.48 ⋅ 10

−5
; 𝑑

2
= 0.84 ⋅ 10

−3
,

𝑙
1
= 0.64 ⋅ 10

−7
.

(31)
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Figure 7: The behavior of 𝜙(𝑥, 𝑡) at different values of time.
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Figure 8: The behavior of 𝜃(𝑥, 𝑡) at different values of time.

It is observed that for the displacement vector greater val-
ues than 𝑥 = 3.2 the solution is stabilized. The microstretch
function increases asymptotically to𝑥 = 5.Themicrorotation
vector is stabilized for all chosen moment starting with 𝑥

in the range (3.6, 3.85). The temperature increases for 𝑥 ∈

(−5, −3.5), decreases for 𝑥 ∈ (−3.5, 0), and then increases
asymptotically to 𝑥 = 5.

4. Conclusions

In the absence of the discontinuities we obtain the generaliza-
tion, in the context of the thermoelasticity of thermoelastic
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microstretch bodies, of the previous results established in the
classical thermoelastodynamics.

In the classical elasticity in the system of equations of
motion occur only three unknown functions, while in our
case the number of unknowns is seven.

Also, while in the classical elasticity the equations of
motion are parabolic, hyperbolic, or elliptic only, in our case
we have a mixed system of equations.

Taking into account relation (29)we deduce that the effect
of the discontinuities across the surface Σ can be represented
by extra external body loads and heat supply.

Although these are supposed to act in an unfaulted
medium and cannot in any sense represent real forces acting
in the realmedium, theymay nevertheless provide, as pointed
in [3, 4, 7], a useful theoretical tool and this because if two
dislocations have the same equivalent force, they also emit the
same radiation.
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