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The stress state of a bimaterial elastic body that has a row of cracks on an interface surface is considered. It is subjected to antiplane
deformations by uniformly distributed shear forces acting on the horizontal sides of the body. The governing equations of the
problem, the stress intensity factors, the deformation of the crack edges, and the shear stresses are derived. The solution of the
problem via the Fourier sine series is reduced to the determination of a singular integral equation (SIE) and consequently to a
system of linear equations. In the end, the problem is solved in special cases with inclusions. The results of this paper and the
previously published results show that the used approach based on the Gauss-Chebyshev quadrature method can be considered as
a generalized procedure to solve the collinear crack problems in mode I, II, or III loadings.

1. Introduction

Stress analysis near a fracture in an elastic material is one of
the most explored topics in solid mechanics. Calculation and
stress analysis of engineering structures, particularly their
connections and the determination of the stress and strain
distribution fields of cracked bodies, have received attention
fromnumerous investigators in recent years.The stress inten-
sity factors, shear stresses, and crack opening displacements
are major concepts that must be determined. The stress
intensity factor is an important parameter that denotes the
magnitude of the stress singularity.The singular order is a sin-
gle real value, for example, 0.5 for a crack in a homogeneous
material. The singular order of general interface corners may
be real or complex. An asymptotic stress near the tip of a
sharp interfacial corner is generally singular as a result of a
mismatch between the materials’ elastic constants.

In this paper, the problem of a piecewise homogeneous
rectangular prismatic elastic body in an antiplane strain state
due to antiplane forces is discussed. The plate is composed of
two bonded dissimilar materials with a number of arbitrary
collinear cracks on their interface surface. The aim of this

work is the derivation of analytical expressions for the stress
intensity factors of the cracks and the presentation of a new
mathematical-numerical approach to solve singular integral
equations related to the beginning of stresses at the tips of
cracks in antiplane deformations; thus, a numerical method
to calculate the SIFs of an interface crack between dissimilar
materials is developed. Calculation of the SIFs for bimaterial
plates in dimensionless form is conducted for several cases:
a row of cracks, one and two cracks, and one crack with
inclusions at the tips. The objectives of the present study are
(i) to present a new method for calculating SIFs of interfacial
cracks subject to antiplane loading and (ii) to investigate
the influence of inclusion moduli on SIFs to reduce SIFs in
cracked bodies and to direct us towards a method for repairs.

The existence of three-dimensional effects at cracks has
been known for many years, but understanding has been
limited, and for some situations, it still is. Understanding
improvedwhen the existence of corner point singularities and
their implications became known for straight through-the-
thickness cracks [1, 2].

It has been known for a long time that shear and
antiplane fracture modes are coupled. This means that shear
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or antiplane loading of an elastic plate with a through-
the-thickness crack generates a coupled three-dimensional
antiplane or shear singular stress state, respectively.These sin-
gular stress states (or coupled fracture modes) are currently
largely ignored in theoretical and experimental investigations
as well as in standards and failure assessment codes of struc-
tural components, in which it is implicitly assumed that the
intensities of these modes as well as other three-dimensional
effects are negligible in comparison with the stress fields
generated by the primary modes (modes I, II, and III) [3, 4].

The theoretical bases of fracture stresses are discussed in
the literature [5–7], and the conclusions of numerous studies
and investigations on the derivation of SIFs are categorized
in [8–10]. Most of these studies were performed on homoge-
neous plates. It is proven that, under certain circumstances,
the three-dimensional governing equations of elasticity can
be reduced to a system where a biharmonic equation and
a harmonic equation have to be simultaneously satisfied.
The former provides the solution of the corresponding plane
problem, while the latter provides the solution of the corre-
sponding out-of-plane shear problem [11]. On the other hand,
a mixed fracture mode under antiplane loading may also
occur. This coupled fracture mode represents one of three-
dimensional phenomena that are currently largely ignored in
numerical simulations and failure assessments of structural
components weakened by cracks. It arises due to the bound-
ary conditions on the plate-free surfaces, which negate the
transverse shear stress components corresponding to classical
mode III. Instead, a new singular stress state in addition to the
well-known 3D corner singularity is generated. This singular
stress state can affect or contribute significantly to the fracture
initiation conditions [12, 13].

Inclusions and cavities are also important in understand-
ing the mechanical behavior of structures and are studied
in several papers, for example, 2D linear elastic materials
[14] and antiplane shear cracks [15]. Photoelasticity and finite
element methods have also been employed to study the
interaction between collinear cracks, and good agreement
was found [16]. Photoelasticity is very helpful in investigating
the stress state near inclusions. The results show that the
singular stress field predicted by the linear elastic solution for
an inclusion can be generated in reality with great accuracy
[17]. The inclusions form a thin material that constituted a
rigid line inclusion, embedded in a linear elastic body to
produce an inhomogeneous stress state. The experiments
fully validate the stress state calculated for an elastic plate [18].

The mechanical behavior of thin inclusions is fundamen-
tal to the design of composite materials. It is realized that, for
a given geometry and boundary condition, 𝐾III depends on
the gradation of both the modulus of elasticity and Poisson’s
ratio [19].The cracked sandwich plate twist specimen is viable
to characterize mode III fracture [20].

The stress intensity factors can be calculated by a path-
independent h-integral and through the virtual crack closure-
integralmethod (VCCM) for numerical implementation [21].
The present study is aimed at investigating the stress state
of a piecewise homogeneous elastic body which has a row
of collinear cracks in mode III. The numerical procedure
based on the loading Gauss-Chebyshev quadrature method
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Figure 1: Rectangular piecewise homogeneous elastic body with
several collinear cracks.

is applied. This approach can be used for other multicrack
problems or more complicated types of loading [22, 23].

At the end of this paper, we discuss the influence of the
bimaterial nature of the body, the distance and geometry of
the cracks, and the presence of inclusions at the tips on the
characteristics of antiplane shear stresses and deformations.

2. Derivation of the Singular Integral Equation
for the General Form of the Problem

A piecewise homogeneous rectangular body in the Cartesian
coordinate system Oxyz is considered as shown in Figure 1.

In the equations below, subscript 1 denotes rectangular
plate𝐷

1
and subscript 2 denotes𝐷

2
.

The top rectangular plate 𝐷
1
= {0 ≤ 𝑥 ≤ 𝑙; 0 ≤ 𝑦 ≤ ℎ

1
}

has a rigidity modulus 𝐺
1
, length 𝑙, and height ℎ

1
, and the

bottom rectangular plate𝐷
2
= {0 ≤ 𝑥 ≤ 𝑙; −ℎ

2
≤ 𝑦 ≤ 0} has a

rigidity modulus 𝐺
2
, length 𝑙, and height ℎ

2
. On the bonding

surface of the twomaterials in the interval 0 ≤ 𝑥 ≤ 𝑙, there are
𝑁 arbitrary collinear cracks with total length𝐿 and individual
lengths 𝐿

𝑘
; that is,

𝐿
𝑘
= [𝑎
𝑘
, 𝑏
𝑘
] (𝑘 = 1,𝑁) (𝑎

1
≥ 0, 𝑏
𝑁
≤ 𝑙) ,

𝐿 =

𝑁

⋃

𝑘=1

𝐿
𝑘
=

𝑁

⋃

𝑘=1

[𝑎
𝑘
, 𝑏
𝑘
] ,

(𝑎
𝑘
< 𝑏
𝑘
(𝑘 = 1,𝑁) , 𝑏

𝑘
< 𝑎
𝑘+1
(𝑘 = 1,𝑁 − 1)) .

(1)

The upper and lower boundaries of these cracks are subjected
to antiplane shear stresses 𝜏(0)

±
(𝑥), which act as varying

internal loadings of openings:

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=+0
= 𝜏
(0)

+
(𝑥) (𝑥 ∈ 𝐿

+
) ;

𝜏
(2)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=−0
= 𝜏
(0)

−
(𝑥) (𝑥 ∈ 𝐿

−
) ,

𝐿
±
=

𝑁

⋃

𝑘=1

𝐿
±

𝑘
.

(2)
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The edges 𝑥 = 0 and 𝑥 = 𝑙 of rectangles 𝐷
𝑗
(𝑗 = 1, 2) are

restricted, and the edges of the rectangles 𝑦 = ℎ
1
and 𝑦 = −ℎ

2

are subjected to antiplane shear stresses: 𝜏
𝑗
(𝑥) (𝑗 = 1, 2),

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=ℎ
1
−0
= 𝜏
1
(𝑥) , 𝜏

(2)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=−ℎ
2
+0
= 𝜏
2
(𝑥)

(0 < 𝑥 < 𝑙) ,

(3)

where the notation 𝜏(𝑗)
𝑦𝑧
(𝑗 = 1, 2) for shearing stress com-

ponents in plates𝐷
𝑗
is used. Because the pair of vertical sides

of the rectangle is rigidly fixed, the boundary value problem
for the complex potential of state can be transformed to the
problem in the half-plane, and its solution can be obtained in
quadrature using conformal mapping [24, 25].

Through the above assumptions, the body is under the
antiplane strain condition, so the displacements of the crack
edges are along the Oz-axis with the base on the Oxy surface.

It is required to calculate the dislocation density of the
crack boundaries, the related stress intensity factors, and the
distribution of shearing stresses in the regions that are outside
of the crack system, with total length 𝐿󸀠 = [0, 𝑙] \ 𝐿.

For the development of the above-mentioned functions,
the plate is divided into an upper rectangle (𝐷

1
) and a lower

rectangle (𝐷
2
) on the Ox-axis with 0 ≤ 𝑥 ≤ 𝑙, and we

introduce a function 𝑤
𝑗
(𝑥, 𝑦) (𝑗 = 1, 2) as the only nonzero

displacement component along the Oz-axis for both 𝐷
𝑗

(𝑗 = 1, 2) rectangular plates and separately investigate their
individual elastic equilibria. In this manner, for rectangle
(𝐷
1
), according to Hooke’s law, the below boundary value

problem is found:

Δ𝑤
1
=
𝜕
2
𝑤
1

𝜕𝑥2
+
𝜕
2
𝑤
1

𝜕𝑦2
= 0 (0 < 𝑥 < 𝑙, 0 < 𝑦 < ℎ

1
) ,

𝑤
1
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑥=0
= 𝑤
1
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑥=𝑙
= 0 (0 < 𝑦 < ℎ

1
) ,

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=+0
= 𝐺
1

𝜕𝑤
1

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=+0

= 𝜏
+
(𝑥) ,

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=ℎ
1

= 𝐺
1

𝜕𝑤
1

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=ℎ
1

= 𝜏
1
(𝑥) (0 < 𝑥 < 𝑙) .

(4)

Suppose the notation

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=+0
= 𝜏
+
(𝑥) =

{

{

{

𝜏
(0)

+
(𝑥) (𝑥 ∈ 𝐿

+
)

𝜏 (𝑥) (𝑥 ∈ 𝐿
󸀠
)

(5)

in which the function 𝜏(0)
+
(𝑥), as mentioned before, is the

shear stress loading on the cracks’ top boundaries 𝐿+ and
𝜏(𝑥) is the unknown tearing shear stress that acts on the
noncracked interface surface system 𝐿󸀠.

According to [26], to solve (4) by means of the Fourier
sine series, it is obtained that

𝑤
1
(𝑛, 𝑦) = ∫

𝑙

0

𝑤
1
(𝑥, 𝑦) sin(𝜋𝑛𝑥

𝑙
) 𝑑𝑥 (𝑛 = 1, 2, . . .) .

(6)

Hence from the inverse Fourier series we deduce

𝑤
1
(𝑥, 𝑦) =

2

𝑙

∞

∑

𝑛=1

𝑤
1
(𝑛, 𝑦) sin(𝜋𝑛𝑥

𝑙
) (0 ≤ 𝑥 ≤ 𝑙) . (7)

Equation (7) is the Fourier sine series with coefficients
given by (6).The reason for using the Fourier sine series is that
boundary value problem (4) with the Laplacian and Dirichlet
boundary conditions can be solved by separation of variables,
and because the boundary conditions in the 𝑥 variable are
the Dirichlet boundary conditions, this generates a Fourier
sine series with eigenfunctions sin(𝑛𝜋𝑥/𝑙) and eigenvalues
(𝑛𝜋𝑥/𝑙)

2, 𝑛 = 1, 2, . . ..
Considering (6) and (7), it follows that by taking the

two parts of the differential equation (4), multiplying by
sin(𝜋𝑛𝑥/𝑙), integrating it over the interval (0, 𝑙), and taking
into consideration the boundary condition (4), we obtain the
below boundary value problem:

𝑑
2
𝑤
1

𝑑𝑥2
−
𝜋
2
𝑛
2

𝑙2
𝑤
1
= 0 (0 < 𝑦 < ℎ

1
) ,

𝐺
1

𝑑𝑤
1

𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=+0

= 𝜏
+
(𝑛) , 𝐺

1

𝑑𝑤
1

𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=ℎ
1

= 𝜏
1
(𝑛)

(8)

with

𝜏
+
(𝑛) = ∫

𝑙

0

𝜏
+
(𝑥) sin(𝜋𝑛𝑥

𝑙
) 𝑑𝑥,

𝜏
1
(𝑛) = ∫

𝑙

0

𝜏
1
(𝑥) sin(𝜋𝑛𝑥

𝑙
) 𝑑𝑥.

(9)

Boundary value problem (8) can be solved by the follow-
ing formula:

𝑤
1
(𝑛, 𝑦) =

𝑙

𝜋𝑛𝐺
1
sin (𝜋𝑛ℎ

1
/𝑙)

× {𝜏
1
(𝑛) ch(

𝜋𝑛𝑦

𝑙
)

− 𝜏
+
(𝑛) ch(

𝜋𝑛 (𝑦 − ℎ
1
)

𝑙
)}

(0 ≤ 𝑦 ≤ ℎ
1
) .

(10)

For (𝑛 = 1, 2, . . .), we can conclude

𝑤
1
(𝑛, 0) =

𝑙 [𝜏
1
(𝑛) − 𝜏

+
(𝑛) ch (𝜋𝑛ℎ

1
/𝑙)]

𝜋𝑛𝐺
1
sh (𝜋𝑛ℎ

1
/𝑙)

. (11)
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Using a similar approach, the boundary value problem
related to the rectangular plate (𝐷

2
) is obtained:

𝑤
2
(𝑛, 0) =

𝑙 [𝜏
−
(𝑛) ch (𝜋𝑛ℎ

2
/𝑙) − 𝜏

2
(𝑛)]

𝜋𝑛𝐺
2
sh (𝜋𝑛ℎ

2
/𝑙)

,

{𝑤
2
(𝑛, 𝑦) , 𝜏

−
(𝑛) , 𝜏
2
(𝑛)}

= ∫

𝑙

0

{𝑤
2
(𝑥, 𝑦) , 𝜏

−
(𝑥) , 𝜏
2
(𝑥)}

⋅ sin(𝜋𝑛𝑥
𝑙
) 𝑑𝑥,

𝜏
−
(𝑥) = 𝜏

(2)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=−0
=

{

{

{

𝜏
(0)

−
(𝑥) (𝑥 ∈ 𝐿

−
)

𝜏 (𝑥) (𝑥 ∈ 𝐿
󸀠
) .

(12)

Then, considering the 𝑤
1
(𝑥, 0) and 𝑤

2
(𝑥, 0) displace-

ments and the following functions:

Φ (𝑥) =
𝑤
1
(𝑥, 0) − 𝑤

2
(𝑥, 0)

2
=
2

𝑙

∞

∑

𝑛=1

Φ
𝑛
sin(𝜋𝑛𝑥

𝑙
) ,

Ψ (𝑥) =
𝑤
1
(𝑥, 0) + 𝑤

2
(𝑥, 0)

2
=
2

𝑙

∞

∑

𝑛=1

Ψ
𝑛
sin(𝜋𝑛𝑥

𝑙
) ,

Ω (𝑥) =
𝜏
+
(𝑥) + 𝜏

−
(𝑥)

2
=
2

𝑙

∞

∑

𝑛=1

Ω
𝑛
sin(𝜋𝑛𝑥

𝑙
) ,

𝑋 (𝑥) =
𝜏
+
(𝑥) − 𝜏

−
(𝑥)

2
=
2

𝑙

∞

∑

𝑛=1

𝑋
𝑛
sin(𝜋𝑛𝑥

𝑙
)

(0 < 𝑥 < 𝑙) ,

(13)

where Φ
𝑛
, Ψ
𝑛
, Ω
𝑛
, and 𝑋

𝑛
are the Fourier sine series

coefficients of the above functions that are similar to those
introduced in (7) and (9), we obtained

Φ
𝑛
=
1

2
[𝑤
1
(𝑛, 0) − 𝑤

2
(𝑛, 0)] ,

Ψ
𝑛
=
1

2
[𝑤
1
(𝑛, 0) + 𝑤

2
(𝑛, 0)] ,

Ω
𝑛
=
1

2
[𝜏
+
(𝑛) + 𝜏

−
(𝑛)] ,

𝑋
𝑛
=
1

2
[𝜏
+
(𝑛) − 𝜏

−
(𝑛)] .

(14)

Substituting coefficients (14) into (11) and (12), a system
of two linear equations with respect toΩ

𝑛
andΨ

𝑛
is obtained.

Solving the system, coefficients Ω
𝑛
and Ψ

𝑛
can be expressed

by Φ
𝑛
and 𝑋

𝑛
and, in turn, all of the functions in (13) can

be expressed by the Φ
𝑛
and 𝑋

𝑛
coefficients. In this case,

as we expect, the required function (13) after some simple

transforms is found in dimensionless form as follows (see
Appendix):

Ω
0
(𝜉) = −

1

2𝜋
∫
𝐿
0

(ctg
𝜉 − 𝜂

2
+ ctg

𝜉 + 𝜂

2
)𝜑
0
(𝜂) 𝑑𝜂

+
1

𝜋
∫
𝐿
0

[𝐾
∗
(𝜉 − 𝜂) + 𝐾

∗
(𝜉 + 𝜂)] 𝜑

0
(𝜂) 𝑑𝜂

+
𝜇 − 1

𝜇 + 1
𝜏
+
(𝜉) − 𝜏

−
(𝜉) +

2𝜇

𝜋 (1 + 𝜇)

× ∫
𝐿
0

[𝐿
∗
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿∗ (𝜉 + 𝜂)]

⋅ [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
1

𝜋
∫

𝜋

0

[𝐿
∗

1
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

1
(𝜉 + 𝜂)] 𝜏

1
(𝜂) 𝑑𝜂

+
1

𝜋
∫

𝜋

0

[𝐿
∗

2
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

2
(𝜉 + 𝜂)] 𝜏

2
(𝜂) 𝑑𝜂,

(15)

where the first part in the first integral when 𝜂 = 𝜉 is the main
quantity in the Cauchy formulation.

The other parameters are

𝐾
∗
(𝜉) =

∞

∑

𝑛=1

sin (𝑛𝜉)
Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)

× [𝜇 sh (𝑛ℎ
+
) 𝑒
−𝑛ℎ
− + sh (𝑛ℎ

−
) 𝑒
−𝑛ℎ
+] ,

𝐿
∗
(𝜉) =

∞

∑

𝑛=1

cos (𝑛𝜉)
Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)
sh [𝑛 (ℎ

+
− ℎ
−
)] ,

𝐿
∗

1
(𝜉) =

∞

∑

𝑛=1

cos (𝑛𝜉)
Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)
sh (𝑛ℎ

−
) (0 < 𝜉 < 𝜋) ,

𝐿
∗

2
(𝜉) =

∞

∑

𝑛=1

cos (𝑛𝜉)
Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)
sh (𝑛ℎ

+
)

(16)

and Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
) = 𝜇 sh(𝑛ℎ

+
)ch(𝑛ℎ

−
) + ch(𝑛ℎ

+
)sh(𝑛ℎ

−
) and

the corresponding dimensionless parameters are

𝜉 =
𝜋𝑥

𝑙
; 𝜂 =

𝜋𝑠

𝑙
; ℎ

+
=
𝜋ℎ
1

𝑙
;

ℎ
−
=
𝜋ℎ
2

𝑙
; 𝜇 =

𝐺
1

𝐺
2

,

𝜏
𝑗
(𝜉) = 𝐺

∗
𝜏
𝑗
(
𝑙𝜉

𝜋
) ; 𝜏

±
(𝜉) = 𝐺

∗
𝜏
(0)

±
(
𝑙𝜉

𝜋
) ,

𝜏 (𝜉) = 𝐺
∗
𝜏 (
𝑙𝜉

𝜋
) ; 𝐺

∗
=
𝐺
1
+ 𝐺
2

2𝐺
1
𝐺
2

,

𝛼
𝑘
=
𝜋𝑎
𝑘

𝑙
; 𝛽
𝑘
=
𝜋𝑏
𝑘

𝑙
; (𝑘 = 1,𝑁) ,

𝐿
0
=

𝑁

⋃

𝑘=1

[𝛼
𝑘
, 𝛽
𝑘
] ; 𝐿

󸀠

0
= [0, 𝜋] \ 𝐿0; 0 < 𝜉, 𝜂 < 𝜋.

(17)
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In this manner the system of lengths (𝐿) converts to system
(𝐿
0
), and, through function (13), the dislocation density is

imposed at the boundaries of the crack edges:

𝜙
󸀠
(𝑥) =

{

{

{

𝜑
󸀠
(𝑥) (𝑥 ∈ 𝐿) ;

0 (𝑥 ∈ 𝐿
󸀠
) ;

=
2

𝜋

∞

∑

𝑛=1

𝜑
𝑛
cos (𝑛𝜉) ,

𝜑
𝑛
=
𝜋𝑛

𝑙
𝜙
𝑛
=
𝑙

𝜋
∫
𝐿
0

𝜑
0
(𝜉) cos (𝑛𝜉) 𝑑𝜉,

𝜑
0
(𝜉) = 𝜑

󸀠
(
𝑙𝜉

𝜋
) .

(18)

Then, by applying key equation (15) to the system (𝐿
0
) and

introducing the new variables

𝑡 = cos 𝜉, 𝑢 = cos 𝜂 (19)

regarding the unknown dislocation density 𝜑
0
(𝜉) from (18),

the singular integral equation governing the problem is
obtained as follows:

1

𝜋
∫
Λ
0

𝜔
0
(𝑢) 𝑑𝑢

𝑢 − 𝑡
+
1

𝜋
∫
Λ
0

[
(𝑢 + 𝑡)𝐾

0
(𝑡, 𝑢)

√1 − 𝑢2
− 2𝐾 (𝑡, 𝑢)]

× 𝜔
0
(𝑢) 𝑑𝑢 = 𝑓 (𝑡) (𝑡 ∈ Λ

0
) ,

𝑓 (𝑡) = −
1

2
ℎ̃
+

0
(𝑡) +

𝜇 − 1

𝜇 + 1
ℎ̃
−

0
(𝑡)

+
4𝜇

𝜋 (1 + 𝜇)
∫
Λ
0

𝐿 (𝑡, 𝑢) ℎ̃
−

0
(𝑢) 𝑑𝑢

+
2

𝜋
∫

1

−1

𝐿
1
(𝑡, 𝑢) 𝜔

1
(𝑢) 𝑑𝑢

+
2𝜇

𝜋
∫

1

−1

𝐿
2
(𝑡, 𝑢) 𝜔

2
(𝑢) 𝑑𝑢,

ℎ̃
±

0
(𝑡) = 𝜏

+
(arccos 𝑡) ± 𝜏

−
(arccos 𝑡) ,

𝜔
𝑗
(𝑡) = 𝜏

𝑗
(arccos 𝑡) (𝑗 = 1, 2, . . .) ,

𝜔
0
(𝑡) = 𝜑

0
(arccos 𝑡) ,

𝐾
0
(𝑡, 𝑢) = (√1 − 𝑡

2 + √1 − 𝑢2)

−1

,

Λ
0
=

𝑁

⋃

𝑘=1

[𝛿
𝑘
, 𝛾
𝑘
] ,

𝛿
𝑘
= cos (𝛽

𝑁+1−𝑘
) = cos(𝜋

𝑏
𝑁+1−𝑘

𝑙
) ,

𝛾
𝑘
= cos (𝛼

𝑁+1−𝑘
) = cos(𝜋

𝑎
𝑁+1−𝑘

𝑙
) .

(20)

Based on (16), the following influencing factors are
derived:

𝐾 (𝑡, 𝑢) =

√1 − 𝑡2

√1 − 𝑢2

∞

∑

𝑛=1

𝑇
𝑛
(𝑢)𝑈
𝑛−1
(𝑡)

Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)

× [(𝜇 sh (𝑛ℎ
+
) 𝑒
−𝑛ℎ
+ sh (𝑛ℎ

−
) 𝑒
−𝑛ℎ
)] ,

𝐿 (𝑡, 𝑢) = √1 − 𝑡
2

∞

∑

𝑛=1

𝑈
𝑛−1
(𝑢)𝑈
𝑛−1
(𝑡)

Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)

sh [𝑛 (ℎ
+
− ℎ
−
)] ,

𝐿
1
(𝑡, 𝑢) = √1 − 𝑡

2

∞

∑

𝑛=1

𝑈
𝑛−1
(𝑢)𝑈
𝑛−1
(𝑡)

Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)

sh (𝑛ℎ
−
) ,

𝐿
2
(𝑡, 𝑢) = √1 − 𝑡

2

∞

∑

𝑛=1

𝑈
𝑛−1
(𝑢)𝑈
𝑛−1
(𝑡)

Δ
𝑛
(𝜇, ℎ
+
, ℎ
−
)

sh (𝑛ℎ
+
) ,

(21)

where 𝑇
𝑛
(𝑢) and 𝑈

𝑛−1
(𝑡) are Chebyshev polynomials of the

first kind and the second kind, respectively.
The singular integral equations (20) and (21) in a condi-

tion that explains the continuity of displacements at the crack
tips are expressed as

∫

𝑏
𝑘

𝑎
𝑘

𝜑
󸀠
(𝑠) 𝑑𝑠 = 0 (𝑘 = 1,𝑁) (22)

which, based on the previously discussed dimensionless
variables, converts to

∫

𝛾
𝑘

𝛿
𝑘

𝜔
0
(𝑢) 𝑑𝑢

√1 − 𝑢2
= 0 (𝑘 = 1,𝑁) . (23)

Hence after solving the singular integral equations (20)
and (21) by considering condition (23) and verifying key
equation (15) in the region outside of the crack system 𝐿

󸀠

0
,

the antiplane shear stress 𝜏(𝜉) formula in the dimensionless
form is obtained.

3. Derivation of the Linear
System of Equations

To solve the singular integral equations (20) and (21) under
condition (23), the numerical solution for singular integral
equations [7, 27, 28], which is based on the Gauss quadratic
solutions for ordinary and singular integrals, is used. First,
each section of [𝛿

𝑘
, 𝛾
𝑘
] (𝑘 = 1,𝑁) from system Λ

0
, by means

of the technique of transitioning to new variables 𝑟, 𝜌(−1 ≤
𝑟, 𝜌 ≤ 1)

𝑡 =
𝛾
𝑘
− 𝛿
𝑘

2
𝑟 +
𝛾
𝑘
+ 𝛿
𝑘

2
; 𝑢 =

𝛾
𝑘
− 𝛿
𝑘

2
𝜌 +

𝛾
𝑘
+ 𝛿
𝑘

2

(𝑘 = 1,𝑁)

(24)
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can be converted to the section [−1, 1]. The singular integral
equations (20) and (21) can therefore be written as follows:

1

𝜋
∫

1

−1

𝜔
(0)

𝑘
(𝜌) 𝑑𝜌

𝜌 − 𝑟
+
1

𝜋

𝑁

∑

𝑛=1

(𝑛 ̸=𝑘)

∫

1

−1

𝐿
𝑘𝑛
(𝑟, 𝜌) 𝜔

(0)

𝑛
(𝜌) 𝑑𝜌

+
1

2𝜋

𝑁

∑

𝑛=1

∫

1

−1

𝐾
𝑘𝑛
(𝑟, 𝜌) 𝜔

(0)

𝑛
(𝜌) 𝑑𝜌 = 𝑓

𝑘
(𝑟) ,

𝑓
𝑘
(𝑟) = 𝑓(

𝛾
𝑘
− 𝛿
𝑘

2
𝑟 +
𝛾
𝑘
+ 𝛿
𝑘

2
) ,

𝐿
𝑘𝑛
(𝑟, 𝜌) = (𝜌 −

𝛾
𝑘
− 𝛿
𝑘

𝛾
𝑛
− 𝛿
𝑛

𝑟 +
𝛾
𝑛
+ 𝛿
𝑛

𝛾
𝑛
− 𝛿
𝑛

−
𝛾
𝑘
+ 𝛿
𝑘

𝛾
𝑛
− 𝛿
𝑛

)

−1

,

𝐾
𝑘𝑛
(𝑟, 𝜌)

= (𝛾
𝑛
− 𝛿
𝑛
)

×

{{

{{

{

(𝛾
𝑛
− 𝛿
𝑛
) 𝜌 + (𝛾

𝑘
− 𝛿
𝑘
) 𝑟 + 𝛾

𝑛
+ 𝛿
𝑛
+ 𝛾
𝑘
+ 𝛿
𝑘

√4 − [(𝛾
𝑛
− 𝛿
𝑛
) 𝜌 + 𝛾

𝑛
+ 𝛿
𝑛
]
2

× 𝐾
0
(
𝛾
𝑘
− 𝛿
𝑘

2
𝑟 +
𝛾
𝑘
+ 𝛿
𝑘

2
,
𝛾
𝑛
− 𝛿
𝑛

2
𝜌 +

𝛾
𝑛
+ 𝛿
𝑛

2
)

− 2𝐾(
𝛾
𝑘
− 𝛿
𝑘

2
𝑟 +
𝛾
𝑘
+ 𝛿
𝑘

2
,
𝛾
𝑛
− 𝛿
𝑛

2
𝜌 +

𝛾
𝑛
+ 𝛿
𝑛

2
)

}}

}}

}

,

𝜔
(0)

𝑘
(𝑟) = 𝜔

0
(
𝛾
𝑘
− 𝛿
𝑘

2
𝑟 +
𝛾
𝑘
+ 𝛿
𝑘

2
)

(𝑘 = 1,𝑁, −1 < 𝑟 < 1) , (−1 < 𝑟, 𝜌 < 1) .

(25)

The function 𝑓(𝑡) and kernel functions 𝐾
0
(𝑡, 𝑢) and

𝐾(𝑡, 𝑢) are expressed by relations (20) and (21). In this case,
condition equation (23) may be expressed in the following
form:

∫

1

−1

𝜔
(0)

𝑘
(𝜌) 𝑑𝜌

√4 − [(𝛾
𝑘
− 𝛿
𝑘
) 𝜌 + (𝛾

𝑘
+ 𝛿
𝑘
)]
2

= 0

(𝑘 = 1,𝑁) .

(26)

Using the above approach, the singular integral equation
(25) through condition equation (26) is reduced to a system
of linear algebraic equations:

1

𝑀

𝑀

∑

𝑝=1

[
[

[

𝜓
𝑘
(𝜌
𝑝
)

𝜌
𝑝
− 𝑟
𝑚

+

𝑁

∑

𝑛=1

(𝑛 ̸=𝑘)

∫

1

−1

𝐿
𝑘𝑛
(𝑟
𝑚
, 𝜌
𝑝
) 𝜓
𝑛
(𝜌
𝑝
)

+
1

2

𝑁

∑

𝑛=1

(𝑛 ̸=𝑘)

𝐾
𝑘𝑛
(𝑟
𝑚
, 𝜌
𝑝
) 𝜓
𝑛
(𝜌
𝑝
)
]
]

]

= 𝑓
𝑘
(𝑟
𝑚
)

(𝑚 = 1,𝑀 − 1, 𝑘 = 1,𝑁) ,

1

𝑀

𝑀

∑

𝑝=1

𝜓
𝑘
(𝜌
𝑝
)

√4 − [(𝛾
𝑘
− 𝛿
𝑘
) 𝜌
𝑝
+ 𝛾
𝑘
− 𝛿
𝑘
]
2

= 0.

(27)

In (25), (26), it is supposed that

𝜔
(0)

𝑘
(𝜌) =

𝜓
𝑘
(𝜌)

√1 − 𝜌2
(𝑘 = 1,𝑁) , (28)

where𝑀 is an arbitrary natural number. Consider

𝑟
𝑚
= cos(𝜋𝑚

𝑀
) (𝑚 = 1,𝑀 − 1) ,

𝜌
𝑝
= cos(

2𝑝 − 1

2𝑀
𝜋) (𝑝 = 1,𝑀)

(29)

are the roots of theChebyshev polynomials of the secondkind
𝑈
𝑚−1
(𝑟) and of the first kind 𝑇

𝑀
(𝜌).

The opening displacement of each crack 𝐿
𝑘
= [𝑎
𝑘
, 𝑏
𝑘
] is

given by the equations:

Φ (𝑥) = ∫

𝑥

𝑎
𝑘

𝜑
󸀠
(𝑠) 𝑑𝑠, Φ (𝑥) = −∫

𝑏
𝑘

𝑥

𝜑
󸀠
(𝑠) 𝑑𝑠

(𝑎
𝑘
≤ 𝑥 ≤ 𝑏

𝑘
, 𝑘 = 1,𝑁)

(30)

which can be expressed by means of the dimensionless
variables as

Φ
(0)

𝑁+1−𝑘
(𝑟)

= −
𝛾
𝑁+1−𝑘

− 𝛿
𝑁+1−𝑘

2𝜋

× ∫

1

−1

sgn (𝑟 − 𝜌) 𝜔(0)
𝑁+1−𝑘

(𝜌) 𝑑𝜌

√4 − [(𝛾
𝑁+1−𝑘

− 𝛿
𝑁+1−𝑘

) 𝜌 + 𝛾
𝑁+1−𝑘

+ 𝛿
𝑁+1−𝑘

]
2

(−1 ≤ 𝑟 ≤ 1, 𝑘 = 1,𝑁) ,

(31)

where

Φ
(0)

𝑁+1−𝑘
(𝑟) = Φ(

𝑙𝜉

𝜋
) 𝑙
−1
= 𝑙
−1
Φ(

𝑙

𝜋
arccos 𝑡) . (32)

It must be noted that the system of equations (27) can be
solved by the Gaussian technique, and (31) also can be solved
with high accuracy by means of the Gauss quadratic formula
using (28).

At the end, the stress intensity factors, SIFs, for the
antiplane mode of fracture at the crack tips [𝑎

𝑘
, 𝑏
𝑘
] are

obtained according to [24] (𝑘 = 1,𝑁):

𝐾III (𝑎𝑘) =
𝐺
1
𝐺
2

𝐺
1
+ 𝐺
2

lim
𝑥→𝑎

𝑘
+0

[√2𝜋 (𝑥 − 𝑎
𝑘
)𝜑
󸀠
(𝑥)] ,

𝐾III (𝑏𝑘) =
𝐺
1
𝐺
2

𝐺
1
+ 𝐺
2

lim
𝑥→𝑏

𝑘
+0

[√2𝜋 (𝑏
𝑘
− 𝑥)𝜑

󸀠
(𝑥)]

(33)

which can be converted to the dimensionless form and be
expressed through 𝜓

𝑘
(𝜌) using formula (28).
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Because of the large number of variable parameters
involved in the problem, only three different cases are con-
sidered.

Case A: a plate with one symmetric crack: the crack
length is assumed arbitrary, and antiplane shear
loading is two point loads. The stress and dislocation
states are studied for different crack sizes and shear
modulus ratios.
Case B: a plate with two cracks: the cracks are
located symmetrically and have arbitrary length and
distance. The stress and dislocation states are studied
for different crack sizes, distances between adjacent
crack tips, and shear modulus ratios.
Case C: it is a plate with thin-walled inclusions at the
crack tips, in which the sensitivity of SIFs to the size of
the inclusion domain with respect to crack length and
the effect of the shear modulus ratio of the inclusion
material to the plate on the stress state are studied.

4. Case A: Plate with One Crack

A rectangular plate in the Cartesian coordinate system Oxyz
is considered, which is composed of an upper rectangle 𝐷

1

withmodulus of rigidity𝐺
1
, length 𝑙, and height ℎ and a lower

rectangle 𝐷
2
with modulus of rigidity 𝐺

2
, length the same

as 𝑙, and height ℎ. On the interface surface line of the two
rectangular plates in the interval 0 ≤ 𝑥 ≤ 𝑙, there is a central
crack with length equal to 2𝑎 (Figure 2):

𝐿 = [𝑎
1
, 𝑏
1
] , 𝑎

1
=
𝑙

2
− 𝑎, 𝑏

1
=
𝑙

2
+ 𝑎 (0 < 𝑎 <

𝑙

2
) . (34)

The boundaries of the crack indeed have not any loadings.
Furthermore, the vertical edges 𝑥 = 0 and 𝑥 = 𝑙 of
rectangles 𝐷

𝑗
(𝑗 = 1, 2) are restrained, and the upper and

lower horizontal edges 𝑦 = ±ℎ at the midpoints (𝑙/2, ±ℎ) are
stressed by antiplane shear forces equal to 𝑃

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=ℎ−0
= 𝜏
(2)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=−ℎ+0
= 𝑃𝛿(𝑥 −

𝑙

2
) (0 < 𝑥 < 𝑙) (35)

in which 𝜏(𝑗)
𝑦𝑧
(𝑗 = 1, 2) are antiplane shear stresses on the

top and bottom boundaries of plates𝐷
𝑗
and 𝛿(𝑥) is the Dirac

delta function.
It is necessary to determine the dislocation field around

the crack boundaries, the stress intensity factors, SIFs, and
the shearing stresses on the interface surface 𝐿󸀠 = [0, 𝑙] \ 𝐿
outside of the crack region.

The singular integral equation (SIE) governing the cur-
rent problem can be found in the previous section, partic-
ularly by observing the dislocation field around the crack
boundaries as follows:

𝜙
󸀠
(𝑥) =

{

{

{

𝜑
󸀠
(𝑥) (𝑥 ∈ [𝑎

1
, 𝑏
1
] = 𝐿) ;

0 (𝑥 ∈ 𝐿
󸀠
) ;

𝜙 (𝑥) =
1

2
[𝑤
1
(𝑥, 0) − 𝑤

2
(𝑥, 0)] (0 ≤ 𝑥 ≤ 𝑙)

(36)

y

0

z

a1

G1

G2

P
l

l

2

l

2

x

h

h
b1

Figure 2: Plate with one crack.

in which𝑤
𝑗
(𝑥, 0) are the displacement components of region

{𝑦 = ±0, 0 ≤ 𝑥 ≤ 𝑙} of rectangles𝐷
𝑗
(𝑗 = 1, 2) in the direction

ofOz, so the singular integral equation of this boundary value
problem from [29] is written as follows:

1

𝜋
∫
Λ
0

𝜔
0
(𝑢) 𝑑𝑢

𝑢 − 𝑡
+
1

𝜋
[
(𝑢 + 𝑡)𝐾

0
(𝑡, 𝑢)

√1 − 𝑢2
− 2𝐾 (𝑡, 𝑢)]

× 𝜔
0
(𝑢) 𝑑𝑢 = 𝑓 (𝑡) (𝑡 ∈ Λ

0
) ,

𝜔
0
(𝑡) = 𝜑

󸀠
(
1

𝜋
arccos 𝑡) ,

𝐾
0
(𝑡, 𝑢) = (√1 − 𝑡

2 + √1 − 𝑢2)

−1

,

𝐾 (𝑡, 𝑢) =

√1 − 𝑡2

√1 − 𝑢2

∞

∑

𝑛=1

𝑇
𝑛
(𝑢)𝑈
𝑛−1
(𝑡)

ch (𝑛ℎ
0
)
𝑒
−𝑛ℎ
,

Λ
0
= (𝛿
1
, 𝛾
1
) ; 𝛿

1
= − sin𝛼; 𝛾

1
= sin𝛼,

𝛼 =
𝜋𝑎

𝑙
; ℎ

0
=
𝜋ℎ

𝑙
,

𝑓 (𝑡) = 2𝑄
0
√1 − 𝑡2

∞

∑

𝑛=1

(−1)
𝑛−1 𝑈

2𝑛−2
(𝑡)

ch [(2𝑛 − 1) ℎ
0
]
,

𝑄
0
=
(𝐺
1
+ 𝐺
2
) 𝑃

2𝐺
1
𝐺
2
𝑙
,

(37)

where 𝑇
𝑛
(𝑡) and 𝑈

𝑛−1
(𝑡) are Chebyshev polynomials of the

first kind and the second kind, respectively.
To solve the singular integral equation (37), the Gaussian

quadratic solution for ordinary and singular Cauchy integrals
can be used. By substitution,

𝜔
(0)

1
(𝜌) =

𝜓
1
(𝜌)

√1 − 𝜌2
(−1 < 𝜌 < 1) . (38)
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Using the approach shown here and also in [7, 27, 28],
solving the singular integral equation (37) leads to a system
of linear algebraic equations as follows:

𝑀

∑

𝑝=1

1

𝑀
[

1

𝜌
𝑝
− 𝑟
𝑚

+
1

2
𝐾
11
(𝑟
𝑚
, 𝜌
𝑝
)]𝜓
1
(𝜌
𝑝
)

= 𝑓
1
(𝑟
𝑚
) (𝑚 = 1,𝑀 − 1) ,

𝑀

∑

𝑝=1

1

𝑀

𝜓
1
(𝜌
𝑝
)

√1 − 𝜌
2

𝑝
sin2𝛼

= 0,

𝐾
11
(𝑟
𝑚
, 𝜌
𝑝
) = (

2sin2𝛼 (𝑟
𝑚
+ 𝜌
𝑝
)

√1 − 𝜌
2

𝑝
sin2𝛼

×
1

(√1 − 𝑟2
𝑚
sin2𝛼 + √1 − 𝜌2

𝑝
sin2𝛼)

)

− 4 sin𝛼
√1 − 𝑟2

𝑚
sin2𝛼

√1 − 𝜌
2

𝑝
sin2𝛼

×

∞

∑

𝑛=1

𝑒
−𝑛ℎ
0

ch (𝑛ℎ
0
)
𝑇
𝑛
(𝜌
𝑝
sin𝛼)𝑈

𝑛−1
(𝑟
𝑚
sin𝛼) ,

𝑓
1
(𝑟
𝑚
) = 2𝑄

0
√1 − 𝑟2

𝑚
sin2𝛼

×

∞

∑

𝑛=1

(−1)
𝑛−1
𝑈
2𝑛−2

(𝑟
𝑚
sin𝛼)

ch [(2𝑛 − 1) ℎ
0
]
,

𝑟
𝑚
= cos(𝜋𝑚

𝑀
) (𝑚 = 1,𝑀 − 1) ,

𝜌
𝑝
= cos(

2𝑝 − 1

2𝑀
𝜋) (𝑝 = 1,𝑀) ,

(39)
where𝑀 is an arbitrary natural number and 𝑟

𝑚
and 𝜌
𝑝
are the

roots of Chebyshev polynomials of the second kind 𝑈
𝑀−1
(𝑟)

and the first kind 𝑇
𝑀
(𝜌), respectively. We can substitute the

below parameters to express the system of equations (39) in a
simpler form:

𝑋
𝑝
= 𝜓
1
(𝜌
𝑝
) (𝑝 = 1,𝑀) ;

𝑎
𝑚
=

{

{

{

𝑓
1
(𝑟
𝑚
) (𝑚 = 1,𝑀 − 1) ;

0 (𝑚 = 𝑀) ,

𝐾
𝑚𝑝
=

{{{{{{{{{{

{{{{{{{{{{

{

1

𝑀
[

1

𝜌
𝑝
− 𝑟
𝑚

+
1

2
𝐾
11
(𝑟
𝑚
, 𝜌
𝑝
)]

(𝑝 = 1,𝑀; 𝑚 = 1,𝑀 − 1)

1

𝑀

1

√1 − 𝜌
2

𝑝
sin2𝛼

(𝑝 = 1,𝑀; 𝑚 = 1,𝑀 − 1) .

(40)

Hence, the system of equations (39) is reduced to

𝑀

∑

𝑝=1

𝐾
𝑚𝑝
𝑋
𝑝
= 𝑎
𝑚

(𝑚 = 1,𝑀) . (41)

By assumption of the below expression for the right hand
side of (41)

𝑎
(0)

𝑚
=

{{{{{{{

{{{{{{{

{

√1 − 𝑟2
𝑚
sin2𝛼

∞

∑

𝑛=1

(−1)
𝑛−1
𝑈
2𝑛−2

(𝑟
𝑚
sin𝛼)

ch [(2𝑛 − 1) ℎ
0
]

(𝑚 = 1,𝑀 − 1)

0 (𝑚 = 𝑀) .

(42)

𝑋
(0)

𝑝
(𝑝 = 1,𝑀) is found. The solution of system (26) is

thereby obtained as follows:

𝑋
𝑝
= 2𝑄
0
𝑋
(0)

𝑝
(𝑝 = 1,𝑀) . (43)

For the derivation of SIF, the general formula from [7, 30]
may be used; that is,

𝐾III = lim
𝑥→𝑏

1
+0

⌊√2𝜋 (𝑥 − 𝑏
1
)𝜏
𝑦𝑧
(𝑥, 0)⌋

= lim
𝑥→𝑏

1
+0

⌊√2𝜋 (𝑥 − 𝑏
1
)𝜏 (𝑥)⌋ .

(44)

The above formula can be converted to a dimensionless
form as follows:

𝐾III =
2𝐺
1
𝐺
2

𝐺
1
+ 𝐺
2

× lim
𝑥→1+0

[√2𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
arccos (−𝑟 sin𝛼) − (𝜋

2
+ 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏
0
(𝑡)] .

(45)

5. Case B: Plate with Two Cracks

In this section, a rectangular plate in the Cartesian coordinate
system Oxyz with two cracks is considered. On the interface
surface of the two segments in the interval 0 ≤ 𝑥 ≤ 𝑙 there are
two central cracks located symmetrically at 𝐿 = ∪2

𝑘≃1
[𝑎
𝑘
, 𝑏
𝑘
]

that have equal lengths (Figure 3):

𝑎
1
=
𝑙

2
− 𝑎, 𝑏

1
=
𝑙

2
− 𝑏,

𝑎
2
=
𝑙

2
+ 𝑏, 𝑏

2
=
𝑙

2
+ 𝑎

(0 < 𝑎 <
𝑙

2
; 𝑏 < 𝑎) .

(46)

The boundaries of the cracks have no traction; furthermore,
the vertical edges of plates𝐷

𝑗
(𝑗 = 1, 2) at 𝑥 = 0 and 𝑥 = 𝑙 are

clamped, and the upper and lower horizontal edges 𝑦 = ±ℎ
are loaded by antiplane distributed shear loading𝑇(𝑥), so that

𝜏
(1)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=ℎ−0
= 𝜏
(2)

𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=−ℎ+0
= 𝑇 (𝑥) (0 < 𝑥 < 𝑙) , (47)
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Figure 3: Plate with two cracks.

in which 𝜏(𝑗)
𝑦𝑧
(𝑗 = 1, 2) are the antiplane shear stresses on the

top and bottom boundaries of segment𝐷
𝑗
.

The displacement of the crack boundaries 𝐿, the stress
intensity factors SIFs, and the shear stresses at the interface
surface 𝐿󸀠 = [0, 𝑙] \ 𝐿 outside of the cracks are determined.
Moreover, it is necessary to investigate the influence of
adjacent crack tips 𝑎

2
and 𝑏
1
.

Suppose that the upper and lower edges of the plate are
stressed by antiplane shear forces 𝑃 so that 𝑇(𝑥) = 𝑃𝛿(𝑥 −
𝑙/2) in which 𝛿(𝑥) is the known Dirac delta function. By this
assumption, the function 𝑓(𝑡) is calculated as follows:

𝑓 (𝑡) = 𝑄
0
√1 − 𝑡2

∞

∑

𝑛=1

(−1)
𝑛−1

ch [(2𝑛 − 1) ℎ
0
]
𝑈
2𝑛−2

(𝑡)

(−1 < 𝑡 < 1) ,

𝑄
0
=
𝑃 (𝐺
1
+ 𝐺
2
)

𝐺
1
𝐺
2
𝑙
.

(48)

To calculate the shear stress, making use of the variables
shown before and variable 𝜌 and taking into consideration
(38), the shear stress is concluded:

𝜏
0
(𝑡)

= (−
1

2𝜋

2

∑

𝑘=1

(𝛾
𝑘
− 𝛿
𝑘
)

× ∫

1

−1

𝜓
(0)

𝑘
(𝜌) 𝑑𝜌

√1 − 𝜌2 (((𝛾
𝑘
− 𝛿
𝑘
) /2) 𝜌 + (𝛾

𝑘
+ 𝛿
𝑘
) /2 − 𝑡)

)

−(
1

2𝜋

2

∑

𝑘=1

(𝛾
𝑘
− 𝛿
𝑘
)

× ∫

1

−1

[
[

[

(𝛾
𝑘
− 𝛿
𝑘
) 𝜌 + 𝛾

𝑘
+ 𝛿
𝑘
+ 2𝑡

√4 − [(𝛾
𝑘
− 𝛿
𝑘
) 𝜌 + 𝛾

𝑘
+ 𝛿
𝑘
]
2

× 𝐾
0
(𝑡,
𝛾
𝑘
− 𝛿
𝑘

2
𝜌 +

𝛾
𝑘
+ 𝛿
𝑘

2
)

− 2𝐾(𝑡,
𝛾
𝑘
− 𝛿
𝑘

2
𝜌 +

𝛾
𝑘
+ 𝛿
𝑘

2
)
]
]

]

)

×(
𝜓
(0)

𝑘
(𝜌) 𝑑𝜌

√1 − 𝜌2
)+ 𝑓 (𝑡) (𝑡 ∈

[−1, 1]

Λ
0

)

Λ
0
= [− sin𝛼, − sin𝛽] ∪ [sin𝛽, sin𝛼] .

(49)

From the symmetry of the problem due to axis 𝑥 = 𝑙/2
and taking into consideration only the right hand crack with
end points at 𝑥 = 𝑎

2
and 𝑥 = 𝑏

2
, the stress intensity factors

are defined as follows [3, 4, 7, 26]:

𝐾III (𝑎2) = lim
𝑥→𝑎

2
−0

⌊√2𝜋 (𝑎
2
− 𝑥)𝜏
𝑦𝑧
⌋

= lim
𝑥→𝑎

2
−0

⌊√2𝜋 (𝑎
2
− 𝑥)𝜏 (𝑥)⌋ ,

𝐾III (𝑏2) = lim
𝑥→𝑏

2
+0

⌊√2𝜋 (𝑥 − 𝑏
2
)𝜏
𝑦𝑧
⌋

= lim
𝑥→𝑏

2
+0

⌊√2𝜋 (𝑥 − 𝑏
2
)𝜏 (𝑥)⌋ ,

(50)

where 𝜏(𝑥) are the shear stresses according to (31).

6. Case C: Plate with Inclusions at
the Crack Tips

In this section, attention is specifically paid to the effect of
inclusions at the crack tips on the stress intensity factors
(SIFs).

A prismatic elastic body Ω with a rectangular cross
section in Cartesian coordinatesOxyz occupying an areaΩ =
{0 ≤ 𝑥 ≤ ℓ; −ℎ ≤ 𝑦 ≤ ℎ; −∞ < 𝑧 < ∞} and possessing
a shear modulus 𝐺 is considered. The elastic body is rigidly
clamped at 𝑥 = 0 and 𝑥 = 𝑙 and loaded by shear forces equal
to 𝑇(𝑥) acting both in the positive and in negative directions
of theOz-axis by the horizontal 𝑦 = ±ℎ. Furthermore, on the
symmetry plane 𝑦 = 0, it has a through-the-thickness crack
in the shape of the strip 𝜔 = {𝑦 = 0; ℓ/2 − 𝑎 < 𝑥 < ℓ/2 +
𝑎; −∞ < 𝑧 < ∞}, (𝑎 < ℓ/2). Shear forces of equal intensities
𝑇
0
(𝑥) are acting in opposite directions along the Oz-axis on

the upper (+) and lower (−) areas of the crack edges

𝜔
±
= {𝑦 = ±0;

ℓ

2
− 𝑏 < 𝑥 <

ℓ

2
+ 𝑏; −∞ < 𝑧 < ∞}

(𝑏 < 𝑎)

(51)
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Figure 4: Plate with inclusions at crack tips.

of the crack. Additionally, at the tips

𝜔
±

0
= {𝑦 = ±0; 𝑥 ∈ (

ℓ

2
− 𝑎;

ℓ

2
− 𝑏)

∪(
ℓ

2
+ 𝑏;

ℓ

2
+ 𝑎) ; −∞ < 𝑧 < ∞}

(52)

the edges of the crack are joined by thin-walled inclusions
with shear modulus 𝐺

0
deforming by the Winkler model

(1867) that act as linear elastic springs:𝑝 = 𝑘𝜔 (Figure 4) [31].
The prismatic body Ω subjected to the above-mentioned

shear forces is in a state of antiplane deformation in the
direction of the Oz-axis on the basic plane Oxy. The main
rectangle 𝐷 = {0 ≤ 𝑥 ≤ ℓ; −ℎ ≤ 𝑦 ≤ ℎ} with the central
crack 𝜔

0
= {𝑦 = 0; ℓ/2 − 𝑎 < 𝑥 < ℓ/2 + 𝑎} (0 < 𝑎 < ℓ/2) is a

cross section of the body Ω at the plane Oxy.
It is necessary to determine the dislocation density on the

crack edges, the SIFs, the shear contact stresses on the edges
of the inclusion, and the shear stresses outside the crack along
the surface of its location.

This is formally similar to the Dugdale-Barenblatt model
for a central crack containing yielding as confined and
localized narrow plastic zones, which shows the effect of
yielding on the crack length [32, 33], but, in this problem,
which is a linear elastic fracture mechanics problem, we
investigate the effect of inclusions at the end areas of crack
on the mechanical behavior of crack tips, decreasing the
dislocation density and antiplane SIFs.

The component 𝑢
𝑧
= 𝑤(𝑥, 𝑦) in the direction of the

Ox-axis is the only nonzero component of the displacement,
and 𝜏

𝑥𝑧
and 𝜏

𝑦𝑧
are the only nonzero stress components.

Therefore, the problem can be mathematically stated as a
boundary value problem in the following way:

𝜕
2
𝑤

𝜕𝑥2
+
𝜕
2
𝑤

𝜕𝑦2
= 0 ((𝑥, 𝑦) ∈ 𝐷 \ 𝜔

0
) ,

𝑤 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑥=0

= 𝑤 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑥=ℓ

= 0 (−ℎ < 𝑦 < ℎ) ;

𝜏
𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=ℎ−0
= 𝜏
𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=−ℎ+0
= 𝐺

𝜕𝑤

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=±ℎ∓0

= 𝑇 (𝑥)

(0 < 𝑥 < ℓ) ;

𝜏
𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=±0
= 𝐺

𝜕𝑤

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=±0

= 𝑇
0
(𝑥)

(𝑥 ∈ (
ℓ

2
− 𝑏;

ℓ

2
+ 𝑏) ; 𝑏 < 𝑎) ;

𝜏
𝑦𝑧

󵄨󵄨󵄨󵄨󵄨𝑦=±0
= ± 𝐺

0
𝑤 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑦=±0
= ± 𝑘𝐺𝑤 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑦=±0

(𝑥 ∈ (
ℓ

2
− 𝑎;

ℓ

2
− 𝑏) ∪ (

ℓ

2
+ 𝑏;

ℓ

2
+ 𝑎) ; 𝑘 =

𝐺
0

𝐺
) .

(53)

Let us again consider the following functions based on [18,
34]:

Φ (𝑥) =
𝑤
+
(𝑥, 0) − 𝑤

−
(𝑥, 0)

2
=
2

ℓ

∞

∑

𝑛=1

Φ
𝑛
sin(𝜋𝑛𝑥

ℓ
) ,

Ψ (𝑥) =
𝑤
+
(𝑥, 0) + 𝑤

−
(𝑥, 0)

2
=
2

ℓ

∞

∑

𝑛=1

Ψ
𝑛
sin(𝜋𝑛𝑥

ℓ
) ,

Ω (𝑥) =
𝜏
+
(𝑥) + 𝜏

−
(𝑥)

2
=
2

ℓ

∞

∑

𝑛=1

Ω
𝑛
sin(𝜋𝑛𝑥

ℓ
)

(0 < 𝑥 < ℓ) ,

𝑋 (𝑥) =
𝜏
+
(𝑥) − 𝜏

−
(𝑥)

2
=
2

ℓ

∞

∑

𝑛=1

𝑋
𝑛
sin(𝜋𝑛𝑥

ℓ
) ,

(54)

where Φ
𝑛
, Ψ
𝑛
, Ω
𝑛
, and 𝑋

𝑛
are sine Fourier series coefficients

as before. Inserting these functions into the displacements
and stresses on the edges of the crack at the interval [0, 𝑙] of
rectangle 𝐷

2
then according to (4), the following equations

are obtained:

Φ (𝑥) = 𝑤
+
(𝑥, 0) ; Ψ (𝑥) ≡ 0; Ω (𝑥) = 𝜏

+
(𝑥) ,

𝑋 (𝑥) ≡ 0; Φ
𝑛
= 𝑤
+
(𝑛, 0) ; Ψ

𝑛
= 0,

Ω
𝑛
= 𝜏
+
(𝑛) ; 𝑋

𝑛
= 0 (𝑛 = 1, 2, . . .) .

(55)

After some simple transformations and calculations, the fol-
lowing equations can be derived:

1

𝜋
∫

1

−1

𝜔
0
(𝜌) 𝑑𝜌

𝜌 − 𝑟
+
1

𝜋
∫

1

−1

𝐾
0
(𝑟, 𝜌) 𝜔

0
(𝜌) 𝑑𝜌

−
1

𝜋
∫

1

−1

𝐾(𝑟, 𝜌) 𝜔
0
(𝜌) 𝑑𝜌

=

{

{

{

𝑓 (𝑟) − 𝑔 (𝑟) (𝑟 ∈ (−𝑐; 𝑐))

𝑓 (𝑟) − 𝜆
0
𝜓
0
(𝑟) (𝑟 ∈ (−1, −𝑐) ∪ (𝑐, 1))

(𝑐 =
sin𝛽
sin𝛼

)

(56)
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with

𝜔
0
(𝑟) = 𝜑

0
(arccos (𝑟 ⋅ sin𝛼)) ,

𝑓 (𝑟) = 𝑓 (arccos (𝑟 ⋅ sin𝛼)) ,

𝑔 (𝑟) = 𝑇̃
0
(arccos (𝑟 ⋅ sin𝛼)) ,

𝜓
0
(𝑟) = 𝜑

0
(arccos (𝑟 ⋅ sin𝛼)) ,

𝑓 (𝑟) =
2

𝜋

√1 − sin2𝛼 ⋅ 𝑟2

× ∫

1

−1

[

∞

∑

𝑛=1

𝑈
𝑛−1
(𝑟 ⋅ sin𝛼)𝑈

𝑛−1
(𝑢)

ch (𝑛ℎ
0
)

] 𝑇̃ (arccos 𝑢) 𝑑𝑢

𝐾
0
(𝑟, 𝜌) =

(𝑟 + 𝜌) sin2𝛼

√1 − sin2𝛼 ⋅ 𝜌2

×
1

(√1 − sin2𝛼 ⋅ 𝑟2 + √1 − sin2𝛼 ⋅ 𝜌2)

(−1 < 𝑟, 𝜌 < 1) .

(57)

Transforming the above equation, the following equation is
derived:

𝜏
0
(𝑡) = 𝜏

0
(arccos 𝑡)

= −
sin𝛼
𝜋
∫

1

−1

𝜔
0
(𝜌) 𝑑𝜌

sin𝛼 ⋅ 𝜌 − 𝑡
−
sin𝛼
𝜋

× ∫

1

−1

(𝑡 + 𝜌 sin𝛼)𝜔
0
(𝜌) 𝑑𝜌

√1 − 𝜌2 ⋅ sin2𝛼(√1 − 𝑡2 + √1 − 𝜌2 ⋅ sin2𝛼)

+
2 sin𝛼
𝜋

√1 − 𝑡2

⋅ ∫

1

−1

[

∞

∑

𝑛=1

𝑒
−𝑛ℎ
0

ch (𝑛ℎ
0
)
𝑈
𝑛−1
(𝑡) 𝑇
𝑛
(𝜌 ⋅ sin𝛼)]

×
𝜔
0
(𝜌) 𝑑𝜌

√1 − 𝜌2sin2𝛼
+
2

𝜋

√1 − 𝑡2

× ∫

1

−1

[

∞

∑

𝑛=1

𝑈
𝑛−1
(𝑡) 𝑈
𝑛−1
(𝑢)

𝑐ℎ (𝑛ℎ
0
)

] 𝑇̃ (arccos 𝑢) 𝑑𝑢

(𝑡 ∈ (−1; − sin𝛼) ∪ (sin𝛼; 1)) .
(58)

As mentioned above, the determinative singular integral
equation (SIE) can be reduced to a system of linear equations.
For this purpose, applying the Heaviside function

𝐻(𝑟) =

{

{

{

1 (𝑟 > 0)

0 (𝑟 < 0)

(59)

this equation can be expressed in the following way:

1

𝜋
∫

1

−1

{{

{{

{

1

𝜌 − 𝑟
+ 𝐾
0
(𝑟, 𝜌) − 𝐾 (𝑟, 𝜌)

+
𝜆 sin𝛼
2

[𝐻 (𝑐 + 𝑟) − 𝐻 (𝑐 − 𝑟)] sign 𝑟

√1 − 𝜌2 ⋅ sin2𝛼
sign (𝑟 − 𝜌)

}}

}}

}

× 𝜔
0
(𝜌) 𝑑𝜌 = 𝑓 (𝑟) − [𝐻 (𝑟 + 𝑐) − 𝐻 (𝑟 − 𝑐)] 𝑔 (𝑟)

(−1 < 𝑟 < 1; 𝜆 = 𝜋𝜆
0
= 𝑘ℓ)

(60)
with the notations explained above.

Supposing

𝜔
0
(𝜌) =

𝑋
0
(𝜌)

√1 − 𝜌2
(−1 < 𝜌 < 1) (61)

the determinative SIE (39) with conditions of (25) and (40) is
reduced to the system of linear equations

𝑀

∑

𝑝=1

𝐾
𝑚𝑝
𝑋
𝑝
= 𝑎
𝑚

(𝑚 = 1,𝑀) ,

𝐾
𝑚𝑝

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

1

𝑀

1

𝜌
𝑝
− 𝑟
𝑚

+ 𝐾
0
(𝑟
𝑚
, 𝜌
𝑝
) − 𝐾 (𝑟

𝑚
, 𝜌
𝑝
)

+
𝜆 sin𝛼 sign 𝑟

𝑚

2√1 − 𝜌
2

𝑝
sin2𝛼

[𝐻 (𝑐 + 𝑟
𝑚
) − 𝐻 (𝑐 − 𝑟

𝑚
)]

× sign (𝑟
𝑚
− 𝜌
𝑝
) (𝑚 = 1,𝑀 − 1; 𝑝 = 1,𝑀)

1

√1 − 𝜌
2

𝑝
⋅ sin2𝛼

(𝑚 = 𝑀; 𝑝 = 1,𝑀) ,

𝑎
𝑚

=

{{{{

{{{{

{

𝑓(𝑟
𝑚
) − [𝐻 (𝑟

𝑚
+ 𝑐) − 𝐻 (𝑟

𝑚
− 𝑐)] 𝑔 (𝑟

𝑚
)

(𝑚 = 1,𝑀 − 1)

0, (𝑚 = 𝑀) ,

𝑋
𝑝
= 𝑋
0
(𝜌
𝑝
) (𝑝 = 1,𝑀) ;

𝜌
𝑝
= cos(

2𝑝 − 1

2𝑀
𝜋) (𝑝 = 1,𝑀) ;

𝑟
𝑚
= cos(𝜋𝑚

𝑀
) (𝑚 = 1,𝑀 − 1) .

(62)

For this case, the crack edges are free of shearing forces,
and concentrated shearing forces are acting on the horizontal
sides of the rectangular plate; that is,

𝑇
0
(𝑥) ≡ 0, 𝑇 (𝑥) = 𝑃𝛿 (𝑥 −

ℓ

2
) , (63)
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Table 1: Dimensionless SIF 𝐾(0)III as a function of𝑀 and 𝛼.

𝛼 = 𝜋/32 𝛼 = 𝜋/16 𝛼 = 𝜋/8 𝛼 = 𝜋/4 𝛼 = 𝜋/3

𝑀 = 10 1.12782 1.69511 2.44264 3.80191 5.00603
𝑀 = 20 1.42096 2.01939 2.91422 4.52924 5.96371
𝑀 = 30 1.67019 2.37358 3.42536 5.32364 7.00971
𝑀 = 40 2.29343 3.25929 4.70355 7.31018 9.62542
𝑀 = 50 2.30110 3.26362 4.70979 7.31988 9.63819

where 𝛿(𝑥) is a certain Dirac delta function. Additionally, the
following equation can be obtained:

𝑇 (𝑛) = ∫

ℓ

0

𝑃𝛿(𝑥 −
ℓ

2
) sin(𝜋𝑛𝑥

ℓ
) 𝑑𝑥

= 𝑃 sin(𝜋𝑛
2
) =

{

{

{

0, 𝑛𝑝𝑢 𝑛 = 2𝑞;

(−1)
𝑞+1
𝑃, 𝑛𝑝𝑢 𝑛 = 2𝑞 − 1

(𝑞 = 1, 2, . . .) .

(64)

Taking into consideration the above-mentioned definition,
the function 𝑓(𝜉) can be expressed in the following way:

𝑓 (𝜉) = 2𝑃
0

∞

∑

𝑛=1

(−1)
𝑛+1

sin [(2𝑛 − 1) 𝜉]
ch [(2𝑛 − 1) ℎ

0
]
,

𝑃
0
=
𝑃

ℓ𝐺
(0 < 𝜉 < 𝜋)

(65)

and the function 𝑓(𝑟) from (57) is obtained:

𝑓 (𝑟) = 𝑓 (arccos (𝑟 ⋅ sin𝛼))

= 2𝑃
0
√1 − 𝑟2 ⋅ sin2𝛼

⋅

∞

∑

𝑛=1

(−1)
𝑛+1 𝑈2𝑛−2 (𝑟 ⋅ sin𝛼)

ch [(2𝑛 − 1) ℎ
0
]

(−1 < 𝑟 < 1) .

(66)

It is obvious that the function 𝜔
0
(𝑟) with respect to the sym-

metry of line 𝑥 = 𝑙/2 in this special case and, consequently,
the function 𝑋

0
(𝑟) according to (61) are odd functions.

Therefore, the components of the second integrals in (56) and
(58) containing polynomial 𝑟 or 𝑡 in arguments tend to zero,
so that the above-mentioned equations and the kernel-matrix
𝐾
𝑚𝑝

of the system of equations (62) are simplified.
It must be emphasized that the expressions of functions

𝑓(𝜉) and 𝑓(𝑟) from (65), (66) on various intervals are used in
the equations.

The numerical analysis of the main characteristics of the
stated problem can be carried out for the considered special
case.

7. Numerical Results and Discussions

To solve the system of equations (40) that is summa-
rized in system (41) with the parameters shown in (42),
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Figure 5: 𝜏
0
(𝑡) curve for 𝛼 = 𝜋/4, ℎ

0
= 0.1𝜋, and 𝑄

0
= 0.01.

𝑀 = 10, 20, 30, 40, 50, factor 𝛼 (which represents the crack-
ing length) equal to 𝜋/4, ℎ

0
= 0.1𝜋, and 𝑄

0
= 0.01 can be

used. By means of Chebyshev polynomials, the deformation
parameter 𝑋

𝑝
is obtained from (43). For example, 𝑀 = 10

leads to solving (10 ∗ 10)matrix equation (26).
The dimensionless SIF 𝐾(0)III according to formula (50)

using the vector 𝑋
𝑝
, 𝑀 = 10 and considering the assump-

tions 𝛼 = 𝜋/3, 𝜋/4, 𝜋/8, 𝜋/16, and 𝜋/32 for different
crack lengths is calculated. The results are shown in Table 1,
indicating that longer cracks lead to larger SIFs.

The shear stress 𝜏
0
(𝑡) from (49) in dependence of 𝑡 and 𝜇

taking the rigidity ratios of the two materials 𝜇 = 𝐺
1
/𝐺
2
=

0.1, 0.3, 0.5, 0.8, 1.0, 2, 5, 10 is obtained and the graphs are
shown in Figure 5. The dimensionless crack dislocations
that depend on parameters 𝛼 and 𝑟 are calculated, and the
curves are represented in Figure 6. This figure shows that the
maximum dislocation of a crack is at midpoint of its length,
and it has a zero value at the crack tips, the points where
maximum shear occurs.

To solve the system of linear equations (27) for the prob-
lem with two cracks we use iteration𝑀 = 10, 15, 20, 30, . . . in
order that the results converge to the order 10−4. Calculation
is based on function (27)𝑓

𝑘
(𝑟), 𝐿
𝑘𝑛
(𝑟, 𝜌),𝐾

𝑘𝑛
(𝑟, 𝜌), and 𝛿

𝑘
, 𝛾
𝑘

and (25), (37), and (39).
Parameters 𝛼 and 𝛽 are supposed to be equal to 𝛼 = 𝜋/3

and 𝛽 = 𝜋/4; 𝜋/8; 𝜋/16; 𝜋/32; 𝜋/64 in order to determine the
influence of the distance between the two adjacent cracks on
their fracture characteristics. The shear stress 𝜏

0
(𝑡) is calcu-

lated according to (49), in which function 𝑓(𝑡) is obtained
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Figure 6: Crack dislocation (𝜙(0)
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from (37), supposing the quantity 𝑄
0
= 0.01. Making use of

the above calculated stresses, the variation curves of 𝜏
0
(𝑡) can

be drawn for 𝜇 = 0.1, 0.3, 0.5, and 1.0, as shown in Figure 7.
The crack dislocation density as a function of the edges’

opening displacements Ψ(0)
𝑘
(𝑟) may be found through for-

mula (31). The Ψ(0)
𝑘
(𝑟) curves are shown in Figure 8 again for

varying 𝜇 and 𝛽. At the end, using (50), the stress intensity
factors in the dimensionless form can easily be calculated,
as shown in Figure 9 and Tables 2 and 3, for the above
parameters. The variation of SIF 𝐾III based on parameter 𝛽
and 𝜇 = 0.3, 0.5, and 1.0 is shown in Figure 10 to recognize the
state of the SIFs under the change of the lengths of cracks.

For the case of 𝜇 = 1.0, the cracks approaching each other
(that means a smaller value of 𝛽) lead us to construct curves
as shown in Figure 11 for 𝜏

0
(𝑡) and Figure 12 for Ψ(0)

𝑘
(𝑟).

Themain characteristics of the crack problem with inclu-
sions in thementioned special case can be calculated through
numerical analysis. For calculation it is considered as some
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Table 2: Variation of 𝐾III for 𝛼 = 𝜋/3 based on 𝛽, 𝜇.

𝜇
𝛽

𝜋/4 𝜋/8 𝜋/16 𝜋/32 𝜋/64

0.1 7.70 7.35 7.11 6.69 6.41
0.3 5.36 5.54 5.73 6.17 6.35
0.5 4.88 5.12 5.34 5.87 6.13
1 4.21 4.35 4.63 5.41 5.92

Table 3: Variation of 𝐾(0)III for 𝛼 = 𝜋/3 based on 𝛽, 𝜆.

𝜆
𝛽

0 𝜋/64 𝜋/32 𝜋/16 𝜋/8 𝜋/4

0.0 3.92 3.96 4.01 4.12 4.19 4.26
0.1 2.87 3.23 3.69 3.80 3.98 4.13
0.5 2.79 2.95 3.40 3.64 3.82 3.94
1.0 2.54 2.72 3.08 3.37 3.69 3.82
5.0 2.42 2.60 2.81 3.10 3.46 3.60
20 2.17 2.34 2.63 2.88 3.18 3.45
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engineering practical ratios for the shear modulus quantities
𝑘 = 𝐺

0
/𝐺 that are 𝑘 = 0.0 (crack without repair), 𝑘 = 0.5, 1.0

(repair with the same material), and 𝑘 = 2.0, 5.0, and 10.0 (for
very high rigid repair materials). By solving system of linear
equations (62) which leads to solving a matrix (10 × 10) and
obtaining vectors 𝑋

𝑝
(10 × 1), the shear stress 𝜏

0
(𝑡) can be

calculated from (58) and the results are shown in Figure 13.
Dislocation functions 𝜓̃

0
(𝑟) = 2𝜑

0
(𝑟) were investigated

using relation (31), as shown in Figure 14 in which the
maximum displacement of crack boundaries occurred at
midpoint and obviously with zero value at crack tips.

The stress intensity factors SIFs 𝐾(0)III calculated through
(50) are shown in Figure 17, which presents the decreasing
trend of the 𝐾III curve when the ratio of 𝑘 = 𝐺

0
/𝐺 increases.

It also shows that the crack tip repairing by this method can
reduce the SIF by approximately 50 percent, which means
that this approach is very effective to control the crack
propagations in cracked plates and it is also a treatment for
singularities at the crack tips, defects, and holes. Figures 15
and 16 show that the reduction of the magnitude 𝐾III is not
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high when we use a very rigid material for tip repair. For
example, for 𝑘 = 2.0 and 𝑘 = 10.0 (ratio = 5), the reduction
of 𝐾III is only 18 percent (1.98/2.42).

The above results coincide with experimental observa-
tions of high concentrations and singularities in the stress
fields within elastic materials [17, 18, 35, 36].

8. Conclusion

In the present paper, the singular integral equations gov-
erning the piecewise homogeneous elastic plate problem
subject to uniform remote antiplane shear loading have been
considered. To determine the antiplane shear stresses, the
crack edge dislocation densities, and the mode III stress
intensity factors, a new mathematical-numerical calculation
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is developed. To perform elastic analyses and investigations
on the state of stresses at the crack tips, the dimensions
of the cracks, the distances between adjacent tips, and the
influence of shear modulus ratios between the two materials
have been varied and studied.The governing singular integral
equation of a problem of stress-strain state of a piecewise
homogeneous elastic prismatic body of a rectangular cross
section, when there is a system of an arbitrary finite number
of collinear cracks on the interface line of dissimilarmaterials,
is obtained. For problem solving, the method of mechanical
quadrature is used. It allowed conducting a detailed analysis
of the main mechanical characteristics of the stated problem
and revealed their dependence on the mechanical and geo-
metrical parameters of the problem. For the case of cracks
coming together it has been shown that the stress intensity
factors 𝐾III grow based on two parameters, the total distance
between their far tips and the closeness of their near tips.The
technique presented in this paper can be used to solve a class
of problems associated with cracking in bimaterial interfaces.
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For a crack with inclusions at the tips, it is observed
that the insertion of a material at the crack tips avoids
singularities, reduces the antiplane SIF 𝐾III, and strengthens
and controls the crack propagation in the region at the tips.
This is an effective method and does not require using a
material with a very high shear rigidity value 𝐺

0
. Meanwhile,

the crack opening displacement (COD) and the shear stresses
at the crack tips decrease. This suggests a method to repair
cracked plates and members.

Practice shows that themethod ofmechanical quadrature
is a very effective method and results in a very good conver-
gence. The data of Table 2 confirms this. The accuracy of the
method in predicting the intensity factor may be verified by a
comparison with experimental measurements, carried out by
a photoelasticity method, and by commercial finite element
software. The drawn conclusions provide meaningful refer-
ence for the analysis of SIFs in mode III. Numerical results
show the influence of ratios of shearmoduli on the stress state.

The results of this paper and the previously published
results show that the used approach based on the Gauss-
Chebyshev quadrature method can be considered as a gen-
eralized procedure to solve the collinear crack problems in
mode I, II, or III loadings.
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Appendix

Consider

(

Φ
𝑛

Ψ
𝑛

Ω
𝑛

𝜒
𝑛

)= ∫

𝑙

0

(

Φ(𝑥)

Ψ (𝑥)

Ω (𝑥)

𝜒 (𝑥)

) sin 𝜋𝑛𝑥
𝑙
𝑑𝑥

(𝑛 = 1, 2, . . .) .

(A.1)

Obviously Φ
𝑛
, Ψ
𝑛
, Ω
𝑛
, and 𝜒

𝑛
are Fourier sine series coeffi-

cients.
We know that

Φ (𝑥) =

{

{

{

𝜑 (𝑥) , 𝑥 ∈ 𝐿,

0, 𝑥 ∈ 𝐿
󸀠
,

(𝐿
󸀠
= [0, 𝑙] | 𝐿) ,

𝜏
+
(𝑥) =

{

{

{

𝜏
(0)

+
(𝑥) , 𝑥 ∈ 𝐿

+
,

𝜏 (𝑥) , 𝑥 ∈ 𝐿
󸀠
,

𝜏
−
(𝑥) =

{

{

{

𝜏
(0)

−
, 𝑥 ∈ 𝐿

−
,

0, 𝑥 ∈ 𝐿
󸀠
.

(A.2)

Now from the first equation of (8) and (A.2)

Φ
󸀠
(𝑥) =

{

{

{

𝜑
󸀠
(𝑥) (𝑥 ∈ 𝐿)

0 (𝑥 ∈ 𝐿
1
)

=
2

𝑙

∞

∑

𝑛=1

𝜋𝑛

𝑙
Φ
𝑛
cos 𝜋𝑛𝑥

𝑙

=
2

𝑙

∞

∑

𝑛=1

𝜑
𝑛
cos 𝜋𝑛𝑥

𝑙
(𝜑
𝑛
=
𝜋𝑛

𝑙
Φ
𝑛
) ,

𝜑
𝑛
= ∫
𝐿

𝜑
󸀠
(𝑥) cos 𝜋𝑛𝑥

𝑙
𝑑𝑥 (𝑛 = 1, 2, . . .) .

(A.3)

Moreover we have

𝜒
𝑛
= ∫

𝑙

0

𝜒 (𝑥) sin 𝜋𝑛𝑥
𝑙
𝑑𝑥

= ∫
𝐿

[𝜏
(0)

+
(𝑥) − 𝜏

(0)

−
(𝑥)] sin 𝜋𝑛𝑥

𝑙
𝑑𝑥

(𝑛 = 1, 2, . . .) ,

(A.4)

Ω
𝑛
= −
2𝜋𝑛

𝑙

⋅ ((𝐺
1
𝐺
2
sh(𝜋𝑛ℎ1

𝑙
) sh(𝜋𝑛ℎ2

𝑙
)Φ
𝑛
)

⋅ (𝐺
1
sh(𝜋𝑛ℎ1

𝑙
) ch(𝜋𝑛ℎ2

𝑙
)

+ 𝐺
2
sh(𝜋𝑛ℎ1

𝑙
) ch(𝜋𝑛ℎ2

𝑙
))

−1

)

+ ((𝐺
1
sh(𝜋𝑛ℎ1

𝑙
) ch(𝜋𝑛ℎ2

𝑙
)

− 𝐺
2
ch(𝜋𝑛ℎ1

𝑙
) sh(𝜋𝑛ℎ2

𝑙
))

⋅ (𝐺
1
sh(𝜋𝑛ℎ1

𝑙
) ch(𝜋𝑛ℎ2

𝑙
)

+ 𝐺
2
sh(𝜋𝑛ℎ2

𝑙
) ch(𝜋𝑛ℎ1

𝑙
))

−1

)𝜒
𝑛

+ ((𝜏
1
(𝑛) 𝐺
2
sh(𝜋𝑛ℎ2

𝑙
) + 𝜏
2
(𝑛) 𝐺
1
sh(𝜋𝑛ℎ1

𝑙
))

⋅ (𝐺
1
sh(𝜋𝑛ℎ1

𝑙
) ch(𝜋𝑛ℎ2

𝑙
)

+ 𝐺
2
sh(𝜋𝑛ℎ2

𝑙
) ch(𝜋𝑛ℎ1

𝑙
))

−1

)

(A.5)

in which

sh = sinh, ch = cosh . (A.6)

The two sides of (A.5) are multiplied by (2/𝑙) sin(𝜋𝑛𝑥/𝑙) and
summed over index 𝑛; then based on (A.1) to (A.4), it yields

Ω (𝑥)

= −
4

𝑙
𝐺
1
𝐺
2

⋅

∞

∑

𝑛=1

sh (𝜋𝑛ℎ
1
/1) sh (𝜋𝑛ℎ

2
/𝑙) 𝜑
𝑛
sin (𝜋𝑛𝑥/𝑙)

𝐺
1
sh (𝜋𝑛ℎ

1
/𝑙) ch (𝜋𝑛ℎ

2
/𝑙) + 𝐺

2
ch (𝜋𝑛ℎ

1
/𝑙) sh (𝜋𝑛ℎ

2
/𝑙)

+
2

𝑙

∞

∑

𝑛=1

𝐺
1
sh (𝜋𝑛ℎ

1
/𝑙) ch (𝜋𝑛ℎ

2
/𝑙) − 𝐺

2
ch (𝜋𝑛ℎ

1
/𝑙) sh (𝜋𝑛ℎ

2
/𝑙)

𝐺
1
sh (𝜋𝑛ℎ

1
/𝑙) ch (𝜋𝑛ℎ

2
/𝑙) + 𝐺

2
ch (𝜋𝑛ℎ

1
/𝑙) sh (𝜋𝑛ℎ

2
/𝑙)

⋅ 𝜒
𝑛
sin 𝜋𝑛𝑥

𝑙

+
2

𝑙

∞

∑

𝑛=1

𝜏
1
(𝑛) 𝐺
2
sh (𝜋𝑛ℎ

2
/𝑙) + 𝜏

2
(𝑛) 𝐺
1
sh (𝜋𝑛ℎ

1
/𝑙)

𝐺
1
sh (𝜋𝑛ℎ

1
/𝑙) ch (𝜋𝑛ℎ

2
/𝑙) + 𝐺

2
ch (𝜋𝑛ℎ

1
/𝑙) sh (𝜋𝑛ℎ

2
/𝑙)

⋅ sin 𝜋𝑛𝑥
𝑙
.

(A.7)
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Now introducing the below dimensionless parameters

ℎ
+
=
𝜋ℎ
1

𝑙
, ℎ

−
=
𝜋ℎ
2

𝑙
; 𝜉 =

𝜋𝑥

𝑙
, 𝜂 =

𝜋𝑠

𝑙
;

(0 < 𝜉, 𝜂 < 𝜋) ,

𝜇 =
𝐺
1

𝐺
2

, Ω
0
(𝜉) =

Ω (𝑙𝜉/𝜋)

𝐺
1

(A.8)
and substituting into the functions 𝜏

+
(𝑛), 𝜏

1
(𝑛) and also

𝜏
−
(𝑛), 𝜏
2
(𝑛), regarding (A.2), we have

(1)

𝜏
+
(𝑛) = ∫

𝑙

0

𝜏
+
(𝑠) sin 𝜋𝑛𝑠

𝑙
𝑑𝑠

=
𝑙

𝜋
∫

𝜋

0

𝜏
+
(
𝑙𝜂

𝜋
) sin 𝑛𝜂 𝑑𝜂

=
𝑙𝐺
1

𝜋
∫

𝜋

0

𝜏
+
(𝜂) sin 𝑛𝜂 𝑑𝜂,

𝜏
+
(𝜂) =

𝜏
+
(𝑙𝜂/𝜋)

𝐺
1

(A.9)

also supposing

𝛼
𝑘
=
𝜋𝑎
𝑘

𝑙
, 𝛽
𝑘
=
𝜋𝑏
𝑘

𝑙
(𝑘 = 1,𝑁) . (A.10)

In this case the system 𝐿 converts to the system 𝐿
0
=

∪
𝑁

𝑘=1
(𝛼
𝑘
, 𝛽
𝑘
) and 𝐿󸀠

1
= [0, 𝜋] | 𝐿

0
.

Regarding (A.2) we can write

𝜏
+
(𝜉) =

𝜏
0

+
(𝑙𝜉/𝜋)

𝐺
1

,

𝜏 (𝜉) =
𝜏 (𝑙𝜉/𝜋)

𝐺
1

,

𝜏
−
(𝜉) =

𝜏
0

−
(𝑙𝜉/𝜋)

𝐺
1

(0 < 𝜉 < 𝜋)

(A.11)

also supposing
(2)

𝜏
𝑘
(𝜉) =

𝜏
𝑘
(𝑙𝜉/𝜋)

𝐺
1

(𝑘 = 1, 2) . (A.12)

In this manner we have

𝜏
1
(𝑛) = ∫

𝑙

0

𝜏
1
(𝑠) sin 𝜋𝑛𝑠

𝑙
𝑑𝑠

=
𝑙

𝜋
∫

𝜋

0

𝜏
1
(
𝑙𝜂

𝜋
) sin 𝑛𝜂 𝑑𝜂

=
𝑙𝐺
1

𝜋
∫

𝜋

0

𝜏
1
(𝜂) sin 𝑛𝜂 𝑑𝜂

(𝑛 = 1, 2, . . .)

(A.13)

(3)

𝜏
−
(𝑛) = ∫

𝑙

0

𝜏
−
(𝑠) sin 𝜋𝑛𝑠

𝑙
𝑑𝑠

=
𝑙

𝜋
∫

𝜋

0

𝜏
−
(
𝑙𝜂

𝜋
) sin 𝑛𝜂 𝑑𝜂

=
𝑙𝐺
1

𝜋
∫

𝜋

0

𝜏
−
(𝜂) sin 𝑛𝜂 𝑑𝜂,

𝜏
−
(𝜂) =

𝜏
−
(𝑙𝜂/𝜋)

𝐺
1

(A.14)

(4)

𝜏
2
(𝑛) = ∫

𝑙

0

𝜏
2
(𝑠) sin 𝜋𝑛𝑠

𝑙
𝑑𝑠

=
𝑙

𝜋
∫

𝜋

0

𝜏
2
(
𝑙𝜂

𝜋
) sin 𝑛𝜂 𝑑𝜂

=
𝑙𝐺
1

𝜋
∫

𝜋

0

𝜏
2
(𝜂) sin 𝑛𝜂 𝑑𝜂

(𝑛 = 1, 2, . . .)

(A.15)

(5)

𝜑
𝑛
= ∫
𝐿

𝜑
󸀠
(𝑥) cos 𝜋𝑛𝑥

𝑙
𝑑𝑥

=
𝑙

𝜋
∫
𝐿
0

𝜑
󸀠
(
𝑙𝜂

𝜋
) cos 𝑛𝜂 𝑑𝜂

=
𝑙

𝜋
∫
𝐿
0

𝜑
0
(𝜂) cos 𝑛𝜂 𝑑𝜂

(𝜑
0
(𝜉) = 𝜑

󸀠
(
𝑙𝜉

𝜋
))

(A.16)

(6)

𝜒
𝑛
= ∫
𝐿

[𝜏
(0)

+
(𝑠) − 𝜏

(0)

−
(𝑠)] sin 𝜋𝑛𝑠

𝑙
𝑑𝑠

=
𝑙

𝜋
∫
𝐿
0

[𝜏
(0)

+
(
𝑙𝜂

𝜋
) − 𝜏
(0)

−
(
𝑙𝜂

𝜋
)] sin 𝑛𝜂 𝑑𝜂

=
𝑙𝐺
1

𝜋
∫
𝐿
0

[𝜏
+
(𝜂) − 𝜏

−
(𝜂)] sin 𝑛𝜂 𝑑𝜂

(𝑛 = 1, 2, . . .) .

(A.17)

Using all the above equations and parameters into (A.7), it
yields

Ω
0
(𝜉)

= −
4

𝜋

∞

∑

𝑛=1

sh (𝑛ℎ
+
) sh (𝑛ℎ

−
) sin 𝑛𝜉

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ ∫
𝐿
0

𝜑
0
(𝜂) cos 𝑛𝜂 𝑑𝜂
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+
2

𝜋

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) − ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ sin 𝑛𝜉

⋅ ∫
𝐿
0

[𝜏
+
(𝜂) − 𝜏

−
(𝜂)] sin 𝑛𝜂 𝑑𝜂

+
2

𝜋

∞

∑

𝑛=1

sh (𝑛ℎ
−
) sin 𝑛𝜉

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ ∫

𝜋

0

𝜏
1
(𝜂) sin 𝑛𝜂 𝑑𝜂

+
2

𝜋

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) sin 𝑛𝜉

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ ∫

𝜋

0

𝜏
2
(𝜂) sin 𝑛𝜂 𝑑𝜂.

(A.18)

Now we change the integral sign with the summation sign;
the above equation converts to

Ω
0
(𝜉)

= −
4

𝜋
∫
𝐿
0

∞

∑

𝑛=1

sh (𝑛ℎ
+
) sh (𝑛ℎ

−
) sin 𝑛𝜉 cos 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ 𝜑
0
(𝜂) 𝑑𝜂

+
2

𝜋
∫
𝐿
0

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) − ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ sin 𝑛𝜉 sin 𝑛𝜂 [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
2

𝜋
∫

𝜋

0

∞

∑

𝑛=1

sh (𝑛ℎ
−
) sin 𝑛𝜉 sin 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ 𝜏
1
(𝜂) 𝑑𝜂

+
2

𝜋
∫

𝜋

0

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) sin 𝑛𝜉 sin 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

⋅ 𝜏
2
(𝜂) 𝑑𝜂.

(A.19)

Based on the mathematics

sh (𝑛ℎ
±
) ≈ 𝑒
𝑛ℎ
± , ch (𝑛ℎ

±
) ≈ 𝑒
𝑛ℎ
±

in which 𝑛 󳨀→ ∞.
(A.20)

Now we change the two first quantities of (A.19) accord-
ingly

(1)
∞

∑

𝑛=1

sh (𝑛ℎ
+
) sh (𝑛ℎ

−
) sin 𝑛𝜉 cos 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

=

∞

∑

𝑛=1

[
sh (𝑛ℎ

+
) sh (𝑛ℎ

−
)

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
−

1

𝜇 + 1
]

⋅ sin 𝑛𝜉 cos 𝑛𝜂

+
1

𝜇 + 1

∞

∑

𝑛=1

sin 𝑛𝜉 cos 𝑛𝜂

=
1

2 (𝜇 + 1)
[

∞

∑

𝑛=1

sin 𝑛 (𝜉 + 𝜂) +
∞

∑

𝑛=1

sin 𝑛 (𝜉 − 𝜂)]

+

∞

∑

𝑛=1

[(𝜇 sh (𝑛ℎ
+
) (sh (𝑛ℎ

−
) − ch (𝑛ℎ

−
))

+ sh (𝑛ℎ
−
) (sh (𝑛ℎ

+
) − ch (𝑛ℎ

+
)))

⋅ ((𝜇 + 1) [𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
)

+ ch (𝑛ℎ
+
) sh (𝑛ℎ

−
)] )
−1

]

⋅ sin 𝑛𝜉 cos 𝑛𝜂

=
1

𝜇 + 1

∞

∑

𝑛=1

−𝜇 sh (𝑛ℎ
+
) 𝑒
−𝑛ℎ
− − sh (𝑛ℎ

−
) 𝑒
−𝑛ℎ
+

[𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)]

⋅ sin 𝑛𝜉 cos 𝑛𝜂

+
1

2 (𝜇 + 1)
[

∞

∑

𝑛=1

sin 𝑛 (𝜉 + 𝜂) +
∞

∑

𝑛=1

sin 𝑛 (𝜉 − 𝜂)]

=
1

2 (𝜇 + 1)
[ctg

𝜉 − 𝜂

2
+ ctg

𝜉 + 𝜂

2
]

−
1

𝜇 + 1

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) 𝑒
−𝑛ℎ
− + sh (𝑛ℎ

−
) 𝑒
−𝑛ℎ
+

[𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)]

⋅ sin 𝑛𝜉 cos 𝑛𝜂
(A.21)

and then using the equality
∞

∑

𝑛=1

cos 𝑛𝜉
𝑛

= ln 1

2
󵄨󵄨󵄨󵄨sin (𝜉/2)

󵄨󵄨󵄨󵄨

and so

1

2
ctg 𝜉
2
=

∞

∑

𝑛=1

sin 𝑛𝜉

(0 < 𝜉 < 2𝜋)

(A.22)

(2)
∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) − ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
sin 𝑛𝜉 sin 𝑛𝜂

=

∞

∑

𝑛=1

[
sh (𝑛ℎ

+
) sh (𝑛ℎ

−
)

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
−
𝜇 − 1

𝜇 + 1
]

⋅ sin 𝑛𝜉 sin 𝑛𝜂
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+
𝜇 − 1

2 (𝜇 + 1)
[

∞

∑

𝑛=1

cos 𝑛 (𝜉 − 𝜂) −
∞

∑

𝑛=1

cos 𝑛 (𝜉 + 𝜂)]

=
2𝜇

𝜇 + 1

∞

∑

𝑛=1

sh 𝑛 (ℎ
+
− ℎ
−
) sin 𝑛𝜉 sin 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)

+
𝜋 (𝜇 − 1)

2 (𝜇 + 1)
[𝛿 (𝜉 − 𝜂) − 𝛿 (𝜉 + 𝜂)] .

(A.23)

In the same manner
∞

∑

𝑛=1

sin 𝑛𝜉
𝑛

=
𝜋 − |𝑥|

2
sign𝑥 (−2𝜋 < 𝑥 < 2𝜋)

from that
∞

∑

𝑛=1

cos 𝑛𝑥 = 𝜋𝛿 (𝑥) − 1
2
.

(A.24)

Using the above conversations, (A.19) can be written as
follows:

Ω
0
(𝜉) = −

1

𝜋 (𝜇 + 1)
∫
𝐿0

[ctg
𝜉 − 𝜂

2
+ ctg

𝜉 + 𝜂

2
] 𝜑
0
(𝜂) 𝑑𝜂

+
4

𝜋 (𝜇 + 1)

⋅ ∫
𝐿0

(

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) 𝑒
−𝑛ℎ− + sh (𝑛ℎ

−
) 𝑒
−𝑛ℎ+

[𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)]

⋅ sin 𝑛𝜉 cos 𝑛𝜂)𝜑
0
(𝜂) 𝑑𝜂

+
𝜇 − 1

𝜇 + 1
∫
𝐿0

[𝛿 (𝜉 − 𝜂) − 𝛿 (𝜉 + 𝜂)] [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
4𝜇

𝜋 (𝜇 + 1)

⋅ ∫
𝐿0

(

∞

∑

𝑛=1

sh 𝑛 (ℎ
+
− ℎ
−
) sin 𝑛𝜉 sin 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
)

⋅ [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
2

𝜋
∫
𝜋

0
(

∞

∑

𝑛=1

sh 𝑛ℎ
−
sin 𝑛𝜉 sin 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
)

⋅ 𝜏
1
(𝜂) 𝑑𝜂

+
2

𝜋
∫
𝜋

0
(

∞

∑

𝑛=1

𝜇 sh 𝑛ℎ
+
sin 𝑛𝜉 sin 𝑛𝜂

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
)

⋅ 𝜏
2
(𝜂) 𝑑𝜂

(0 < 𝜉 < 𝜋)

(A.25)

considering the below kernels

𝐾
∗
(𝜉) =

∞

∑

𝑛=1

𝜇 sh (𝑛ℎ
+
) 𝑒
−𝑛ℎ
− + sh (𝑛ℎ

−
) 𝑒
−𝑛ℎ
+

[𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)]

sin 𝑛𝜉,

𝐿
∗
(𝜉) =

∞

∑

𝑛=1

sh 𝑛 (ℎ
+
− ℎ
−
) cos 𝑛𝜉

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
,

𝐿
∗

1
(𝜉) =

∞

∑

𝑛=1

sh 𝑛ℎ
−
cos 𝑛𝜉

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
,

𝐿
∗

2
(𝜉) = 𝜇

∞

∑

𝑛=1

sh 𝑛ℎ
+
cos 𝑛𝜉

𝜇 sh (𝑛ℎ
+
) ch (𝑛ℎ

−
) + ch (𝑛ℎ

+
) sh (𝑛ℎ

−
)
.

(A.26)

For simplicity, (A.25) can be written as

Ω
0
(𝜉) = −

1

𝜋 (𝜇 + 1)
∫
𝐿
0

[ctg
𝜉 − 𝜂

2
+ ctg

𝜉 + 𝜂

2
] 𝜑
0
(𝜂) 𝑑𝜂

+
2

𝜋 (𝜇 + 1)
∫
𝐿
0

(𝐾
∗
(𝜉 − 𝜂) + 𝐾

∗
(𝜉 + 𝜂))

⋅ 𝜑
0
(𝜂) 𝑑𝜂

+
𝜇 − 1

𝜇 + 1
∫
𝐿
0

[𝛿 (𝜉 − 𝜂) − 𝛿 (𝜉 + 𝜂)]

⋅ [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
2𝜇

𝜋 (𝜇 + 1)
∫
𝐿
0

(𝐿
∗
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿∗ (𝜉 + 𝜂))

⋅ [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
1

𝜋
∫

𝜋

0

(𝐿
∗

1
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

1
(𝜉 + 𝜂)) 𝜏

1
(𝜂) 𝑑𝜂

+
1

𝜋
∫

𝜋

0

(𝐿
∗

2
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

2
(𝜉 + 𝜂)) 𝜏

2
(𝜂) 𝑑𝜂

(A.27)

and it is clear that

∫
𝐿
0

[𝛿 (𝜉 − 𝜂) − 𝛿 (𝜉 + 𝜂)] [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

= ∫
𝐿
0

𝛿 (𝜉 − 𝜂) [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

− ∫
𝐿
0

𝛿 (𝜉 + 𝜂) [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂.

(A.28)

In the second integral, by changing 𝜂 → −𝜂, because of odd
function, we have

𝜏
+
(−𝜂) − 𝜏

−
(−𝜂) = − [𝜏

+
(𝜂) − 𝜏

−
(𝜂)] ,

𝐿
0
=

𝑁

∑

𝑘=1

(𝛼
𝑘
, 𝛽
𝑘
) ,

𝐿̃
0
=

𝑁

∑

𝑘=1

(−𝛽
𝑘
, −𝛼
𝑘
) .

(A.29)
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From that it can be concluded that

∫
𝐿
0

[𝛿 (𝜉 − 𝜂) − 𝛿 (𝜉 + 𝜂)] [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

= ∫
𝐿
0

𝛿 (𝜉 − 𝜂) [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

− ∫
𝐿
0

𝛿 (𝜉 + 𝜂) [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

= ∫
𝐿
0
+𝐿̃
0

𝛿 (𝜉 − 𝜂) [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

= ∫
𝐿
0
+𝐿̃
0

𝛿 (𝜂 − 𝜉) [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

= 𝜏
+
(𝜉) − 𝜏

−
(𝜉) .

(A.30)

Therefore (A.27) changes to the following form:

Ω
0
(𝜉) = −

1

𝜋 (𝜇 + 1)
∫
𝐿
0

[ctg
𝜉 − 𝜂

2
+ ctg

𝜉 + 𝜂

2
] 𝜑
0
(𝜂) 𝑑𝜂

+
2

𝜋 (𝜇 + 1)
∫
𝐿
0

(𝐾
∗
(𝜉 − 𝜂) + 𝐾

∗
(𝜉 + 𝜂))

⋅ 𝜑
0
(𝜂) 𝑑𝜂

+
𝜇 − 1

𝜇 + 1
[𝜏
+
(𝜉) − 𝜏

−
(𝜉)] +

2𝜇

𝜋 (𝜇 + 1)

⋅ ∫
𝐿
0

(𝐿
∗
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿∗ (𝜉 + 𝜂))

⋅ [𝜏
+
(𝜂) − 𝜏

−
(𝜂)] 𝑑𝜂

+
1

𝜋
∫

𝜋

0

(𝐿
∗

1
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

1
(𝜉 + 𝜂)) 𝜏

1
(𝜂) 𝑑𝜂

+
1

𝜋
∫

𝜋

0

(𝐿
∗

2
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

2
(𝜉 + 𝜂)) 𝜏

2
(𝜂) 𝑑𝜂.

(A.31)

Now in the cracks system 𝐿 we have

Ω (𝑥) =
𝜏
+
(𝑥) + 𝜏

−
(𝑥)

2
=
𝜏
(0)

+
(𝑥) + 𝜏

(0)

−
(𝑥)

2

(𝑥 ∈ 𝐿) (𝜉 =
𝜋𝑥

𝑙
)

(A.32)

and in the system 𝐿
0

Ω
0
(𝜉) =

𝜏
+
(𝜉) + 𝜏

−
(𝜉)

2
(𝜉 ∈ 𝐿

0
) . (A.33)

In continuation, (A.31) reduces to the following problem in
system 𝐿

0
:

Ω
0
(𝜉) = −

1

𝜋 (𝜇 + 1)
∫
𝐿
0

[ctg
𝜉 − 𝜂

2
+ ctg

𝜉 + 𝜂

2
] 𝜑
0
(𝜂) 𝑑𝜂

+
2

𝜋 (𝜇 + 1)

⋅ ∫
𝐿
0

(𝐾
∗
(𝜉 − 𝜂) + 𝐾

∗
(𝜉 + 𝜂)) 𝜑

0
(𝜂) 𝑑𝜂 = 𝑓 (𝜉)

(𝜉 ∈ 𝐿
0
)

(A.34)

in which we have

𝑓 (𝜉) =
𝜏
+
(𝜉) + 𝜏

−
(𝜉)

2
−
𝜇 − 1

𝜇 + 1
[𝜏
+
(𝜉) − 𝜏

−
(𝜉)]

−
2𝜇

𝜋 (𝜇 + 1)

⋅ ∫
𝐿
0

(𝐿
∗
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿∗ (𝜉 + 𝜂)) [𝜏+ (𝜂) − 𝜏− (𝜂)] 𝑑𝜂

+
1

𝜋
∫

𝜋

0

(𝐿
∗

1
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

1
(𝜉 + 𝜂)) 𝜏

1
(𝜂) 𝑑𝜂

−
1

𝜋
∫

𝜋

0

(𝐿
∗

2
(
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨) − 𝐿
∗

2
(𝜉 + 𝜂)) 𝜏

2
(𝜂) 𝑑𝜂.

(A.35)

Abbreviations

𝑎
𝑘
: Beginning tip of crack

𝑏
𝑘
: End tip of crack

COD: Crack opening displacement
𝐷
1
: Top rectangular plate

𝐷
2
: Bottom rectangular plate

𝐺: Shear modulus
ℎ
0
: Height parameter

ℎ
1
, ℎ
2
: Heights of top and bottom rectangles

𝑘 = 𝐺
0
/𝐺: Shear moduli ratio

𝐾
(0)

III : Dimensionless antiplane SIF
𝑙: Length of plate
𝐿: Total length of cracks
𝐿
󸀠: Length of noncracked region on

interface line
𝐿
+, 𝐿−: Upper and lower boundaries of cracks
𝐿
𝑘
: Length of one crack

𝑀: Arbitrary natural number
𝑁: Number of cracks
𝑃: Antiplane point load at midpoint of

plate edges
𝑟, 𝜌: Variable for changing of integration

domain
SIE: Singular integral equation
sh: sinh
ch: cosh
SIF: Stress intensity factor
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𝑇(𝑥): Antiplane distributed shear traction on
edges of plate

𝑇
𝑛
(𝑢): Chebyshev polynomial of the first kind

𝑈
𝑛−1
(𝑢): Chebyshev polynomial of the first kind

𝛼, 𝛽: Parameters for the beginning and end
tips of crack

𝜏
+
(𝑥): Antiplane shear stress of upper rectangle

𝜏
−
(𝑥): Antiplane shear stress of lower rectangle

𝜏
(0)

±
: Varying internal loading on crack edges

𝜏
(1)

𝑦𝑧
: Antiplane shear stress of upper rectangle

𝜏
(2)

𝑦𝑧
: Antiplane shear stress of lower rectangle

𝜏
1
(𝑥): Antiplane shear loading at the top edge

of body
𝜏
2
(𝑥): Antiplane shear loading at the bottom

edge of body
𝜇 = 𝐺

1
/𝐺
2
: Shear moduli ratio

𝜆 = 𝑘𝑙 = (𝐺
0
/𝐺)𝑙: Shear moduli ratio parameter

𝜉, 𝜂: Length parameters for shear stress
calculations

𝛿(𝑥): Dirac delta function
𝜔(𝑥, 𝑦): Displacement function along 𝑧-axis
Λ
0
: Domain of crack length parameters

Φ(𝑥), 𝜑(𝑥): Displacement functions
Ω(𝑥),𝑋(𝑥): Stress functions.
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