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The present paper draws attention to the weak solvability of a class of singular and degenerate problems with nonlinear boundary
conditions. These problems derive from the electricity theory serving as mathematical models for physical phenomena related to
the anisotropic media with “perfect” insulators or “perfect” conductors points. By introducing an appropriate weighted Sobolev
space to the mathematical literature, we establish an existence and uniqueness result.

1. Introduction

During the last decades there has been a high interest in the
study of the following class of problems:

div (𝜇 (x) ∇𝑢 (x)) + 𝑓 (x) = 0 in Ω,

𝑢 (x) = 0 on 𝜕Ω,
(1)

where Ω is an arbitrary domain, 𝜇 is a nonnegative weight,
and 𝑓 is a nonlinear function satisfying certain conditions. If
the operator involved in (1) is a uniformly elliptic operator,
then the existence of solutions can be ensured by classical
critical point theory means; see, for example, [1, 2]. But
when this is not the case and 𝜇 is a function that has
zeros at some points or it is unbounded, the problem
becomes much more mathematically complicated and thus
the mathematical interest increases. However, the interest
in differential operators with degeneracies or singularities is
not purely mathematical, since they are used in the study of
several physical phenomena. Indeed, the restrictions of the
type 𝜇(𝑥) ≥ const. > 0 for all 𝑥, or 𝜇(𝑥) ≤ const. < ∞
for all 𝑥, are not natural; thus it is worth struggling with all
the difficulties that appear in the calculus otherwise. As for
the methods utilized to overcome these inconveniences, they
depend on the problem. Many papers discuss the existence

of solutions for (1) when the weight has the particular form
𝜇(𝑥) = |𝑥|𝑏, so that, under some appropriate hypotheses on
𝑏, a Caffarelli-Kohn-Nirenberg inequality can be applied; see,
for example, [3–5] and the references therein.

The present paper approaches a different situation by
preserving a higher degree of generality on the weight.
Let Ω ⊂ R2 be an open, bounded, connected subset,
with Lipschitz continuous boundary Γ partitioned in three
measurable parts Γ1, Γ2, Γ3 such that the Lebesgue measure of
Γ1 is positive. We are interested in the following problem.

Problem 1. Find 𝑢 : Ω → R such that

div (𝛽 (x) ∇𝑢 (x)) + 𝑞0 (x) = 0 in Ω, (2)

𝑢 (x) = 0 on Γ1, (3)

𝛽 (x) 𝜕𝑢
𝜕^

(x) = 𝑞2 (x) on Γ2, (4)

𝛽 (x) 𝜕𝑢
𝜕^

(x) = −𝑘 𝑢 (x)
√𝑢2 (x) + 𝛼

on Γ3, (5)

where ^ denotes, as usual, the outward unit normal to Γ, 𝛽
satisfies 𝛽, 𝛽−1 ∈ 𝐿2(Ω) and 𝛽 > 0 a.e. in Ω with inf

Ω
𝛽 = 0,
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sup
Ω
𝛽 = ∞, and the other functions satisfy 𝑘, 𝛼 > 0, 𝑞0 ∈

𝐿2(Ω), and 𝑞2 ∈ 𝐿
∞(Γ2).

Working under the previous conditions, we want to prove
that Problem 1 admits a unique weak solution. Our way
of surpassing the difficulties created by the presence of the
possibly singular or degenerate points is by conducting our
study in a weighted Sobolev-type space that will be intro-
duced in the next section.This space appears for the first time
in the mathematical literature, although it is similar to the
weighted Sobolev space used in [6]. These two studies share
the same kind of space to work on because of the following
common aspect: they both treat degenerate problems and in
both cases we only require 𝑢 = 0 on a nonempty subset of
the boundary instead of the usual zero Dirichlet boundary
condition imposed on the entire boundary. This fact can be
correlated with concrete applications and represents a novel
trait of our research. Despite some similarities, there are some
clear differences between problem (2)–(5) and the problem
treated in [6]: the problem from here admits singular points,
and, more importantly, it is addressed to a different range of
applications. To be specific, while the problem from [6] is
a frictional contact problem that arrives from the theory of
elasticity, boundary value problems like (2)–(5) arrive from
the theory of electricity. Also, we mention that equations
of type (2) were introduced as models for various physical
phenomena connected to the equilibrium of anisotropic
media that possibly are somewhere “perfect” insulators or
“perfect” conductors; see [7, page 79].

Wewill discuss Problem 1 in Section 3. But before that, we
present the abstract framework and some preliminary results
that serve our goal.

2. Functional Setting and Preliminaries

Let𝑁 ≥ 2 and Ω ⊂ R𝑁 be a bounded domain with Lipschitz
continuous boundary Γ. Let 𝜁 : Ω → R be a function
verifying the hypotheses

𝜁 ∈ 𝐿4 (Ω) , 𝜁−1 ∈ 𝐿4 (Ω) , 𝜁 (x) ̸= 0 a.e. on Ω,

inf
x∈Ω

𝜁2 (x) = 0, sup
x∈Ω

𝜁2 (x) = ∞.
(6)

As an example of such function, one can take 𝜁 : (−1, 1) ×
(−1, 1) → R such that

𝜁 (𝑥1, 𝑥2) =

{{{{{
{{{{{
{

1 for 𝑥1 ≤ 0,

(
1 − 𝑥1
𝑥2

)
1/4

for 𝑥1 > 0, 𝑥2 > 0,

(1 − 𝑥1)
1/4 for 𝑥1 > 0, 𝑥2 ≤ 0;

(7)

see also [8, Example 2.7].
Starting from the weight 𝜁 described by assumptions (6)

we can introduce a weighted Sobolev-type space

𝐻1
𝜁
(Ω) = {V : Ω → R | V ∈ 𝐿2 (Ω) , 𝜁∇V ∈ 𝐿2 (Ω)2} , (8)

endowed with the inner product

(𝑢, V)𝐻1
𝜁
(Ω) = (𝑢, V)𝐿2(Ω) + (𝜁∇𝑢, 𝜁∇V)𝐿2(Ω)2 (9)

and the corresponding norm

‖V‖𝐻1
𝜁
(Ω) = (‖V‖

2

𝐿2(Ω)
+ 𝜁∇V


2

𝐿2(Ω)
2)
1/2

. (10)

Following [9], this weighted Sobolev space associated with
norm (10) is aHilbert space. Using similar arguments to those
from [6, Lemma 3.1], one can deduce that if V ∈ 𝐻1

𝜁
(Ω), then

V ∈ 𝑊1,1(Ω), and, in addition, there exists 𝑐𝐸 = 𝑐𝐸(Ω, 𝜁) > 0
such that

‖V‖𝑊1,1(Ω) ≤ 𝑐𝐸 ‖V‖𝐻1
𝜁
(Ω) , ∀V ∈ 𝐻1

𝜁
(Ω) . (11)

On the other hand, according to the Gagliardo trace theorem
(see [10]), there exists a linear continuous operator 𝛾 :
𝑊1,1(Ω) → 𝐿1(Γ), called the Gagliardo trace operator, such
that

𝛾V = V|Γ if V ∈ 𝑊
1,1 (Ω) ∩ 𝐶 (Ω) (12)

and there exists 𝑐𝐺 = 𝑐𝐺(Ω) > 0 such that
𝛾V

𝐿1(Γ) ≤ 𝑐𝐺 ‖V‖𝑊1,1(Ω) for each V ∈ 𝑊1,1 (Ω) . (13)

Everywhere below, by 𝛾 we will denote the Gagliardo trace
operator. Taking into consideration the above said,

for every V ∈ 𝐻1
𝜁
(Ω) we deduce that 𝛾V ∈ 𝐿1 (Γ) . (14)

In order to search for weak solutions for problem (2)–(5), we
will work on the following subspace of𝐻1

𝜁
(Ω) :

𝑉𝜁 = {V ∈ 𝐻
1

𝜁
(Ω) | 𝛾V = 0 a.e. on Γ1} , (15)

where Γ1 ⊂ Γ with meas(Γ1) > 0. As a closed subspace
of the Hilbert space (𝐻1

𝜁
(Ω), (⋅, ⋅)𝐻1

𝜁
(Ω), ‖ ⋅ ‖𝐻1

𝜁
(Ω)), the space

(𝑉𝜁, (⋅, ⋅)𝐻1
𝜁
(Ω), ‖ ⋅ ‖𝐻1

𝜁
(Ω)) is also a Hilbert space. Besides,

(𝑢, V)𝑉
𝜁

= ∫
Ω

𝜁2 (x) ∇𝑢 (x) ⋅ ∇V (x) 𝑑𝑥 (16)

defines an inner product on the space 𝑉𝜁. Let us denote by
‖ ⋅ ‖𝑉

𝜁

the norm induced by the inner product (16),

‖V‖𝑉
𝜁

= 𝜁∇V
𝐿2(Ω)2 ∀V ∈ 𝑉𝜁. (17)

By adapting the proof of [6, Lemma 3.2] to our present
situation, one can see that the norms ‖ ⋅ ‖𝐻1

𝜁
(Ω) and ‖ ⋅ ‖𝑉

𝜁

are
equivalent on𝑉𝜁. Consequently, (𝑉𝜁, (⋅, ⋅)𝑉

𝜁

, ‖ ⋅ ‖𝑉
𝜁

) is a Hilbert
space too.

Let us proceed by recalling the following tool.

Theorem2. Suppose (𝑋, (⋅, ⋅)𝑋, ‖⋅‖𝑋) is aHilbert space. Let𝐴 :
𝑋 → 𝑋 be a Lipschitz continuous operator with the property
that

𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑚 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

(𝐴𝑢 − 𝐴V, 𝑢 − V)𝑋 ≥ 𝑚 ‖𝑢 − V‖2
𝑋

∀𝑢, V ∈ 𝑋.
(18)
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Let 𝑗 : 𝑋 → R be a proper, convex, and continuous functional.
Then, given 𝑓 ∈ 𝑋, there exists a unique element 𝑢 ∈ 𝑋 such
that

(𝐴𝑢, V − 𝑢)𝑋 + 𝑗 (V) − 𝑗 (𝑢) ≥ (𝑓, V − 𝑢)𝑋 ∀V ∈ 𝑋. (19)

Moreover, the solution depends Lipschitz continuously on 𝑓.

For a proof of the above theorem, the reader can consult,
for example, [11]. We end this section with three preliminary
results on convex analysis.

Theorem 3 (see [12, Theorem 6.2.1.]). Let 𝑋 be a reflexive
Banach space, and let 𝑓 : 𝑋 → R be Gâteaux differentiable.
Then the following conditions are equivalent:

(i) 𝑓 is convex;
(ii) one has

𝑓 (𝑢) − 𝑓 (V) ≥ (𝑓 (V) , 𝑢 − V)
𝑋⋆×𝑋

∀𝑢, V ∈ 𝑋, (20)

where𝑋⋆ denotes the dual of the space𝑋.

Theorem4 (see [11, Proposition 1.59]). Let𝑋 be a real normed
space and let 𝑓 : 𝑋 → R be a proper convex lower semicon-
tinuous functional. Then 𝜕𝑓(𝑢) ̸= 0 for all 𝑢 ∈ int(dom(𝑓));
that is, 𝑓 is subdifferentiable on int(dom(𝑓)).

Theorem5 (see [11, Proposition 1.60]). Let𝑋 be a real normed
space and let 𝑓 : 𝑋 → R be convex. Assume 𝑢 ∈ 𝑋 and
𝑓(𝑢) ∈ R. If𝑓(𝑢) exists as a Gâteaux derivative, then 𝜕𝑓(𝑢) =
{𝑓(𝑢)}.

Nowwe are ready to present our existence anduniqueness
result.

3. Main Result

In what follows, we consider 𝜁 = √𝛽, where 𝛽 is the function
from Problem 1. In order to deliver a weak formulation of
Problem 1, we assume that 𝑢 is a strong solution. Wemultiply
(2) by a function V ∈ 𝐶∞(Ω), and, after integration by parts,
we obtain

∫
Ω

𝛽 (x) ∇𝑢 (x) ⋅ ∇V (x) 𝑑𝑥 = ∫
Ω

𝑞0 (x) V (x) 𝑑𝑥

+ ∫
Γ

𝛽 (x) 𝜕𝑢
𝜕^

(x) V (x) 𝑑Γ.
(21)

Due to boundary conditions (3)–(5), we infer that

∫
Ω

𝛽 (x) ∇𝑢 (x) ⋅ ∇V (x) 𝑑𝑥

= ∫
Ω

𝑞0 (x) V (x) 𝑑𝑥 + ∫
Γ
1

𝛽 (x) 𝜕𝑢
𝜕^

(x) V (x) 𝑑Γ

+ ∫
Γ
2

𝑞2 (x) V (x) 𝑑Γ

− 𝑘∫
Γ
3

𝑢 (x) V (x)
√𝑢2 (x) + 𝛼

𝑑Γ ∀V ∈ 𝐶∞ (Ω) .

(22)

The density result 𝐶∞(Ω) = 𝑊1,1(Ω) implies that

∫
Ω

𝛽 (x) ∇𝑢 (x) ⋅ ∇V (x) 𝑑𝑥

= ∫
Ω

𝑞0 (x) V (x) 𝑑𝑥 + ∫
Γ
1

𝛽 (x) 𝜕𝑢
𝜕^

(x) 𝛾V (x) 𝑑Γ

+ ∫
Γ
2

𝑞2 (x) 𝛾V (x) 𝑑Γ

− 𝑘∫
Γ
3

𝛾𝑢 (x) 𝛾V (x)

√(𝛾𝑢)
2
(x) + 𝛼

𝑑Γ ∀V ∈ 𝑊1,1 (Ω) .

(23)

This allows us to give the definition of the weak solution
to our problem.

Definition 6. By a weak solution for Problem 1 one under-
stands a function 𝑢 ∈ 𝑉𝜁 which verifies

∫
Ω

𝛽 (x) ∇𝑢 (x) ⋅ ∇V (x) 𝑑𝑥

= ∫
Ω

𝑞0 (x) V (x) 𝑑𝑥 + ∫
Γ
2

𝑞2 (x) 𝛾V (x) 𝑑Γ

− 𝑘∫
Γ
3

𝛾𝑢 (x) 𝛾V (x)

√(𝛾𝑢)
2
(x) + 𝛼

𝑑Γ,

(24)

for all V ∈ 𝑉𝜁.

Let us introduce now the main result of our paper.

Theorem 7. There exists a unique weak solution to Problem 1.

To provide a proof for this theoremwe rely onTheorem 2,
so we prove several auxiliary lemmas.

Lemma 8. There exists 𝐴 : 𝑉𝜁 → 𝑉𝜁 such that

(𝐴𝑢 − 𝐴V, 𝑢 − V)𝑉
𝜁

= ‖𝑢 − V‖2
𝑉
𝜁

∀𝑢, V ∈ 𝑉𝜁. (25)

Proof. We introduce the form

𝑎 : 𝑉𝜁 × 𝑉𝜁 → R, 𝑎 (𝑢, V) = ∫
Ω

𝛽 (x) ∇𝑢 (x) ⋅ ∇V (x) 𝑑𝑥
(26)

and we claim that 𝑎 is well defined, bilinear, and continuous.
Indeed, since 𝑢, V ∈ 𝐻1

𝜁
(Ω) and 𝛽 = 𝜁2, function 𝑎 is well

defined. Also, from the linearity of the gradient and of the
integral operator, one can immediately see that 𝑎 is bilinear.
Then, to show the continuity of 𝑎, it is enough to notice that,
by the Hölder inequality, we arrive at

|𝑎 (𝑢, V)| ≤ 𝜁∇𝑢
𝐿2(Ω)

𝜁∇V
𝐿2(Ω) ; (27)

that is,

|𝑎 (𝑢, V)| ≤ ‖𝑢‖𝑉
𝜁
‖V‖𝑉

𝜁

. (28)
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With that, our claim is proved and we can apply Riesz’s
representation theorem to deduce that there exists

𝐴 : 𝑉𝜁 → 𝑉𝜁, (𝐴V1, V2)𝑉
𝜁

= 𝑎 (V1, V2) . (29)

We have
(𝐴𝑢 − 𝐴V, 𝑢 − V)𝑉

𝜁

= ∫
Ω

𝛽 (x) ‖∇𝑢(x) − ∇V(x)‖2 𝑑𝑥

= ‖𝑢 − V‖2
𝑉
𝜁

∀𝑢, V ∈ 𝑉𝜁,

(30)

where, as usual, ‖⋅‖ denotes the Euclidean normonR2. Hence
our proof is finished.

Let us define now the following application:

𝑗 : 𝑉𝜁 → R,

𝑗 (𝑢) = ∫
Γ
3

𝑘 [√(𝛾𝑢)
2
(x) + 𝛼2 − 𝛼] 𝑑Γ.

(31)

Lemma 9. The functional 𝑗 is well defined, continuous,
Gâteaux differentiable, and convex.

Proof. Note that

√(𝛾𝑢)

2
(x) + 𝛼2 − 𝛼



=
𝛾𝑢 (x)



√(𝛾𝑢)
2
(x) + 𝛼2 + 𝛼

𝛾𝑢 (x)
 ≤

𝛾𝑢 (x)
 .

(32)

Since 𝑢 ∈ 𝑉𝜁, we have that 𝛾𝑢 ∈ 𝐿
1(Γ); thus

∫
Γ
3


√(𝛾𝑢)

2
(x) + 𝛼2 − 𝛼


𝑑Γ < ∞, (33)

and consequently 𝑗 is well defined. Also, it is not difficult to
see that 𝑗 is continuous.

In what concerns the Gâteaux differentiability of 𝑗, for all
𝑢, V ∈ 𝑉𝜁 we have

lim
𝑡→0+

𝑗 (𝑢 + 𝑡V) − 𝑗 (𝑢)
𝑡

=
𝑑

𝑑𝑡
𝑗(𝑢 + 𝑡V)

𝑡=0

= 𝑘
𝑑

𝑑𝑡
∫
Γ
3

[√(𝛾 (𝑢 + 𝑡V))2 (x) + 𝛼2 − 𝛼] 𝑑Γ
𝑡=0

.

(34)

By Lebesgue’s Theorem, the differentiation under the
integral is allowed if, for 𝑡 close to zero, the term
√(𝛾(𝑢 + 𝑡V))2(x) + 𝛼2 − 𝛼 is dominated by a fixed 𝐿1

function which does not depend on 𝑡. Indeed, by (32),

√(𝛾 (𝑢 + 𝑡V))2 (x) + 𝛼2 − 𝛼


≤ 𝛾 (𝑢 + 𝑡V) (x)



≤ 𝛾𝑢 (x)
 +

𝛾V (x)
 ,

(35)

for |𝑡| < 1. Therefore,

lim
𝑡→0+

𝑗 (𝑢 + 𝑡V) − 𝑗 (𝑢)
𝑡

= 𝑘∫
Γ
3

𝜕

𝜕𝑡
[√[𝛾𝑢 (x) + 𝑡𝛾V (x)]2 + 𝛼2 − 𝛼]

𝑡=0
𝑑Γ

= 𝑘∫
Γ
3

𝛾𝑢 (x) 𝛾V (x)

√(𝛾𝑢)
2
(x) + 𝛼2

𝑑Γ.

(36)

It is clear that the application which maps V ∈ 𝑉𝜁 into

𝑘 ∫
Γ
3

(𝛾𝑢(x)𝛾V(x)/√(𝛾𝑢)2(x) + 𝛼2)𝑑Γ is linear, so we prove its
continuity. We have



𝑘 ∫
Γ
3

𝛾𝑢 (x) 𝛾V (x)

√(𝛾𝑢)
2
(x) + 𝛼2

𝑑Γ



≤ 𝑘∫
Γ
3

𝛾V (x)
 𝑑Γ. (37)

Using (13), (11), and the equivalence of norms ‖ ⋅ ‖𝑉
𝜁

and ‖ ⋅
‖𝐻1
𝜁
(Ω) on 𝑉𝜁, there exists 𝑘0 such that



𝑘 ∫
Γ
3

𝛾𝑢 (x) 𝛾V (x)

√(𝛾𝑢)
2
(x) + 𝛼2

𝑑Γ



≤ 𝑘0 ‖V‖𝑉
𝜁

(38)

for all V ∈ 𝑉𝜁. This way, we have obtained that 𝑗 is Gâteaux
differentiable and

(𝑗 (𝑢) , V)
𝑉
𝜁

= 𝑘∫
Γ
3

𝛾𝑢 (x) 𝛾V (x)

√(𝛾𝑢)
2
(x) + 𝛼2

𝑑Γ. (39)

As for convexity, due toTheorem 3, it is enough to show that

𝑗 (𝑢) − 𝑗 (V) ≥ (𝑗 (V) , 𝑢 − V)
𝑉
𝜁

∀𝑢, V ∈ 𝑉𝜁 (40)

that is,

∫
Γ
3

[√(𝛾V)2 (x) + 𝛼2 − 𝛼] 𝑑Γ

− ∫
Γ
3

[√(𝛾𝑢)
2
(x) + 𝛼2 − 𝛼] 𝑑Γ

≥ ∫
Γ
3

𝛾𝑢 (x) [𝛾V (x) − 𝛾𝑢 (x)]

√(𝛾𝑢)
2
(x) + 𝛼

𝑑Γ

(41)

for all 𝑢, V ∈ 𝑉𝜁. To do so, we start from the fact that

√[(𝛾V)2 (x) + 𝛼2] [(𝛾𝑢)2 (x) + 𝛼2]

≥ 𝛾𝑢 (x)

𝛾V (x)

 + 𝛼
2,

(42)

for all 𝑢, V ∈ 𝑉𝜁. This immediately leads to

√[(𝛾V)2 (x) + 𝛼2] [(𝛾𝑢)2 (x) + 𝛼2]

−𝛼2 − (𝛾𝑢)
2
(x) ≥ 𝛾𝑢 (x) 𝛾V (x) − (𝛾𝑢)2 (x) ;

(43)
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hence

√(𝛾V)2 (x) + 𝛼2 − √(𝛾𝑢)2 (x) + 𝛼2

≥
𝛾𝑢 (x) [𝛾V (x) − 𝛾𝑢 (x)]

√(𝛾𝑢)
2
(x) + 𝛼2

(44)

and (40) holds true. With this, we conclude the proof of the
lemma.

Furthermore, the following result takes place.

Lemma 10. There exists a unique element 𝑓 ∈ 𝑉𝜁 such that

∫
Ω

𝑞0 (x) V (x) 𝑑𝑥 + ∫
Γ
2

𝑞2 (x) 𝛾V (x) 𝑑Γ

= (𝑓, V)
𝑉
𝜁

∀V ∈ 𝑉𝜁.
(45)

Proof. We introduce

Φ : 𝑉𝜁 → R,

Φ (V) = ∫
Ω

𝑞0 (x) V (x) 𝑑𝑥 + ∫
Γ
2

𝑞2 (x) 𝛾V (x) 𝑑Γ
(46)

and we claim that Φ is well defined, linear, and continuous.
Indeed, the form Φ is well defined because 𝑞0, V ∈ 𝐿2(Ω),
𝑞2 ∈ 𝐿

∞(Γ2), and 𝛾V ∈ 𝐿
1(Γ). The linearity ofΦ follows easily

from the linearity of the integral operator. Let us focus on the
continuity ofΦ. First, by the Hölder inequality,


∫
Ω

𝑞0 (x) V (x) 𝑑𝑥

≤ 𝑞0

𝐿2(Ω) ‖V‖𝐿2(Ω) (47)

for all V ∈ 𝑉𝜁. Then, by relation (10), we find that

∫
Ω

𝑞0 (x) V (x) 𝑑𝑥

≤ 𝑞0

𝐿2(Ω) ‖V‖𝐻1
𝜁
(Ω) (48)

for all V ∈ 𝑉𝜁. At the same time,

∫
Γ
2

𝑞2 (x) 𝛾V (x) 𝑑Γ

≤ 𝑞2

𝐿∞(Γ
2
)

𝛾V
𝐿1(Γ) . (49)

By (13) and (11) it follows that

∫
Γ
2

𝑞2 (x) 𝛾V (x) 𝑑Γ

≤ 𝑐𝐺𝑐𝐸

𝑞2
𝐿∞(Γ

2
)
‖V‖𝐻1

𝜁
(Ω) (50)

for all V ∈ 𝑉𝜁. We take into account the equivalence of
the norms ‖ ⋅ ‖𝑉

𝜁

and ‖ ⋅ ‖𝐻1
𝜁
(Ω) and the linearity of Φ, and

then we put together (46), (48), and (50) to deduce that Φ is
continuous.

At this point, we have all the ingredients to apply Riesz’s
representation theorem. So, we deduce that there exists a
unique element 𝑓 ∈ 𝑉𝜁 such that

Φ (V) = (𝑓, V)
𝑉
𝜁

∀V ∈ 𝑉𝜁 (51)

and the proof is complete.

Keeping in mind all the above assumptions, notations,
and results, we are able to introduce the following weak
formulation.

Problem 11. Find 𝑢 ∈ 𝑉𝜁 such that

(𝐴𝑢, V − 𝑢)𝑉
𝜁

+ 𝑗 (V) − 𝑗 (𝑢)

≥ (𝑓, V − 𝑢)
𝑉
𝜁

∀V ∈ 𝑉𝜁,
(52)

where 𝐴, 𝑗, and 𝑓 are the ones from (29), (31), and (45),
respectively.

Lemma 12. A function 𝑢 ∈ 𝑉𝜁 is a weak solution to Problem 1
if and only if it is a solution to Problem 11.

Proof. Let 𝑢 ∈ 𝑉𝜁 be a weak solution to Problem 1, meaning
that 𝑢 verifies Definition 6. Consequently,

∫
Ω

𝛽 (x) ∇𝑢 (x) ⋅ [∇𝑢 (x) − ∇V (x)] 𝑑𝑥

= ∫
Ω

𝑞0 (x) [𝑢 (x) − V (x)] 𝑑𝑥

+ ∫
Γ
2

𝑞2 (x) [𝛾𝑢 (x) − 𝛾V (x)] 𝑑Γ

− 𝑘∫
Γ
3

𝛾𝑢 (x) [𝛾𝑢 (x) − 𝛾V (x)]

√(𝛾𝑢)
2
(x) + 𝛼

𝑑Γ ∀V ∈ 𝑉𝜁.

(53)

Keeping in mind relations (26), (29), (39), and (45), by
relation (40) it is obvious that 𝑢 is a solution to Problem 11.

Conversely, let us consider now 𝑢 ∈ 𝑉𝜁 to be a solution to
Problem 11.Then𝑓−𝐴𝑢 ∈ 𝜕𝑗(𝑢). Moreover, due to Lemma 9,
we can apply Theorems 4 and 5 to infer that 𝑓 − 𝐴𝑢 = 𝑗(𝑢).
This yields

(𝑓, V)
𝑉
𝜁

− (𝐴𝑢, V)𝑉
𝜁

= (𝑗 (𝑢) , V)
𝑉
𝜁

∀V ∈ 𝑉𝜁. (54)

Taking into consideration (26), (29), (39), and (45), we obtain
that 𝑢 is a weak solution to Problem 1.

Finally, we can conclude our main result.

Proof of Theorem 7. Based on the previous results, the proof
ofTheorem 7 is immediate. Indeed, by Lemma 12, it is enough
to prove that Problem 11 has a unique solution. To this end,
we use Lemmas 8 and 9 and we apply Theorem 2.
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[3] M. Ghergu and V. Rădulescu, “Singular elliptic problems with
lack of compactness,” Annali di Matematica Pura ed Applicata,
vol. 185, no. 1, pp. 63–79, 2006.
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Birkhäuser, Basel, Switzerland, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


