
Research Article
Modeling of Energy Demand in the Greenhouse Using PSO-GA
Hybrid Algorithms

Jiaoliao Chen,1,2 Jiangwu Zhao,1 Fang Xu,1 Haigen Hu,3 QingLin Ai,1 and Jiangxin Yang2

1Key Laboratory of E&M, Zhejiang University of Technology, Ministry of
Education & Zhejiang Province, Hangzhou 310014, China
2Institute of Manufacturing Engineering, Zhejiang University, Hangzhou 310027, China
3College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China

Correspondence should be addressed to Fang Xu; fangx@zjut.edu.cn

Received 30 May 2014; Accepted 14 October 2014

Academic Editor: Hiroyuki Mino

Copyright © 2015 Jiaoliao Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modeling of energy demand in agricultural greenhouse is very important tomaintain optimum inside environment for plant growth
and energy consumption decreasing.This paper deals with the identification parameters for physicalmodel of energy demand in the
greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA). HPSO-GA is developed to
estimate the indistinct internal parameters of greenhouse energymodel, which is built based on thermal balance. Experiments were
conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system,
which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias
and heat transfer constants.The performance of HPSO-GA on the parameter estimation is better than GA and PSO.This algorithm
can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System
identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand
in the greenhouse.

1. Introduction

Greenhouses are used to grow crops for better quality and
to protect them against natural environmental effects such as
high or low temperature. The energy consumption is neces-
sary tomaintain a suitable temperature for crop production in
the greenhouse. Modeling of energy demand in agricultural
greenhouse is very important to maintain optimum inside
environment and decrease energy consumption [1].

Greenhouse is a complex systemwith nonlinear, random,
and strong coupling uncertain features [2]. Mechanismmod-
eling based on the physical processes uses unsteady heat and
mass transfer to get the differential equations of greenhouse
dynamic process [3–5]. But some physical parameters in the
model are difficult to measure or changing with the crop
growth and outside weather. Black-box modeling is obtained
from input/output measurements of a dynamical system,
without knowledge of its inner physical and chemical laws,
and it has been widely applied for various items [6]. Neural

networks, as the typical black-box, have been applied to
model the greenhouse microclimate [7–9]. However, in the
black-box model, it is impossible to train all possible data,
which can result in overfitting.

Systems identification is suitable in nonlinear systems
for which a mathematical model is known and for which
input/output data is available in the experiments but for
which actual values of parameters in the model are unknown
[10]. The evolutionary algorithms are model-based recog-
nition methods and have been applied for uncertain opti-
mization problems [11, 12]. Some researchers have applied
global optimization methods for calibration parameters in
greenhouse microclimate model, such as genetic algorithm
(GA), ant colony optimization (ACO), and particle swarm
optimization (PSO) [13–15]. Hasni et al. found that the
performance of a greenhouse climate model using PSO is
better than GA in terms of calculation time and accuracy of
the results [16].
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Yet, PSO is easy to prematurely converge and lead to the
undesired local solution. GA may require a large number of
redundant iterations and result in long computing times and
low problem-solving efficiency [17]. Algorithmic operators
and parameters typically interact with one another nonlin-
early; it is extremely hard to figure out the most optimal
combinatorial strategy [18]. And the single algorithm defect
makes it not suitable for the mutative greenhouse model
[19]. HPSO-GA shows superiority compared with other
single optimization methods, such as GA and PSO, and can
overcome the disadvantages of particle swarm optimization
and genetic algorithm [20].

Therefore, this paper proposes a novel method for energy
consumption prediction in the greenhouse based on the
HPSO-GA. The parameters for physical model of energy
demand are calibrated using HPSO-GA for the profound
optimization performance in the nonlinear greenhouse sys-
tem with surface water source heat pumps system.

2. Materials and Methods

2.1. Experiment Setup. A multispan glass greenhouse was
employed in this experiment, and it was located in Jiangsu
Province, China (longitude: 120∘29󸀠 east, latitude: 31∘76󸀠
north).This greenhouse is coveredwith a single layer of 4mm
thickness glass, 72m length in the north-south direction, and
7.5m height and consisted of 28 spans 4m wide each. The
outside air temperature, wind speed, and PARweremeasured
by a small weather station (GalCon, Eldarshany Co., Israel).
The air temperatures at the height of 4m from the ground
of four positions inside were measured by sensors (HMT100,
Vaisala Co., Finland). Inside air temperature was the average
of 4 temperature sensors in the greenhouse. Surface water
source heat pumps systemwas applied in the greenhouse.The
energy consumption ismeasured by energymeter (HCM1158,
Honeywell Co., Germany) according to the water flow rate
and the difference of supply and return water temperatures.
The data from the sensors were automatically recorded
every 5min by a data logger which we have developed. The
experiment was carried out from June 2 to June 7, 2012.

2.2. Greenhouse Environment Model. Greenhouse environ-
ment model in the physical and physiological methods that
take place inside greenhouses based on mass and energy
balances, including the biological behavior of plants. Math-
ematical models of greenhouse microclimate are influenced
by several elements of the greenhouse (heat flow and conduc-
tion, vapor diffusion, etc.) and the outside boundaries (solar
radiation, air temperature, etc.), which is shown in Figure 1.
The thermal balance inside the greenhouse defines the rate of
change of temperature, which can be transferred to calculate
the energy supply requirements. Consider
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Figure 1: The thermal balance of greenhouse environment.

𝐶
𝑎
is air specific heat in Jkg−1K−1, 𝑇

𝑖
(𝑡) is air temperature

inside the greenhouse over time in K, 𝑞
𝑙
(𝑡) is the energy flux

due to the long wave thermal radiation over time in W, 𝑞
𝑐
(𝑡)

is the heat flux through the cover over time inW, 𝑞
𝑤
(𝑡) is heat

flux from ventilation and infiltration over time in W, 𝑞
𝑒
(𝑡) is

the heat flux due to crop transpiration over time in W, 𝑞
𝑝
(𝑡)

is the heat flux due to the convection between greenhouse
air with soil and crop leaves over time in W, and 𝑞

𝑡
(𝑡) is the
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the top windows and side windows are all closed when the
cooling system is working, heat flux from ventilation 𝑞
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be ignored and 𝑡 is time series variable.
The net solar radiation into greenhouse 𝑞
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described as follows according to radiation law:
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According to the nonlinear Stefan-Boltzmann law, the

thermal long wave radiation exchange between interior and
exterior can be written as follows:
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where 𝐴
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Boltzmann constant of 5.67 × 10−8Wm−2K−4, 𝑇sky(𝑡) is
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According to Aubinet [21], sky temperature related to
temperature outside the greenhouse is expressed as follows:

𝑇sky (𝑡) = 94 + 12.6 ln (𝑒
𝑜
) − 13𝑘 + 0.341𝑇

𝑜
(𝑡) , (5)

where 𝑒
𝑜
is actual air water vapor pressure outside in Pa,

𝑇
𝑜
(𝑡) is temperature outside the greenhouse over time in

K, and 𝑘 is the sky clearness index, which is 2233 Pa and
39%, respectively, based on NASA Surface Meteorological
and Solar Energy information [22].

The greenhouse air exchanges energy and water vapor
(condensation) with the inner surface of the cover and
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the cover exchanges energy with the outside air. The heat
exchanged by conduction and convection between the cover
and the air resulted from driving force for the exchange due
to the temperature difference.The heat exchanged by internal
thermal curtain and infiltration is also dependent on the
inside and outside air temperature. Consider
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where 𝐴
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is the area of greenhouse cover material in m2, 𝐾
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is the heat transfer coefficient in Wm−2K−1, and𝐾
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is correct

coefficient of internal thermal curtain and infiltration.
The transport of energy from the leaf is in general defined

in the same way as the heat transfer from other surfaces.
The sensible heat flux 𝑞
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Latent heat flux due to crop transpiration in greenhouse
can be described in terms of the crop canopy available energy
and from the inside air saturation deficit, by means of the
Penman-Monteith formula:
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where 𝜆 is the latent heat of vaporization (2.45 kJ/kg), 𝑇V(𝑡)
is the canopy temperature over time in K, 𝐶

𝑝
is the specific

heat of air at constant pressure, LAI is theplant canopy leaf
area index, 𝐴

𝑔
is the area of ground in m2, 𝐸(𝑡) is canopy

transpiration rate over time in kgm−2s−1, 𝑒
𝑠
(𝑡) is the saturated

vapor pressure of the air (assumed at the leaf temperature)
over time in Pa, 𝑒

𝑎
(𝑡) is thewater vapor pressure of the air over

time in Pa, 𝑟
𝑐
and 𝑟
𝑎
are the leaf aerodynamic and stomatal

resistances of the leaves of 150 s/m and 290 s/m, respectively
[23], 𝛾 is the psychometric constant of 0.0646 kPaK−1, and Δ

is the slope of the water vapor saturation curve at𝑇
𝑖
in PaK−1.

Some parameters of the model are changing all the time
or are not easy to measure, such as LAI, 𝐾

𝑔
, and 𝐾

𝑐
. The

optimization method can be used to calibrate parameters
according to root mean square error (Rmse) between the
actual energy consumption and predicted values. The objec-
tive function of the algorithm estimation parameters is as
follows:
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where 𝑞real(𝑡) is real energy consumption, Max t is the max-
imum value in the time series, and 𝜇 is estimated parameter
vector [LAI 𝑘

𝑔
𝑘
𝑐
].

2.3. HPSO-GA Algorithm. In the present study, we propose
the HPSO-GA, which could optimize the coefficients of

equations with better performance. To better optimize the
parameters of energy demand model in the greenhouse, an
effective hybrid optimization algorithm is developed based
on PSO and GA, which can fully combine the merits of these
two methods without their drawbacks.

A 4N population is generated for an m-dimension opti-
mization problem. Randomly generated initial particle
swarms 𝜂

1
, 𝜂
2
, 𝜂
3
, . . . , 𝜂

4𝑁
calculate the fitness value according

to formula (9). To maintain the stability of the individuals,
the better individuals are kept to speed up the convergence.
The 2N individuals with better fitness values are used in PSO
evolution to create a new 2N population. Further, to avoid
the particle from getting stuck in the local minimum, 2N
individuals with worse fitness values are subjected to GA
operation to create a new 2N population. Finally, the new 2N
population by PSO is combined with the new 2N individuals
by GA to form a new 4N population for the next generation
optimization. When the algorithm reaches the maximum
generation (max n) or Rmse is less than the setting value
(min r), the best fitness value and best parameters are output.
The flowchart for the HPSO-GA is shown in Figure 2.

The PSO evolution consists of a swarm of particles and
each particle represents a position in an 𝑛-dimensional space.
The status of a particle in the search space is characterized by
two factors, such as the position and velocity. Each particle
is associated with a velocity and a memory of personal best
position (𝑝𝑏𝑒𝑠𝑡) and a memory of the best position (𝑔𝑏𝑒𝑠𝑡).
At each step, by using the individual 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, a new
velocity for the particle is updated by
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Based on the updated velocity, each particle changes its
position as follows:

𝜂
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𝑖
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+ V𝑛+1
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where V𝑛
𝑖

is the velocity of the particle 𝑖 in the 𝑛th iteration,
𝑤 is inertia weight, 𝜂𝑛

𝑖

is current position vector, 𝑝𝑏𝑒𝑠𝑡𝑛
𝑖

is the
best previous position of this particle, 𝑔𝑏𝑒𝑠𝑡𝑛 is global best
previous position among all the particles in 𝑛th iteration, 𝑟

1

and 𝑟
2
are two randomvariables with range [0, 1], 𝑐

1
and 𝑐
2
are

positive constant learning rates, and the particle 𝑖 ∈ (1, 4𝑁).
In order to increase the particles diversity and inhibit

premature phenomenon, GA operators, crossover and muta-
tion, are utilized in the HPSO-GA. m-dimension vector is
converted into binary according to resolution ratio 𝑟. The
crossover andmutation operation are shown in Figures 3 and
4, respectively.

The parts of 𝜂
1
and 𝜂

2
between crossover site 1 and

crossover site 2 are exchanged.The crossover site is generated
randomly and 𝑝

𝑐
is the crossover probability. 𝑝

𝑚
is the

mutation probability in GA and the bits mutate randomly
depending on 𝑝

𝑚
. The 2N particle 𝜂

󸀠

𝑖

is reborn by the
GA operators. The velocity is assigned randomly and best
previous position 𝑝𝑏𝑒𝑠𝑡

𝑖
is set as 𝜂󸀠󸀠

𝑖

for PSO evolution of the
next generation.
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Figure 2: The flowchart for HPSO-GA.

3. Results and Discussion

According to formulas (1)–(8), the physical energy model in
the experimental greenhouse is built in the Matlab/Simulink.
The optimization algorithm is programmed in a Matlab M-
file, which is used to calibrate estimated parameters vector
𝜇 in the Simulink simulation rapidly and efficiently. The
ascertained parameters in the model and the HPSO-GA
parameters are shown in Table 1.

A computer with 2.35GHz Core Duo processor and 2GB
RAM memory was used to run each optimization algorithm
10 times independently.The simulation data in Table 2 shows
the average of optimization results with three optimization
algorithms. According to the best parameters, the prediction
curve for energy consumption can be achieved in Figure 5.

When the objective fitness value Min r was set as 2.4 ×
105, HPSO-GA decreases the exit generation. Computational
time by HPSO-GA is 156 seconds, which is automatically
recorded by the optimization software. Compared with PSO
andGA, HPSO-GA saves time of 33 seconds and 521 seconds,
respectively. In Figure 5 it can be observed that there is a
deviation between the simulation value and actual energy
consumption, particularly during the night. However the
three optimization algorithms results were all fitted to actual
energy consumption, which implies that three optimization
algorithms are successful in estimating greenhouse model
parameters.

As seen in Table 2, the HPSO-GA with better efficiency
at estimating the parameters saves computational time of
21% and 77% compared with PSO and GA, respectively.
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Table 1: The parameters in the greenhouse model and the HPSO-
GA.

Parameters Symbol Value
Volume 𝑉/m3 9958.4
Glass transmissivity 𝜏 0.86
Sky emissivity 𝜀

1

0.90
Glass emissivity 𝜀

2

0.90
Air density 𝜌

𝑎

/kgm−3 1.2
Specific heat 𝐶

𝑎

/Jkg−1K−1 1008
The size of the populations 4𝑁 20
Dimension of the vector 𝑚 3
Positive constant learning rates 𝑐

1

and 𝑐
2

1.4995
Crossover probability 𝑝

𝑐

0.1
Mutation probability 𝑝

𝑚

0.01
Resolution ratio 𝑟 10
Evolution generation max 𝑛 200
Setting minimum value Rmse Min 𝑟 240000

When the max n is set to be less than 80, the HPSO-GA
gives a better estimation of energy consumption with a 15%
significant level than PSO and with an 85% significant level
than GA. When the max n is more than 115, the objective
fitness value optimized by HPSO-GA is similar to PSO and
GA. The HPSO-GA can quickly obtain the optimal solution
in the early evolution, since it speeds up the convergence
process. During the optimization process of ten times, the
local optimumhas been resulted fromPSO formore than two
times, while it does not occur by HPSO-GA. Overcoming the
undesired local solution, the reliability and stability ofHPSO-
GA are successfully approved in the parameters estimation
applications of greenhouse model.

0 12 24 36 48 60 72 84 96 108 120
0

2

4

6

8

10

12

14

16

Hours

En
er

gy
 d

em
an

d 
(W

)

Energy cost
PSO

HPSO-GA
GA

×105

Figure 5: Simulated energy demand with three optimization algo-
rithms and actual energy consumption.

Table 2: Optimization results with three optimization algorithms.

Parameters PSO GA HPSO-GA
𝐾
𝑔

6.61 6.69 6.18
𝐾
𝑐

0.65 0.78 0.75
LAI 4.08 5.16 5.25
Time spent (seconds) 189 677 156
Exit generation 86 115 73
Rmse 238525 239228 238914

4. Conclusions

In this study, HPSO-GA is developed to estimate the indis-
tinct internal parameters of greenhouse energy model, which
is built based on thermal balance. Experiments were con-
ducted to measure environment and energy parameters in a
cooling greenhouse with surface water source heat pump sys-
tem. Simulated energy consumption by the identified model
using HPSO-GA is in agreement with the actual energy
consumption, which proves that HPSO-GA can be used to
predict the energy demand in the greenhouse. Compared
with GA and PSO, HPSO-GA saves the optimization time
of more than 21%, when the maximum generation is less
than 80. The HPSO-GA shows excellent ability in solving
parameter estimation problems in the greenhouse system,
including the optimized speed and accuracy.
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