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An optimal harvesting problem for a stochastic food-chain system with Markovian switching is investigated in this paper. Firstly,
the existence, uniqueness, and positivity of the food-chain system’s solution are proved. Secondly, persistent in mean of the system
is obtained. Then the optimal harvesting policy is discussed. Finally, the main results are illustrated by several examples.

1. Introduction

Optimal harvesting problem is an important and interesting
topic from both biological and mathematical point of view.
Since Clark’s works [1, 2], one of the most important area-
optimal harvesting problems have received a lot of attention
and been studied widely. Among these studies, a large num-
ber of literatures were focused on deterministicmodels [3–9],
with some on the stochastic versions [10–17], but only a few
on the food-chain systems. Furthermore, it is well known that
the theory of food chains illustrated the balance of nature and
that no animal or plant can exist independently. Motivated
by these arguments presented above, we are interested in
the optimal harvesting problems on the following stochastic
food-chain system:

𝑑𝑥 = [𝑟
1
(𝜉 (𝑡)) − 𝑒 − 𝑎

1
𝑥 −

𝑎
2
𝑦

𝑚
1
(𝜉 (𝑡)) + 𝑥

] 𝑥 𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) 𝑥𝑑𝐵

1
(𝑡) ,

𝑑𝑦 = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
𝑦

𝑚
1
(𝜉 (𝑡)) + 𝑥

−
𝑏
2
𝑧

𝑚
2
(𝜉 (𝑡)) + 𝑦
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+ 𝜎
2
(𝜉 (𝑡)) 𝑦𝑑𝐵

2
(𝑡) ,

𝑑𝑧 = [𝑟
3
(𝜉 (𝑡)) −

𝑐𝑧

𝑚
2
(𝜉 (𝑡)) + 𝑦

] 𝑧 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) 𝑧𝑑𝐵

3
(𝑡)

(1)

with the initial value (𝑥
0
, 𝑦

0
, 𝑧

0
). Where 𝐵

𝑖
(𝑡), 𝑖 = 1, 2, 3,

is a standard Brownian motion and 𝑒 is the harvesting
effort (control parameter), and 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) represent the
population densities of three species (resource, consumer,
and predator) at time 𝑡, respectively. All parameters are
positive constants and parametric functions are continuous
and positive. 𝑟

𝑖
(⋅), 𝑖 = 1, 2, 3, represent the intrinsic growth

rate of species 𝑥, 𝑦, 𝑧, respectively; 𝑎
1
measures the strength

of competition among individuals of species 𝑥; 𝑎
2
is the

maximum value of the per capita reduction rate of 𝑥 due to
𝑦; 𝑏

1
, 𝑏

2
, and 𝑐 have similar meaning to 𝑎

2
; 𝑚

1
(⋅) measures

the extent to which the environment provides protection to
species 𝑥 and 𝑦; 𝑚

2
(⋅) measures the extent to which the

environment provides protection to species 𝑦 and 𝑧; 𝜉(𝑡) be a
right continuous Markov chain; 𝜎

𝑖
(⋅), 𝑖 = 1, 2, 3, represents

the intensity of the white noise. This system is the exten-
sion of a predator-prey model with modified Leslie-Gower
and Holling-type II schemes with stochastic perturbation
which was discussed by Ji et al. [18], Song et al. [19], and
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Guo et al. [20], and there the factor of Markovian switching
is not considered.

In themost literatures [1, 2] the sustainable yield function
is used as the harvesting function. Here the harvesting
function associated with (1) is

𝐹 (𝑒) = 𝑒 lim
𝑡→∞

∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠

𝑡
. (2)

This type of harvesting function is also used by some other
papers, such as Wang [21, chapter 4] and Zou and Wang [22]
and defined as the time averaging yield function.The optimal
harvesting problem considered in this paper is then stated as
follows. Find a harvesting effort 𝑒∗ such that

𝐹 (𝑒
∗
) = sup

𝑒≥0

{𝐹 (𝑒)} . (3)

Based on the aforementioned discussion, obviously, the
first and most important duty is to discuss the existence of
lim

𝑡→∞
(∫

𝑡

0
𝑥(𝑠)𝑑𝑠/𝑡) and then the optimal harvesting prob-

lem. Therefore, the rest of the paper is organized as follows.
In Section 2, we show that system has a global positive
solution. In Section 3, we obtain some long time behavior of
the solution, especially the property of persistent in mean,
which ensures the existence of the time averaging yield
function and its explicit expression is given. In Section 4,
the optimal harvesting policies are investigated. In Section 5,
we illustrate our main results through several numerical
examples. Last but not least, conclusions are drawn in
Section 6.

On the other hand, for convenience, we give some
notations and assumptions in the rest of this section.

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous whileF

0
contains all P-null

sets). The standard Brownian motion 𝐵
𝑖
(𝑡), 𝑖 = 1, 2, 3, is

defined on this probability space.
The right continuous Markov chain 𝜉(𝑡) on this probabil-

ity space taking values in a finite-state space 𝑆 = {1, 2, . . . , 𝑁}

with the generator 𝛾 = (𝛾
𝑘𝑙
)
𝑁×𝑁

is given by

𝑃 (𝜉 (𝑡 + 𝛿) = 𝑙 | 𝜉 (𝑡) = 𝑘)

= {
𝛾
𝑘𝑙
𝛿 + 𝑜 (𝛿) if 𝑙 ̸= 𝑘,

1 + 𝛾
𝑘𝑙
𝛿 + 𝑜 (𝛿) if 𝑙 = 𝑘,

(4)

where 𝛿 > 0. Here 𝛾
𝑘𝑙
is the transition rate from 𝑘 to 𝑙 and

𝛾
𝑘𝑙
≥ 0 if 𝑙 ̸= 𝑘, while

𝛾
𝑘𝑘

= 1 −∑

𝑙 ̸=𝑘

𝛾
𝑘𝑙
. (5)

We assume that the Markov chain 𝜉(⋅) and the Brownian
motion 𝐵

𝑖
(⋅) are independent of each other, 𝑖 = 1, 2, 3. As

a standing hypothesis we also assume in this paper that the
Markov chain 𝜉(𝑡) is irreducible. This is very reasonable as
it means that the system will switch from any regime to any
other regime. This is equivalent to the condition that, for any

𝑘, 𝑙 ∈ 𝑆, one can find finite numbers 𝑖
1
, . . . , 𝑖

𝑛
∈ 𝑆 such that

𝛾
𝑘𝑖
1

𝛾
𝑖
1
𝑖
2

⋅ ⋅ ⋅ 𝛾
𝑖
𝑛
𝑙
> 0. Under this condition, the Markov chain

has a unique stationary distribution 𝜋 = (𝜋
1
, 𝜋

2
, . . . , 𝜋

𝑁
) ∈

𝑅
𝑁 and 𝜋

𝑘
> 0 for any 𝑘 ∈ 𝑆.

In order to obtain some properties of the system, some
assumptions are given in the following. These assumptions
are conventional; they guarantee that the ecosystem is not
collapsed as time lapses.

Assumption 1. Consider 0 < 𝐷
1

:= min
𝜉∈𝑆

{𝑟
1
(𝜉) − 𝑒 −

0.5𝜎
2

1
(𝜉)}, 0 < 𝐷

𝑖
:= min

𝜉∈𝑆
{𝑟
𝑖
(𝜉)−0.5𝜎

2

𝑖
(𝜉)} ≤ max

𝜉∈𝑆
{𝑟
𝑖
(𝜉)−

0.5𝜎
2

𝑖
(𝜉)} := 𝐴

𝑖
, 𝑖 = 2, 3.

Assumption 2. 𝐷
2
− 𝑏

2
(𝑃

3
+ 𝜖) > 0, 𝐷

1
− 𝑎

2
(𝑃

2
+ 𝜖) >

0, 𝑃
1

> 0, where 𝑃
3

:= (1/𝑐)∑
𝑁

𝑖=1
𝜋
𝑖
(𝑟
3
(𝑖) − 0.5𝜎

2

3
(𝑖)),

𝑃
2

:= (1/𝑏
1
)[∑

𝑁

𝑖=1
𝜋
𝑖
(𝑟
2
(𝑖) − 0.5𝜎

2

2
(𝑖)) − 𝑏

2
𝑃
3
], 𝑃

1
:=

(1/𝑎
1
)[∑

𝑁

𝑖=1
𝜋
𝑖
(𝑟
1
(𝑖) − 𝑒 − 0.5𝜎

2

1
(𝑖)) − 𝑎

2
𝑃
2
], and 𝜖 is positive

and sufficiently small.

Let �̌�
𝑖
= max

𝜉∈𝑆
{𝑚(𝜉)}, �̂�

𝑖
= min

𝜉∈𝑆
{𝑚(𝜉)}, 𝑖 = 1, 2,

and𝐾 denotes a float constant in the rest of this paper, which
expresses different constants in different positions.

The key method used in this paper is the comparison
theorem for stochastic equations.This theorem for stochastic
differential equations was developed by Ikeda and Watanabe
[23] and has been used by many authors [24–26].

2. Positive and Global Solutions

As the state of the system (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is the population
density of species in the system at time 𝑡, it should be
nonnegative. Moreover, in order for a stochastic differential
equation to have a unique global (i.e., no explosion in a finite
time) solution for any given initial data, the coefficients of the
equation are generally required to satisfy the linear growth
condition and local Lipschitz condition [25]. However, the
coefficients of each equation in system obey neither the linear
growth condition nor local Lipschitz continuous. In this
section, we show existence and uniqueness of the positive
solution.

Lemma 3. For any initial value 𝑥
0
> 0, 𝑦

0
> 0, 𝑧

0
> 0, system

has a unique positive local solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) for 𝑡 ∈

[0, 𝜏
𝑒
) almost surely (a.s.), where 𝜏

𝑒
is the explosion time.

Proof. To begin with, consider the following equations:
𝑑𝑢 (𝑡)

= [𝑏
1
(𝜉 (𝑡)) − 𝑎

1
𝑒
𝑢(𝑡)

−
𝑎
2
𝑒
V(𝑡)

𝑚
1
(𝜉 (𝑡)) + 𝑒𝑢(𝑡)

]𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) 𝑑𝐵

1
(𝑡) ,

𝑑V (𝑡)

= [𝑏
2
(𝜉 (𝑡)) −

𝑏
1
𝑒
V(𝑡)

𝑚
1
(𝜉 (𝑡)) + 𝑒𝑢(𝑡)

−
𝑏
2
𝑒
𝑤(𝑡)

𝑚
2
(𝜉 (𝑡)) + 𝑒V(𝑡)

]𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) 𝑑𝐵

2
(𝑡) ,
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𝑑𝑤 (𝑡)

= [𝑏
3
(𝜉 (𝑡)) −

𝑐𝑒
𝑤(𝑡)

𝑚
2
(𝜉 (𝑡)) + 𝑒V(𝑡)

]𝑑𝑡 + 𝜎
3
(𝜉 (𝑡)) 𝑑𝐵

3
(𝑡)

(6)

on 𝑡 ≥ 0 with initial value 𝑢(0) = ln𝑥
0
, V(0) = ln𝑦

0
, 𝑤(0) =

ln 𝑧
0
, where 𝑏

1
(𝑡) = 𝑟

1
(𝜉(𝑡)) − 𝑒 − 0.5𝜎

2

1
(𝜉(𝑡)), 𝑏

𝑖
(𝑡) = 𝑟

𝑖
(𝜉(𝑡)) −

0.5𝜎
2

𝑖
(𝜉(𝑡)), 𝑖 = 2, 3. Notice that the last equations’ coefficients

satisfy the local Lipschitz condition; thus there is a unique
solution (𝑢(𝑡), V(𝑡), 𝑤(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
). Therefor, it follows

from Itô’s formula that 𝑥(𝑡) = 𝑒
𝑢(𝑡), 𝑦(𝑡) = 𝑒

V(𝑡), 𝑧(𝑡) = 𝑒
𝑤(𝑡) is

the unique positive local solution of system with initial value
𝑥
0
> 0, 𝑦

0
> 0, 𝑧

0
> 0.

Lemma 3 only tells us that there is a unique positive local
solution to (1). Next, we show this solution is global, that is,
𝜏
𝑒
= +∞. For convenience, we define six equations:

𝑑�̌� (𝑡) = [𝑟
1
(𝜉 (𝑡)) − 𝑒 − 𝑎

1
�̌�] �̌� 𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) �̌�𝑑𝐵

1
(𝑡) ,

�̌� (0) = 𝑥
0
,

𝑑 ̌𝑦 (𝑡) = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
̌𝑦

𝑚
1
(𝜉 (𝑡)) + �̌�

] ̌𝑦 𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) ̌𝑦𝑑𝐵

2
(𝑡) ,

̌𝑦 (0) = 𝑦
0
,

𝑑�̂� (𝑡) = [𝑟
3
(𝜉 (𝑡)) −

𝑐�̂�

𝑚
2
(𝜉 (𝑡))

] �̂� 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) �̂�𝑑𝐵

3
(𝑡) ,

�̂� (0) = 𝑧
0
,

𝑑�̌� (𝑡) = [𝑟
3
(𝜉 (𝑡)) −

𝑐�̌�

𝑚
2
(𝜉 (𝑡)) + ̌𝑦

] �̌� 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) �̌�𝑑𝐵

3
(𝑡) ,

�̌� (0) = 𝑧
0
,

𝑑𝑦 (𝑡) = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
𝑦

�̂�
1

−
𝑏
2
�̌�

�̂�
2

]𝑦 𝑑𝑡

+ 𝜎
2
(𝜉 (𝑡)) 𝑦𝑑𝐵

2
(𝑡) ,

𝑦 (0) = 𝑦
0
,

𝑑𝑥 (𝑡) = [𝑟
1
(𝜉 (𝑡)) − 𝑒 − 𝑎

1
𝑥 −

𝑎
2
̌𝑦

�̂�
1

] 𝑥 𝑑𝑡

+ 𝜎
1
(𝜉 (𝑡)) 𝑥𝑑𝐵

1
(𝑡) ,

𝑥 (0) = 𝑥
0
.

(7)

Obviously, when 𝑡 ∈ [0, 𝜏
𝑒
), by the comparison theorem

for stochastic equations [27, Theorem 3.1], it yields

𝑥 ≤ 𝑥 ≤ �̌�, 𝑦 ≤ 𝑦 ≤ ̌𝑦, �̂� ≤ 𝑧 ≤ �̌�. (8)

Furthermore, 𝑥, �̌�, 𝑦, ̌𝑦, �̂�, �̌� are all existing on 𝑡 ≥ 0, and
hence we have the following.

Theorem 4. There is a unique positive solution 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)
on 𝑡 ≥ 0 to (1) a.s. for any initial value 𝑥

0
> 0, 𝑦

0
> 0, 𝑧

0
> 0,

and relations

𝑥 ≤ 𝑥 ≤ �̌�, 𝑦 ≤ 𝑦 ≤ ̌𝑦, �̂� ≤ 𝑧 ≤ �̌� (9)

are all satisfied on 𝑡 ≥ 0.

3. The Long Time Behavior

Theorem 4 shows that the solution of the system (1) will
remain in the positive cone𝑅3

+
.This nice property provides us

with a great opportunity to discuss how the solution varies in
𝑅
3

+
in detail. In this sectionwewill give some long time behav-

ior of the solution, especially the property of persistent in
mean, which ensures the existence of lim

𝑡→∞
(∫

𝑡

0
𝑥(𝑠)𝑑𝑠/𝑡).

Lemma 5 (see [28]). If Assumption 1 is satisfied, then one has

lim
𝑡→∞

ln �̌� (𝑡)
𝑡

= 0, lim
𝑡→∞

ln �̂� (𝑡)
𝑡

= 0 𝑎.𝑠. (10)

Lemma 6. If Assumption 1 is satisfied, then one has

lim
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
= 0, lim

𝑡→∞

ln �̌� (𝑡)
𝑡

= 0 𝑎.𝑠. (11)

Proof. Firstly, we give an auxiliary equation

𝑑 ̌𝑦 (𝑡) = [𝑟
2
(𝜉 (𝑡)) −

𝑏
1
̌𝑦

�̌�
] ̌𝑦 𝑑𝑡 + 𝜎

2
(𝜉 (𝑡)) ̌𝑦𝑑𝐵

2
(𝑡) ,

̌𝑦 (0) = 𝑦
0
.

(12)

Obviously, ̌𝑦(𝑡) ≤ ̌𝑦(𝑡), and using the similar method of
Lemma 5, we have

lim
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
= 0 a.s. (13)

Therefore,

0 = lim inf
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
≤ lim inf

𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
a.s. (14)

Next, we need only to prove lim sup
𝑡→∞

(ln ̌𝑦(𝑡)/𝑡) ≤

0 a.s.
The quadratic variation of ∫

𝑡

0
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠) is

∫
𝑡

0
𝜎
2

2
(𝜉(𝑠))𝑑𝑠 ≤ 𝐾𝑡, and by the strong law of large numbers

for local martingales, we have

∫
𝑡

0
𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)

𝑡
→ 0 a.s., 𝑡 → ∞. (15)

Therefore, for all 𝜖 > 0, ∃0 < 𝑇 < ∞, we have

∫

𝑡

0

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (16)
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From this, we have

∫

𝑡

𝑠

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖 (𝑠 + 𝑡) a.s., 𝑡 > 𝑠 ≥ 𝑇. (17)

On the other hand, from Lemma 5, we have
−𝜖𝑡 ≤ ln �̌� (𝑡) ≤ 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (18)

By the arguments as above, when 𝑡 > 𝑠 ≥ 𝑇, we can get
1

̌𝑦 (𝑡)

= 𝑒
−[∫
𝑡

𝑇
(𝑟
2
(𝜉(𝑠))−0.5𝜎

2

2
(𝜉(𝑠))) 𝑑𝑠+∫

𝑡

𝑇
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠)]

× [
1

̌𝑦 (𝑇)
+∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + �̌�

× 𝑒
∫
𝑠

𝑇
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏+∫

𝑠

𝑇
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)

𝑑𝑠]

≥ ∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + �̌�

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)

𝑑𝑠

≥∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + 𝑒𝜖𝑠

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)

𝑑𝑠

≥ ∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + 1

𝑒
−𝜖𝑠

𝑒
𝐴
2
(𝑠−𝑡)

𝑒
−𝜖(𝑡+𝑠)

𝑑𝑠

≥
𝑏
1

�̌�
1
+ 1

𝑒
−(𝐴
2
+𝜖)𝑡

∫

𝑡

𝑇

𝑒
(𝐴
2
−2𝜖)𝑠

𝑑𝑠

=
𝑏
1

(�̌�
1
+ 1) (𝐴

2
− 2𝜖)

𝑒
−(𝐴
2
+𝜖)𝑡

(𝑒
(𝐴
2
−2𝜖)𝑡

− 𝑒
(𝐴
2
−2𝜖)𝑇

) .

(19)

Therefore, we obtain

𝐴
2
+ 𝜖 ≥ lim sup

𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
+ 𝐴

2
− 2𝜖; (20)

that is

lim sup
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
≤ 3𝜖. (21)

For the arbitrary of 𝜖 > 0, we must have

lim sup
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
≤ 0. (22)

Hence, lim
𝑡→∞

(ln ̌𝑦(𝑡)/𝑡) = 0 a.s., and the second con-
clusion can be proved similarly.

Theorem 7. If Assumption 1 is satisfied, then we have

lim
𝑡→∞

ln 𝑧 (𝑡)
𝑡

= 0 a.s., (23)

lim
𝑡→∞

∫
𝑡

0
(𝑧 (𝑠) / (𝑚

2
(𝜉 (𝑠)) + 𝑦 (𝑠))) 𝑑𝑠

𝑡

=
1

𝑐

𝑁

∑

𝑖=1

𝜋
𝑖
(𝑟
3
(𝑖) − 0.5𝜎

2

3
(𝑖)) .

(24)

Proof. Following from lim
𝑡→∞

(ln �̂�(𝑡)/𝑡) = 0 a.s., lim
𝑡→∞

(ln �̌�(𝑡)/𝑡) = 0 a.s., and �̂� ≤ 𝑧 ≤ �̌�. Obviously, we have

lim
𝑡→∞

ln 𝑧 (𝑡)
𝑡

= 0 a.s. (25)

In the following, we prove the second conclusion.
Let 𝑉(𝑧, 𝜉) = ln 𝑧; applying Itôs formula gives

𝑑 ln 𝑧 (𝑡) = (𝑟
3
(𝜉 (𝑡)) − 0.5𝜎

2

3
(𝜉 (𝑡)) −

𝑐𝑧 (𝑡)

𝑚
2
(𝜉 (𝑡)) + 𝑦 (𝑡)

) 𝑑𝑡

+ 𝜎
3
(𝜉 (𝑡)) 𝑑𝐵

3
(𝑡) .

(26)

Hence

ln 𝑧 (𝑡) − ln 𝑧
0

= ∫

𝑡

0

(𝑟
3
(𝜉 (𝑠)) − 0.5𝜎

2

3
(𝜉 (𝑠))) 𝑑𝑠

− ∫

𝑡

0

𝑐𝑧 (𝑠)

𝑚
2
(𝜉 (𝑠)) + 𝑦 (𝑠)

𝑑𝑠 + ∫

𝑡

0

𝜎
3
(𝜉 (𝑠)) 𝑑𝐵

3
(𝑠) .

(27)

Based on the first conclusion in this theorem, the strong
law of large numbers for local martingales, and the ergodic
property of Markov chain, the second conclusion is proved.

Theorem 8. If Assumptions 1 and 2 are satisfied, then one has

lim
𝑡→∞

ln𝑦 (𝑡)
𝑡

= 0, lim
𝑡→∞

ln𝑥 (𝑡)
𝑡

= 0, 𝑎.𝑠.

lim
𝑡→∞

∫
𝑡

0
(𝑦 (𝑠) /𝑚

1
(𝜉 (𝑠)) + 𝑥 (𝑠)) 𝑑𝑠

𝑡

=
1

𝑏
1

[

𝑁

∑

𝑖=1

𝜋
𝑖
(𝑟
2
(𝑖) − 0.5𝜎

2

2
(𝑖)) − 𝑏

2
𝑃
3
] ,

lim
𝑡→∞

∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠

𝑡

=
1

𝑎
1

[

𝑁

∑

𝑖=1

𝜋
𝑖
(𝑟
1
(𝑖) − 𝑒 − 0.5𝜎

2

1
(𝑖)) − 𝑎

2
𝑃
2
] .

(28)

Proof. Based on lim
𝑡→∞

(ln ̌𝑦(𝑡)/𝑡) = 0 and 𝑦 ≤ ̌𝑦, we have

lim sup
𝑡→∞

ln𝑦 (𝑡)
𝑡

≤ lim sup
𝑡→∞

ln ̌𝑦 (𝑡)

𝑡
= 0 a.s. (29)

Next, we need only to prove lim inf
𝑡→∞

(ln𝑦(𝑡)/𝑡) ≥

0 a.s.
The quadratic variation of ∫

𝑡

0
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠) is

∫
𝑡

0
𝜎
2

2
(𝜉(𝑠))𝑑𝑠 ≤ 𝐾𝑡, and by the strong law of large numbers

for local martingales, we have

∫
𝑡

0
𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)

𝑡
→ 0 a.s., 𝑡 → ∞. (30)
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Therefore, for all 𝜖 > 0, ∃0 < 𝑇 < ∞, we have

∫

𝑡

0

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (31)

From this, we have

∫

𝑡

𝑠

𝜎
2
(𝜉 (𝑠)) 𝑑𝐵

2
(𝑠)


< 𝜖 (𝑠 + 𝑡) a.s., 𝑡 > 𝑠 ≥ 𝑇. (32)

On the other hand, from Lemma 5, we have

−𝜖𝑡 ≤ ln �̌� (𝑡) ≤ 𝜖𝑡 a.s., 𝑡 ≥ 𝑇. (33)

By the arguments as above, when 𝑡 > 𝑠 ≥ 𝑇, we can get

1

𝑦 (𝑡)
=

1

𝑦 (𝑇)
𝑒
−[∫
𝑡

𝑇
(𝑟
2
(𝜉(𝑠))−0.5𝜎

2

2
(𝜉(𝑠)))𝑑𝑠−∫

𝑡

𝑇
(𝑏
2
𝑧(𝑠)/(𝑚

2
(𝜉(𝑠))+𝑦(𝑠)))𝑑𝑠+∫

𝑡

𝑇
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠)]

+ ∫

𝑡

𝑇

𝑏
1

𝑚
1
(𝜉 (𝑠)) + 𝑥 (𝑠)

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏−∫

𝑠

𝑡
(𝑏
2
𝑧(𝜏)/(𝑚

2
(𝜉(𝜏))+𝑦(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)
𝑑𝑠

≤
1

𝑦 (𝑇)
𝑒
−[∫
𝑡

𝑇
(𝑟
2
(𝜉(𝑠))−0.5𝜎

2

2
(𝜉(𝑠)))𝑑𝑠−∫

𝑡

𝑇
(𝑏
2
𝑧(𝑠)/(𝑚

2
(𝜉(𝑠))+𝑦(𝑠)))𝑑𝑠+∫

𝑡

𝑇
𝜎
2
(𝜉(𝑠))𝑑𝐵

2
(𝑠)]

+ ∫

𝑡

𝑇

𝑏
1

�̂�
1

𝑒
∫
𝑠

𝑡
(𝑟
2
(𝜉(𝜏))−0.5𝜎

2

2
(𝜉(𝜏)))𝑑𝜏−∫

𝑠

𝑡
(𝑏
2
𝑧(𝜏)/(𝑚

2
(𝜉(𝜏))+𝑦(𝜏)))𝑑𝜏+∫

𝑠

𝑡
𝜎
2
(𝜉(𝜏))𝑑𝐵

2
(𝜏)
𝑑𝑠

=: 𝐼
1
+ 𝐼

2
.

(34)

Based on the second conclusion of Theorem 7, for all 𝜖 > 0,
∃0 < 𝑇 < ∞, when 𝑡 > 𝑠 > 𝑇, we have

∫

𝑡

𝑇

𝑧 (𝑠)

𝑚
2
(𝜉 (𝑠)) + 𝑦 (𝑠)

𝑑𝑠 < (𝑃
3
+ 𝜖) 𝑡 − (𝑃

3
− 𝜖) 𝑇 a.s.,

∫

𝑡

𝑠

𝑧 (𝜏)

𝑚
2
(𝜉 (𝜏)) + 𝑦 (𝜏)

𝑑𝜏 < (𝑃
3
+ 𝜖) 𝑡 − (𝑃

3
− 𝜖) 𝑠 a.s.

(35)

Thus,

𝐼
1
≤

1

𝑦 (𝑇)
𝑒
−[𝐷
2
−𝑏
2
(𝑃
3
+𝜖)](𝑡−𝑇)+[𝑡+(2𝑏

2
+1)𝑇]𝜖

≤ 𝐾𝑒
[𝑡+(2𝑏

2
+1)𝑇]𝜖a.s.,

𝐼
2
≤ ∫

𝑡

𝑇

𝐾𝑒
[𝑡+(2𝑏

2
+1)𝑠]𝜖

𝑑𝑠 ≤ 𝐾𝑒
(2𝑏
2
+2)𝑡𝜖a.s.

(36)

Hence, we obtain 1/𝑦(𝑡) ≤ 2𝐾𝑒
(2𝑏
2
+2)𝑡𝜖 a.s., and further-

more

lim sup
𝑡→∞

(
− ln𝑦 (𝑡)

𝑡
) ≤ (2𝑏

2
+ 2) 𝜖. (37)

In other words,

lim inf
𝑡→∞

ln𝑦 (𝑡)
𝑡

≥ − (2𝑏
2
+ 2) 𝜖. (38)

For the arbitrary of 𝜖 > 0, we must have

lim inf
𝑡→∞

ln𝑦 (𝑡)
𝑡

≥ 0. (39)

The first assertion is proved. The assertion
lim

𝑡→∞
(ln𝑥(𝑡)/𝑡) = 0, a.s. can be proved similarly.

Similarly to the proof of the second assertion of
Theorem 7, the last two assertions can be proved.

Definition 9 (see [5]). The system is said to be persistent in
mean, if

lim inf
𝑡→∞

∫
𝑡

0
𝑥 (𝑠) 𝑑𝑠

𝑡
> 0,

lim inf
𝑡→∞

∫
𝑡

0
𝑦 (𝑠) 𝑑𝑠

𝑡
> 0,

lim inf
𝑡→∞

∫
𝑡

0
𝑧 (𝑠) 𝑑𝑠

𝑡
> 0 a.s.

(40)

Theorem 10. If Assumptions 1 and 2 are satisfied, then the
system is persistent in mean.

Proof. lim inf
𝑡→∞

(∫
𝑡

0
𝑥(𝑠)𝑑𝑠/𝑡) > 0 is already proved in

Theorem 8.
From the third assertion of Theorem 8, we have

lim inf
𝑡→∞

∫
𝑡

0
𝑦 (𝑠) 𝑑𝑠

�̂�
1
𝑡

≥ lim
𝑡→∞

∫
𝑡

0
(𝑦 (𝑠) / (𝑚

1
(𝜉 (𝑠)) + 𝑥 (𝑠))) 𝑑𝑠

𝑡
= 𝑃

2
> 0;

(41)

that is, lim inf
𝑡→∞

(∫
𝑡

0
𝑦(𝑠)𝑑𝑠/𝑡) > 0.
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From the second assertion of Theorem 7, we have

lim inf
𝑡→∞

∫
𝑡

0
𝑧 (𝑠) 𝑑𝑠

�̂�
2
𝑡

≥ lim
𝑡→∞

∫
𝑡

0
(𝑧 (𝑠) / (𝑚

2
(𝜉 (𝑠)) + 𝑦 (𝑠))) 𝑑𝑠

𝑡
= 𝑃

3
> 0;

(42)

that is, lim inf
𝑡→∞

(∫
𝑡

0
𝑧(𝑠)𝑑𝑠/𝑡) > 0.

This theorem is proved.

4. The Optimal Harvesting Policies

Based on the explicit expression of the time averaging yield
function obtained in the last section, here we discuss the
optimal harvesting problem mentioned in Section 1.

Theorem 11. If Assumptions 1 and 2 is satisfied, then the
optimal harvesting effort is

𝑒
∗
= min {𝐷

1
− 𝑎

2
(𝑃

2
+ 𝜖) , 𝑒} , (43)

where 𝐷
1
= min

𝜉∈𝑆
{𝑟
1
(𝜉) − 0.5𝜎

2

1
(𝜉)}, 𝑒 = 0.5Σ − 0.5𝑎

2
𝑃
2
,

Σ = ∑
𝑁

𝑖=1
𝜋
𝑖
(𝑟
1
(𝑖)−0.5𝜎

2

1
(𝑖)), and the optimal harvesting output

is

𝐹 (𝑒
∗
) =

1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒

∗
− (𝑒

∗
)
2

] . (44)

Proof. Based onTheorem 8, the optimization problem can be
expressed as follows:

max 𝐹 (𝑒) =
1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒 − 𝑒

2
]

s.t. 𝑒 ≤ 𝐷
1

(Assumption 1)

𝑒 ≤ 𝐷
1
− 𝑎

2
(𝑃

2
+ 𝜖) (Assumption 2)

𝑒 ≤ Σ − 𝑎
2
𝑃
2

(Assumption 2)

𝑒 ≥ 0.

(45)

From the definitions of 𝐷
1
and Σ, we get 𝐷

1
≤ Σ.

Therefore, the above optimization problem can be simplified
as follows:

max 𝐹 (𝑒) =
1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒 − 𝑒

2
]

s.t. 0 ≤ 𝑒 ≤ 𝐷
1
− 𝑎

2
(𝑃

2
+ 𝜖) .

(46)

Because the objective function is concave, and we can
obtain the unique maximum point easily as

𝑒
∗
= min {𝐷

1
− 𝑎

2
(𝑃

2
+ 𝜖) , 𝑒} , (47)

here the 𝑒 is obtained by letting 𝑑𝐹(𝑒)/𝑑(𝑒) = 0.
Substituting it into the harvesting function, we obtain the

optimal harvesting output

𝐹 (𝑒
∗
) =

1

𝑎
1

[(Σ − 𝑎
2
𝑃
2
) 𝑒

∗
− (𝑒

∗
)
2

] . (48)

This theorem is proved.

Remark 12. (i)That the feasible zone of optimization problem
(46) is nonempty is guaranteed by Assumptions 1 and 2.

(ii) From the explicit expression of the optimal harvesting
effort, we can easily investigate how the parameters influence
on it, such that 𝑒∗ is decreasing in 𝑎

2
, and this claim coincides

with the fact that if the consumer’s (𝑦(𝑡)) consuming capacity
is enhanced (𝑎

2
augments), the harvesting effort must reduce

(𝑒∗ go down), or the resource (𝑥(𝑡)) will be extinct and the
whole ecosystem is crashed.

5. Numerical Results

We present numerical experiments in this section to show
how the proposedmodel works in the constructive examples.
The results enhance the readers to understand the theoretical
conclusions from the practical applications.

Here, we use the Milstein method [29] to construct the
discretization equation of (1); that is,

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑥

𝑘
[𝑟

1
(𝜉 (𝑘Δ𝑡)) − 𝑒 − 𝑎

1
𝑥
𝑘
−

𝑎
2
𝑦
𝑘

𝑚
1
(𝜉 (𝑘Δ𝑡)) + 𝑥

𝑘

]Δ𝑡

+ 𝜎
1
(𝜉 (𝑘Δ𝑡)) 𝑥

𝑘
√Δ𝑡𝜁

𝑘

+ 0.5𝜎
2

1
(𝜉 (𝑘Δ𝑡)) 𝑥

2

𝑘
(𝜁

2

𝑘
− 1)Δ𝑡,

𝑦
𝑘+1

= 𝑦
𝑘
+ 𝑦

𝑘
[𝑟

2
(𝜉 (𝑘Δ𝑡)) −

𝑏
1
𝑦
𝑘

𝑚
1
(𝜉 (𝑘Δ𝑡)) + 𝑥

𝑘

−
𝑏
2
𝑧
𝑘

𝑚
2
(𝜉 (𝑘Δ𝑡)) + 𝑦

𝑘

]Δ𝑡

+ 𝜎
2
(𝜉 (𝑘Δ𝑡)) 𝑦

𝑘
√Δ𝑡𝜂

𝑘

+ 0.5𝜎
2

2
(𝜉 (𝑘Δ𝑡)) 𝑦

2

𝑘
(𝜂

2

𝑘
− 1)Δ𝑡,

𝑧
𝑘+1

= 𝑧
𝑘
+ 𝑧

𝑘
[𝑟

3
(𝜉 (𝑘Δ𝑡)) −

𝑐𝑧
𝑘

𝑚
2
(𝜉 (𝑘Δ𝑡)) + 𝑦

𝑘

]Δ𝑡

+ 𝜎
3
(𝜉 (𝑘Δ𝑡)) 𝑧

𝑘
√Δ𝑡𝜍

𝑘

+ 0.5𝜎
2

3
(𝜉 (𝑘Δ𝑡)) 𝑧

2

𝑘
(𝜍

2

𝑘
− 1)Δ𝑡,

(49)

where 𝜁
𝑘
, 𝜂

𝑘
, and 𝜍

𝑘
, 𝑘 = 1, . . . , 𝑛, are the Gaussian random

variables.
For simplicity, assume that the random environments are

modeled by a two-state Markov chain with state set 𝑆 = {1, 2}

and generator

𝑄 = (
−7 7

5 5
) . (50)

The other parameters are defined as follows: 𝑟
1
(1) = 8,

𝑟
1
(2) = 9, 𝑟

2
(1) = 6, 𝑟

2
(2) = 6, 𝑟

3
(1) = 4, 𝑟

3
(2) = 3, 𝜎

1
(1) =

0.8, 𝜎
1
(2) = 0.9, 𝜎

2
(1) = 0.6, 𝜎

2
(2) = 0.6, 𝜎

3
(1) = 0.4, 𝜎

3
(2) =
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Figure 1: Sample path of (1) with initial condition (𝑥
0
, 𝑦

0
, 𝑧

0
) =

(1, 1, 1) and 𝜉(𝑡) ≡ 1.
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Figure 2: Sample path of (1) with initial condition (𝑥
0
, 𝑦

0
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) =

(1, 1, 1) and 𝜉(𝑡) ≡ 2.
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3
+𝜀) = 5.48−𝜀. Obviously,

Assumptions 1 and 2 are satisfied.
Based on the aforementioned discussion, we obtain the

following results.
Figures 1 and 2 show that the solutions of (1) are

positive in the deterministic environment (without regime
switching); that is, 𝜉(𝑡) ≡ 1 or 2. Figure 4 shows that the
solutions of (1) are positive in the random environment (with
regime swithcing); the random environment is described
by Figure 3. They are all identical to Theorem 4. Figure 5
shows lim

𝑡→∞
(ln𝑥(𝑡)/𝑡) = 0, lim

𝑡→∞
(ln𝑦(𝑡)/𝑡) = 0, and

lim
𝑡→∞

(ln 𝑧(𝑡)/𝑡) = 0 in the random environment described
by Figure 3, and this is consistent withTheorems 7 and 8.
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Figure 3: Sample path of 𝜉(𝑡) with initial condition 𝜉(0) ≡ 1.
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Figure 4: Sample path of (1) with initial condition (𝑥
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0
) =

(1, 1, 1) and sample path of 𝜉(𝑡) is Figure 3.

0 20 40 60 80 100

0

2

4

6

8

t

−2

ln z(t)/t
ln y(t)/t
ln x(t)/t

Figure 5: The curves of ln 𝑥/𝑡, ln𝑦/𝑡, and ln 𝑧/𝑡.

6. Conclusions

This paper studies an optimal harvesting problem for a food-
chain system with markovian switching. Based on the prop-
erties, the food-chain system’s solution is existing, unique,
and positive; the system is persistent in mean, and the
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rationality of the optimal harvesting problem is proved.Then
the optimal harvesting policy is obtained.

Nevertheless, there are rooms to continue work on this
issue, such that more than one of control variables in the
system are considered.The permanence and extinction of the
system and the stability in distribution need to be investigated
too.
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