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A novel consensus protocol for two-dimension first-order multiagent systems (MAS) is proposed. After a novel protocol for two-
dimension first-order MAS is adopted; consensus and two kinds of possible results are concerned. Then consensus asymptotical
conditions and ranges of key parameters are given, and convergence speed is analyzed. Numerical examples illustrate effectiveness
of the proposed consensus protocol.

1. Introduction

Networks have been concerned for many years, and it has
been researched in many areas such as in sensor networks
[1], distribute networks, or wireless networks. Multiagent
systems (MAS) have been concerned for many years. It
reflects relationships of individuals in a network, such as
critical rules or protocols or control of each individual [2].
One common way of pattern is that all agents converge to the
same value, which is called consensus or agreement.

Consensus problem is applied in robots, spacecraft,
and cooperative multiple vehicles, and it mainly concerns
exchangeways of information. For example, reference [3] pre-
sented theoretical explanation for characters of continuous
and discrete MAS with/without leaders. This classical work
showed relations between connection of agents, protocols,
and consensus. And [4] researched a new technique based
on complex Laplacian to achieve arbitrary formation shape
and global stability. Reference [5] mainly researched linear
time-varying MAS, a necessary and sufficient condition of
consensus ability with a set of admissible protocols. Then
some applications are put up; [6] discussed a kind of
autonomous scale control of multi-agent in a MAS with
shape constrains. It provided a new method for choosing an
appropriate geometry and discussed system effect by different
parameters. Reference [7] considered MAS with leader of

bounded unknown input. After two distributed discontinu-
ous controllers were added, a sufficient condition was applied
to ensure stabilization. References [8, 9] researched grouping
control and coordinate control of MAS according in different
conditions.

Suppose there are 𝑛 agents inMAS and they are connected
by wireless networks, which can be described as a (directed)
graph. The graph can be expressed in an adjacency matrix
form called Laplacian matrix 𝐿 = [𝑙

𝑖𝑘
] (1 ≤ 𝑖, 𝑘 ≤ 𝑛) that

satisfies the following conditions:

𝑙
𝑖𝑘

≤ 0 𝑖 ̸= 𝑘

𝑛

∑

𝑘=1

𝑙
𝑖𝑘

= 0 𝑖 = 1, 2, . . . , 𝑛.

(1)

According to [3], the following premise is introduced.

Premise. A first-order MAS should satisfy the condition that
exchange topology has a spanning tree or −𝐿 has only one
zero eigenvalue and all the other nonzero eigenvalues have
negative real parts.

The following is based on the fact that the premise is
satisfied. In this work, a kind of two-dimension first-order
MAS is concerned. Then a novel protocol and its consensus
are proposed, and range of key parameter is given. Moreover,
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convergence speed is analyzed. Several simulations are shown
to ensure the results.

2. Consensus and Convergence Speed

2.1. Consensus for Two-Dimension MAS. Suppose there are 𝑛
agents in a plat coordinate system, which means each agent
has two coordinate positions named as 𝑥 and 𝑦, respectively.
Dynamic equations of the 𝑖th agent (𝑖 = 1, 2, . . . , 𝑛) are shown
as following:

�̇�
𝑖
= 𝑢
𝑥𝑖

̇𝑦
𝑖
= 𝑢
𝑦𝑖
.

(2)

The consensus is that all agents finally converge together,
with their positions converging to the same value, or it can be
expressed as |𝑥

𝑖
−𝑥
𝑘
| → 0 and |𝑦

𝑖
−𝑦
𝑘
| → 0, when 𝑡 → ∞,

where 𝑖, 𝑘 = 1, 2, . . . , 𝑛.
Protocol of two-dimension system is introduced as

𝑢
𝑥𝑖

= −

𝑛

∑

𝑘=1

𝑙
𝑖𝑘
[(𝑥
𝑖
− 𝑥
𝑘
) + 𝛾 (𝑦

𝑖
− 𝑦
𝑘
)]

𝑢
𝑦𝑖

= −

𝑛

∑

𝑘=1

𝑙
𝑖𝑘
[(𝑥
𝑖
− 𝑥
𝑘
) + (𝑦

𝑖
− 𝑦
𝑘
)] .

(3)

Let 𝑥 = [𝑥1
𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛]
𝑇 and 𝑦 = [𝑦1

𝑦
2

⋅ ⋅ ⋅ 𝑦
𝑛]
𝑇.

Equation (2) changes to the following form:

[

�̇�

̇𝑦

] = [

𝑢
𝑥𝑖

𝑢
𝑦𝑖

] = Γ[

𝑥

𝑦

] , (4)

where Γ = [
−𝐿 −𝛾𝐿

−𝐿 −𝐿
].

Suppose 𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is the 𝑖th eigenvalue of −𝐿;

then

det (𝜆𝐼
𝑛
+ 𝐿) = det (𝜆𝐼

𝑛
− (−𝐿)) =

𝑛

∏

𝑖=1

(𝜆 − 𝜇
𝑖
) . (5)

Because −𝐿 has exactly one zero eigenvalue, and all the
other nonzero eigenvalues have negative real parts; without
loss of generality, let𝜇

1
= 0 and the other nonzero eigenvalues

𝜇
𝑖
= −𝛼
𝑖
± 𝑗𝛽
𝑖
, where 𝛼

𝑖
> 0 (𝑖 = 2, 3, . . . , 𝑛). If 𝜇

𝑖
is real,

𝛽
𝑖
= 0, and 𝛽

𝑖
> 0 if there are conjugate complex eigenvalues.

Let 𝜇
𝑖
(𝑖 = 1, 2, . . . , 2𝑛) be the 𝑖th eigenvalue of Γ; then

det(𝜆𝐼
2𝑛

− Γ) = ∏
2𝑛

𝑖=1
(𝜆 − 𝜇

𝑖
).

Note that

det (𝜆𝐼
2𝑛

− Γ) = det([

𝜆𝐼
𝑛
+ 𝐿 𝛾𝐿

𝐿 𝜆𝐼
𝑛
+ 𝐿

])

= det (𝜆2𝐼
𝑛
+ 2𝜆𝐿 + (1 − 𝛾) 𝐿

2
) .

(6)

Let 𝜆
1
and 𝜆

2
be roots of the character equation 𝜆

2
+2𝜆+

(1−𝛾) = 0; then there are two kinds of possibilities according
to different 𝛾.

(1) 𝜆
1
and 𝜆

2
Are Real. If 𝛾 ≥ 0, 𝜆

1
= 1+√𝛾, and 𝜆

2
= 1−√𝛾

are real, then (6) can be decomposed to the following form:

det (𝜆𝐼
2𝑛

− Γ) = det (𝜆2𝐼
𝑛
+ 2𝜆𝐿 + (1 − 𝛾) 𝐿

2
)

= det (𝜆𝐼
𝑛
+ (1 + √𝛾) 𝐿)

⋅ det (𝜆𝐼
𝑛
+ (1 − √𝛾) 𝐿) .

(7)

Compared with (5), (7) turns to

det (𝜆𝐼
2𝑛

− Γ) = det (𝜆𝐼
𝑛
+ (1 + √𝛾) 𝐿)

⋅ det (𝜆𝐼
𝑛
+ (1 − √𝛾) 𝐿)

=

𝑛

∏

𝑖=1

(𝜆 − (1 + √𝛾) 𝜇
𝑖
)

𝑛

∏

𝑖=1

(𝜆 − (1 − √𝛾) 𝜇
𝑖
) .

(8)

Then the following lemma is proposed.

Lemma 1. When 0 ≤ 𝛾 < 1, consensus protocol (3) achieves
consensus asymptotically, if and only if −𝐿 has exactly one zero
eigenvalue and the other 𝑛 − 1 eigenvalues have negative real
parts, which is equal to the condition if and only if Γ has exactly
two zero eigenvalues and the other 2𝑛 − 2 eigenvalues have
negative real parts.

Proof.

Sufficiency. If 0 ≤ 𝛾 < 1, 1 − √𝛾 > 0, so it is obvious that
𝜇
1

= (1 − √𝛾) 𝜇
1

= 0 and Re(𝜇
𝑖
) = −(1 − √𝛾)𝛼

𝑖
< 0

(𝑖 = 2, 3, . . . , 𝑛). This means that 𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝑛) have the

same sign with 𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝑛). The same conclusion can

be drawn when 𝜇
𝑖
= (1 + √𝛾)𝜇

𝑖
(𝑖 = 1, 2, . . . , 𝑛) if 0 ≤ 𝛾 < 1.

Considering (8), the following conclusion is drawn: Γ has
exactly two zero eigenvalues and the others have negative real
parts, which is equal to −𝐿 having exactly one zero eigenvalue
and the others have negative real parts.

Let 𝑝 = [𝑝
𝑇

1
𝑝
𝑇

2
]

𝑇

be an eigenvector of Γ associated with
one of zero eigenvalues, where 𝑝

1
, 𝑝
2
∈ 𝑅
𝑛; then

Γ𝑝 = [

−𝐿 −𝛾𝐿

−𝐿 −𝐿

][

𝑝
1

𝑝
2

] = 0, (9)

which implies that −𝐿𝑝
1

= 0 and −𝐿𝑝
2

= 0 if 0 ≤ 𝛾 < 1.
Note that −𝐿 has only one linearly independent eigenvector
associated with zero eigenvalue, so 𝑝

1
= 𝑝
2
. Moreover, Γ has

only one linearly independent eigenvector 𝑝 = [𝑝
𝑇

1
𝑝
𝑇

1
]

𝑇

;
that is, zero eigenvalue of Γ has geometric multiplicity equal
to one.

All of the above show that if −𝐿 is chosen as asymptoti-
cally, Γ achieves consensus asymptotically also.

Necessity (reduction to absurd). Suppose Γ having exactly
two zero eigenvalues and the other eigenvalues having



Mathematical Problems in Engineering 3

negative real parts do not hold. From sufficient process,
relationships between eigenvalues of Γ and −𝐿 are 𝜇

𝑖
= (1 +

√𝛾)𝜇
𝑖
or 𝜇
𝑖
= (1 − √𝛾)𝜇

𝑖
, which means zero eigenvalues of

Γ are double times those of −𝐿. Suppose there are more than
two zero eigenvalues of Γ, for example, four zero eigenvalues,
so there are at least two zero eigenvalues of −𝐿.

According to [3], consensus cannot be achieved, which
is contradicting with the premise, so there must be only two
zero eigenvalues of Γ.

Then suppose there is at least one nonzero eigenvalue
having positive real part. Note that Γ can be transformed to
Jordan canonical form by a nonsingular matrix 𝑄:

Γ = 𝑄
−1
𝐽𝑄. (10)

Then

𝑒
Γ𝑡

= 𝑄
−1
𝑒
𝐽𝑡
𝑄

= 𝑄
−1

[

[

[

[

1 0 0
1×(2𝑛−2)

0 1 0
1×(2𝑛−2)

0
(2𝑛−2)×1

0
(2𝑛−2)×1

𝑒
𝐽

𝑡

]

]

]

]

𝑄.

(11)

It can be seen that if there is at least one eigenvalue with
positive real part of Γ, when 𝑡 → ∞ and 𝑒

𝐽

𝑡

→ ∞,
then 𝑒

Γ𝑡
→ ∞, which is contradicting with the follow-

ing condition: “consensus protocol (2) achieves consensus
asymptotically.”

So the assumption is wrong.

(2) 𝜆
1
and 𝜆

2
Are Conjugate Complex Eigenvalues. If 𝛾 < 0

and 𝜆
1,2

= 1 ± 𝑗√−𝛾 are one pair of conjugate complex
eigenvalues, then (6) can be decomposed to the following
form:

det (𝜆𝐼
2𝑛

− Γ) = det (𝜆𝐼
𝑛
+ (1 − 𝑗√−𝛾) 𝐿)

⋅ det (𝜆𝐼
𝑛
+ (1 + 𝑗√−𝛾) 𝐿)

=

𝑛

∏

𝑖=1

(𝜆 − (1 − 𝑗√−𝛾) 𝜇
𝑖
)

⋅

𝑛

∏

𝑖=1

(𝜆 − (1 + 𝑗√−𝛾) 𝜇
𝑖
) .

(12)

Then the following lemma is proposed.

Lemma 2. When −min
𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 < 0, consensus

protocol (3) achieves consensus asymptotically, if and only if −𝐿
has exactly one zero eigenvalue and the other 𝑛 − 1 eigenvalues
have negative real parts, which is equal to the condition if and
only if Γ has exactly two zero eigenvalues and the other 2𝑛 − 2

eigenvalues have negative real parts.

The proof is omitted for similarity with Lemma 1. The
differenence is range of 𝛾, which is described as follows.

Because 𝜇
𝑖
= (1+𝑗√−𝛾)𝜇

𝑖
or 𝜇
𝑖
= (1−𝑗√−𝛾)𝜇

𝑖
, if 𝜇
1

̸= 0,
two cases are concerned.

Case 1 (all nonzero eigenvalues 𝜇
𝑖
(𝑖 = 2, 3, . . . , 𝑛) are real).

According to the premise, 𝜇
𝑖
< 0, then both 𝜇

𝑖
= (1+𝑗√−𝛾)𝜇

𝑖

and 𝜇
𝑖
= (1 − 𝑗√−𝛾)𝜇

𝑖
have negative real parts.

Case 2 (there are at least one pair of conjugate complex
eigenvalues). Suppose there is only one pair of conjugate
complex eigenvaluesmarked as 𝜇

𝑖+
and 𝜇
𝑖−
. Let 𝜇

𝑖±
= −𝛼±𝑗𝛽,

where 𝛼 > 0 and 𝛽 > 0. Because 𝜇
𝑖
is multiplied by two

vectors 1 ± √−𝛾 and 𝜇
𝑖
, its module is product while phase

angle is the sum of them. All possible results are shown in
Figure 1.

In Figure 1, 𝜃
𝑖
denotes intersection angle between vector

𝜇
𝑖±
and 𝑌-axis and 𝜃

Γ
is abstract phase angle of 1 ± 𝑗√−𝛾. It

can be seen that whether 𝜇
𝑖
= (1 ± 𝑗√−𝛾)𝜇

𝑖±
have negative

real parts is decided by angle of 𝜇
𝑖
. Note that phase angle of

𝜇
𝑖+
is in (90

∘
, 180
∘
) while that of 𝜇

𝑖−
is in (180

∘
, 270
∘
), and if

√−𝛾 > 0, then 0 < 𝜃
Γ
= arctan(√−𝛾) < 90

∘, so phase angles
of (1+𝑗√−𝛾)𝜇

𝑖+
and (1−𝑗√−𝛾)𝜇

𝑖−
are in range of (90∘, 270∘).

In order to ensure all eigenvalues of Γ have negative real parts,
phase angles of (1 − 𝑗√−𝛾)𝜇

𝑖+
and (1 + 𝑗√−𝛾)𝜇

𝑖−
must be

in range of (90∘, 180∘) and (180
∘
, 270
∘
), respectively, which

means 𝜃
Γ
< 𝜃
𝑖
.

If there are more than one pair of conjugate complex
eigenvalues, it is obvious that 𝜃

Γ
< 𝜃
𝑖
should satisfied for all

pairs of conjugate complexes, so 𝜃
Γ

< min
𝛽
𝑖
̸=0
𝜃
𝑖
. Note that

𝜃
Γ
= arctan(√−𝛾) and 𝜃

𝑖
= arctan(𝛼

𝑖
/𝛽
𝑖
); then,

arctan (√−𝛾) < min
𝛽
𝑖
̸=0

[arctan(

𝛼
𝑖

𝛽
𝑖

)]

⇒ √−𝛾 < min
𝛽
𝑖
̸=0

(

𝛼
𝑖

𝛽
𝑖

)

⇒ 𝛾 > −min
𝛽
𝑖
̸=0

(

𝛼
2

𝑖

𝛽
2

𝑖

) .

(13)

So −min
𝛽
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 < 0. And for the other real

eigenvalues, 𝛼2
𝑖
/𝛽
2

𝑖
= ∞, which means that min

𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) =

min
𝛽
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
). Moreover, if all nonzero eigenvalues are real,

−min
𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 < 0 turns to−∞ < 𝛾 < 0, which is equal

to 𝛾 < 0; it is obvious that conditions of Case 1 and Case 2 can
be rewritten in the same form as −min

𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 < 0.

2.2. Convergence Speed. Convergence speed of system (1) is
decided by eigenvalue with the smallest absolute value of real
part. Reconsider (12); if all nonzero eigenvalues have negative
real parts, then the slowest convergence speed of system (2)
is decided by the eigenvalue whose real part is the nearest to
𝑌-axis. Three cases are analyzed according to choice of 𝛾.

Case 1 (0 ≤ 𝛾 < 1). From (7), it is obviously that the smallest
eigenvalue is one of ((1−√𝜆)𝜇

𝑖
), so smaller 1−√𝛾 (or bigger

𝛾) will cause slower convergence speed.

Case 2 (−min
𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 < 0 and all nonzero 𝜇

𝑖
are real).

From (7), it is obvious that Re(𝜇
𝑖
) = Re((1 ± 𝑗√−𝛾)𝜇

𝑖
) = 𝜇
𝑖
,

whichmeans 𝛾has no effect on convergence speed.Thebigger
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j

1 

O

iµ −

𝜃Γ

𝜃Γ

𝜃Γ

𝜃Γ

𝜃i

𝜃i

−𝛼i

−𝛽i

𝛽i

(1 − j√−𝛾)𝜇i+

𝜇i+

(1 + j√−𝛾)𝜇i+

(1 − j√−𝛾)𝜇i−

(1 + j√−𝛾)𝜇i−

Figure 1: All possible results of 𝜇
𝑖
= (1 ± 𝑗√−𝛾)𝜇

𝑖
.

A1

A2 A3

A4

Figure 2: A digraph in [4].

imaginary part √−𝛾 of 𝜇
𝑖
means bigger |𝛾| will cause larger

amplitude of oscillation.

Case 3 (−min
𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 < 0 and there are conjugate

complex eigenvalues of 𝜇
𝑖
). From Figure 1, Re(𝜇

𝑖
) is given by

Re(𝜇
𝑖
) = Re[(1 − 𝑗√−𝛾)𝜇

𝑖+
] = Re[(1 − 𝑗√−𝛾)(−𝛼 + 𝑗𝛽)] =

𝛽√−𝛾−𝛼, so bigger 𝛽√−𝛾−𝛼 (or smaller 𝛾) will cause slower
convergence.

3. Simulation Results

In this section, examples are illustrated to prove conclusions
drawn in Section 2.

3.1. Case 1. A digraph in [4] is shown in Figure 2.

It is obvious that −𝐿 = [

−1 1 0 0

0 −1 1 0

0 0 0 0

0 0 1 −1

], whose eigenvalues

are 𝜆
1

= 0 and 𝜆
2,3,4

= −1. Choose initial coordinate of
the four agents as 𝑥

0
= [0.6 −0.4 −0.2 0.8]

𝑇 and 𝑦
0

=

[−0.8 0.7 −0.9 −1]

𝑇, respectively. All simulation results are
shown in Figure 3 according to different 𝛾 > 0.

From Figure 3, asymptotical consensus is achieved when
0 ≤ 𝛾 < 1, while it is not achieved if 𝛾 ≥ 1. And agents stay
in fixed positions when 𝛾 = 1 while they reflect in separating
trend.

Moreover, asymptotical consensus is achieved in less than
10 seconds when 𝛾 = 0 and in about 20 seconds when 𝛾 = 0.5,
which agrees with Case 1 in Section 2.2.

3.2. Case 2. Simulation results with the same system when
𝛾 < 0 are shown in Figure 4.

If all eigenvalues of −𝐿 are real, any 𝛾 < 0 can satisfy
Lemma 2, so consensuses are achieved when 𝛾 = −0.5 or
𝛾 = −3. There are no obvious differences between their
convergence speeds. More oscillation appears when 𝛾 = −3,
which agrees with Case 2 in Section 2.2.

3.3. Case 3. Next, −𝐿 is chosen as [

−2 1 0 1

0 −1 1 0

1 0 −1 0

0 0 0 0

], and other

conditions remain the same, so eigenvalues are 𝜆
1

= 0,
𝜆
2
= −0.2451, and one pair of conjugate complex eigenvalues

𝜆
3,4

= −1.8774 ± 𝑗0.7449. Simulation results are shown in
Figure 5.

According to Lemma 2, −min
𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) = −6.3521.

When −min
𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) < 𝛾 = −1 < 0 or −min

𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
) <

𝛾 = −3 < 0, consensus is achieved, while opposite result
is obtained when 𝛾 = −7 < −min

𝜇
𝑖
̸=0
(𝛼
2

𝑖
/𝛽
2

𝑖
). And the

convergence speed is a little faster when 𝛾 = −1, which agrees
with Case 3 in Section 2.2.
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Figure 3: Continued.
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Figure 3: Simulation results with different 𝛾 > 0.
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Figure 4: Simulation results with different 𝛾 < 0 when all eigenvalues of −𝐿 is real.
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Figure 5: Simulation results with different 𝛾 < 0 when there are conjugate complex eigenvalues.



8 Mathematical Problems in Engineering

4. Conclusion

A novel consensus protocol is presented for the linear two-
dimension first-order multiagent systems (MASs). Numer-
ical examples illustrated the effectiveness of the proposed
consensus protocol according to different key parameters.
Simulation results ensure the relationship between range of
key parameter and convergence speed.
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