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This work presents a distribution problem of products of a soda bottling company. Commodities are produced at several plants with
limited capacity and the demand of distribution centers is satisfied by shipping via cross-docking warehouses. The decomposition
strategy is proposed to determine which warehouse needs to be opened to consolidate the demand and by which warehouse each
distribution center is served exclusively.The objective is minimizing fixed costs and total transportation costs.Themodel presented
is a mixed-integer programming model with binary variables for which we propose a decomposition strategy based on Benders
algorithm. Numerical results show that the proposed strategy can provide the optimal solution of several instances. A large-scale
case study based on a realistic company situation is analyzed. Solutions obtained by the proposed method are compared with the
solution of full scale problem in order to determine the quality bound and computational time.

1. Introduction

According to international organisms, Mexico is the second
biggest consumer of bottled soda with an average consump-
tion of 160 liters per person a year after the United States,
where 94% of the population consumes these types of drinks.
The main point of sale of soda in Mexico is in small stores
where 75% of the sales are carried out, 24% is in restaurants,
and the remaining are in self-service stores [1]. For the
company, it is very important to have an effective distribution
network that provides the possibility to keep a high level
of service to the client at the smallest possible cost; that is,
the clients must have products in the opportune moment at
minimum cost.

In 2012, the bottling company offered a level of service
above 99.6% (delivery requested/customer request), but in
2013 the first supply problems were presented due to the
productive capacity of the plants; this situation originated the
specialization of the production lines of the company plants,
holding the product readiness in the market at minimum
cost; see Figure 1.

For this reason, we proposed a strategy for optimal design
of a soda bottling company distribution system based on [1].

The proposed distribution network is constituted by plants,
cross-dock warehouses, and distribution centers. Commodi-
ties are produced at several plants with limited capacity and
the demand of distribution centers is satisfied by shipping
via cross-docking warehouses. The problem is to determine
which warehouse needs to be opened to consolidate the
demand and by which warehouse each distribution center is
served exclusively.Theobjective isminimizing fixed costs and
total transportation costs; see Figure 2.

The idea is to establish a network of arcs which enables the
flow of products in order to satisfy demand of distribution
centers. A proper design can yield better operation levels
and cost reductions. In this problem, these reductions can
be significant. To the best of our knowledge, the specific
model we pose in this study is not addressed in the literature;
however, the area of fixed charge network design is closely
related.

This paper is organized as follows. In Section 2, we
present a brief review of the network design problem.
Section 3 contains the specific problem formulation and
then Section 4 describes the solution methodology. Section 5
presents computational results of the application of Benders
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Figure 1: Proposed distribution system.
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Figure 2: Current distribution system.

Decomposition in several instances. Finally, conclusions are
in Section 6.

2. Literature Review

Nowadays, companies still pay attention to efficiency because
of tactical and operational impact at the executive level;
these aspects remain relevant when a new framework is
proposed, because all decisions will depend on it to continue
the pursuit of all the company objectives. This issue is
referred to as supply chain network design problems by most
researchers and frequently begins from real-life applications.
In this sense, a traditional paper is [2]. They present a
new method for the solution of the problem addressing the
optimal location of distribution centers between plants and
customers. A particular interest involves a study in facility
location that is reviewed in [3], where the authors explain

some important characteristics, methods, and application in
the context of supply chain management. Furthermore, they
mentioned that the discrete facility location problems could
be categorized as supply chain network design problems.
Despite depending on situations, many techniques used in
the design of a distribution network are from the research
operations area, especially those presented in [4]; some
contributions are made to the state of the art that follows
this subject for facility locations models. However, several
industries are still facing problems related to design of the
distributionnetwork because it is a decision linked to improv-
ing the level of service, and many other important metrics.
Along the same line, in [5], they use a case study related
with a model for the distribution network of a region of
consumer goods company taking into account several tactical
decisions like lead time, credit performance, power, and
distribution’s reputation. Among various types of problems
discussed in supply chain management, facility location has
been studied for a long time by some researchers [6]. In [7],
the authors follow an objective to propose a novel scheme of
distribution. In these investigations, they include a classical
facility location problem, and they presented cases of studies
solved by appropriate techniques.

Typically, these problems are presented as a mixed-
integer programming (MIP) formulation [8, 9]. In [2], the
authors develop an algorithm based on Benders Decom-
position for solving multicommodity distribution network
design problem. Another classical model is presented in [10].
They consider a model to solve a minimization function
which includes fixed cost in warehouses and distribution
centers and transportation cost for multicommodities from
plants to warehouses and finally to customers.Moreover, they
consider a tri-echelon, multicommodity system concerning
production, distribution, and transportation planning. The
authors use a Lagrangian relaxation-based heuristic to pro-
vide an effective feasible solution for the problem. Also, they
reconsider other different characteristics for solving themain
problem of integrated logistics model [8, 11, 12]. In [13], they
consider an integrated distribution network design and site
selection problem arising in the context of transportation
planning faced by the freight-forwarding industry; in this
sense, they consider a strategic level multicommodity net-
work design where each commodity is defined by a unique
pair of origin and destination points and known required
flow amount and other considerations proper to the real
problem but using Benders Decomposition for its solution.
Similarly, they illustrate the efficiency and the effectiveness
of this approach. As in [14, 15] also a Benders Decomposition
approach is used, first in combinationwith an intelligent algo-
rithm to improve the time solution for the master problem
and then in modified version to exploit the mathematical
formulation of the problem in deterministic, multicommod-
ity, single-period contexts, respectively. In [16], the authors
exposed that while these production-distribution problems
focused to pursue exact solutions efficiently by using opti-
mization software (only for small instances and small dimen-
sions), the main reason to avoid it is because they contain
a large number of constraints and variables. Besides, they
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propose heuristics for this bilevel mathematical problem
using Stackelberg’s equilibrium.

3. Mathematical Formulation

Let 𝐾 be the set of manufacturing plants. An element 𝑘 ∈ 𝐾

identifies a specific plant of the company. Let 𝐼 be the set of
the potential cross-dock warehouses. An element 𝑖 ∈ 𝐼 is
a specific cross-dock warehouse. Finally, let 𝐽 be the set of
distribution centers; a specific distribution center is any 𝑗 ∈ 𝐽.
Let Z denote the set of integers {0, 1}.

Parameters are as follows:

𝑄𝑘: capacity of plant 𝑘.
𝐾𝑖: capacity of cross-dock warehouse 𝑖.

𝐹𝑖: fixed costs of opening cross-dock warehouse in
location 𝑖.

𝐺𝑘𝑖: transportation cost per unit of the product from
the factories 𝑘 to cross-dock warehouse 𝑖.

𝐶𝑖𝑗: cost of shipping the product from the cross-dock
𝑖 to distribution center 𝑗.

𝑑𝑗: demand of the distribution center 𝑗.

Decision Variables. We have the following sets of binary
variables to make the decisions about the opening of the
cross-dock warehouse, and the distribution for the cross-
dock warehouse to the distribution center:

𝑌𝑖 =

{

{

{

1 if location 𝑖 is used as a cross-dock warehouse,

0 otherwise,

𝑋𝑖𝑗 =

{

{

{

1 if cross-dock 𝑖 supplies the demand of distribution center 𝑗,

0 otherwise.

(1)

𝑊𝑘𝑖 is the amount of product sent from factory 𝑘 to cross-
dock 𝑖 and is represented by continuous variables.

We can now state the mathematical model as a (P)
problem

min
𝑊𝑘𝑖,𝑌𝑖,𝑋𝑖𝑗

𝑍 = ∑

𝑘∈𝐾

∑

𝑖∈𝐼

𝐺𝑘𝑖𝑊𝑘𝑖 +∑

𝑖∈𝐼

𝐹𝑖𝑌𝑖 +∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝐶𝑖𝑗𝑑𝑗𝑋𝑖𝑗 (2)

subject to the following constraints:
Capacity of the plant:

∑

𝑖∈𝐼

𝑊𝑘𝑖 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝐾. (3)

Balance of product:

∑

𝑗∈𝐽

𝑑𝑗𝑋𝑖𝑗 = ∑

𝑘∈𝐾

𝑊𝑘𝑖, ∀𝑖 ∈ 𝐼. (4)

Single cross-dock warehouse to distribution center:

∑

𝑖∈𝐼

𝑋𝑖𝑗 = 1, ∀𝑗 ∈ 𝐽. (5)

Cross-dock warehouse capacity:

∑

𝑗∈𝐽

𝑑𝑗𝑋𝑖𝑗 ≤ 𝐾𝑖𝑌𝑖, ∀𝑖 ∈ 𝐼. (6)

Demand of items:
𝑝𝑌𝑖 ≤ 𝑊𝑘𝑖, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, (7)

𝑝 = min {𝑑𝑗} , (8)
𝑊𝑘𝑖 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, (9)

𝑌𝑖 ∈ Z, ∀𝑖 ∈ 𝐼, (10)

𝑋𝑖𝑗 ∈ Z, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. (11)

Objective function (2) considers in the first term the cost
of shipping the product from the plants 𝑘 to cross-dock
warehouse 𝑖. The second term contains the fixed cost to
open and operate the cross-dock warehouse 𝑖. The last term
incorporates the cost to supply the demand of the distribution
center 𝑗. Constraints (3) imply that all that is produced in
plant 𝑘 does not violate the capacity of plant 𝑘. Balance
constraints (4) ensure that the amount of products that arrive
at a distribution center 𝑗 is the same as that sent to the plants
𝑘. The demand of each distribution center 𝑗 will be satisfied
by a single cross-dock warehouse 𝑖, which is achieved by
constraints (5). Constraints (6) bound the amount of prod-
ucts that can be sent to a distribution center 𝑗 from a cross-
dock warehouse 𝑖 that has been open. Finally, constraints (7)
guarantee that any opened cross-dock warehouse 𝑖 receives
at least the minimum amount of demand for distribution
centers 𝑗. The demand is satisfied by shipping via cross-
dock warehouse with each distribution center being assigned
exclusively to a single cross-dock warehouse. The possible
locations for the cross-dock warehouses are given, but the
particular facilities to be used will be selected as a result of
the minimum total distribution cost. As a result, efficient
load consolidation arises as an important opportunity for
profitability in this work. To the best of our knowledge, the
specific model we pose in this study is not addressed in the
literature; however, the area of fixed charge network design
is closely related. Our formulation facilitates the use of a
Benders Decomposition framework for its solution.

4. Solution Methodology

Because of the economic importance of the network design
problems and their combinatorial nature, several solution
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Figure 3: One cross-dock warehouse to one distribution center.

methodologies have been developed. In this paper, we
describe a decomposition approach for solving the soda
bottling company problem.The approach is based onBenders
Decomposition, which is one of the most successful solution
approaches. Model (2)–(11) presents a structure well-suited
for a primal decomposition approach (Benders Decomposi-
tion).

This solution method is based on the situation that
we can decompose the original problem obtaining several
smaller and thus easier to solve subproblems. In this case,
Benders Decomposition is used to meet the optimal location
of intermediate warehouses between plants and distribution
centers. As in [2], this model proposes that no customer zone
is allowed to deal with more than one cross-dock warehouse,
since 𝑋𝑖𝑗 must be 0 or 1 and not fractional. Additionally, we
can mention that the real case presented has a large number
of binary variables compared to the number of constraints.
Thus, the Benders Decomposition is the better way to solve
the optimal design of the distribution system, because it
exploits the special structure of the original problem. In
Figure 1 a graphical representation of the proposed distribu-
tion system is shown. This graphical illustration is different
from the one presented in Figure 2. The difference between
the current system and the proposed is because the demand
is satisfied by shipping via cross-dock warehouse with each
distribution center, which is assigned exclusively to a single
cross-dock warehouse; see Figure 3.

4.1. Benders Decomposition. The optimal design of a soda
bottling company distribution system is a problem that
has a large number of complicating binary variables and
thus involves a large CPU time to find an optimal integer
solution; for this reason, we applied Benders Decomposition
framework [17]. This method projects problem (2)–(11) onto
the space defined by the binary variables 𝑋𝑖𝑗 and 𝑌𝑖. The
original problem P is decomposed into two different prob-
lems: a restricted master problem and Benders subproblem.

The subproblem (SP) is a dual lineal problem (LP) of P and
is obtained by fixing the variables to either 0 or 1. Benders
subproblem provides an upper bound of the original prob-
lem. Let (SP) be the dual problem of P and the dual variables
associated with constraints (3), (4), and (7), respectively. We
have the following:

Subproblem (SP):

max
𝜔𝑘,𝛼𝑖 ,𝛽𝑖𝑘

Φ = ∑

𝑘∈𝐾

𝑄𝑘𝜔𝑘 +∑

𝑖∈𝐼

∑

𝑗∈𝐽

(𝑑𝑗𝑋𝑖𝑗) 𝛼𝑖 + ∑

𝑘∈𝐾

∑

𝑖∈𝐼

𝑌𝑖𝛽𝑖𝑘,

𝜔𝑘 +𝛼𝑖 +𝛽𝑖𝑘 ≤ 𝐺𝑘𝑖, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾,

𝜔𝑘 ≤ 0,

𝛼𝑖 unrestricted,

𝛽𝑖𝑘 ≥ 0.

(12)

Relaxed Master Problem (RMP):

min
𝑌𝑖,𝑋𝑖𝑗

Ω, (13)

Ω ≥ ∑

𝑖∈𝐼

𝐹𝑖𝑌𝑖 +∑

𝑖∈𝐼

∑

𝑗∈𝐽

(𝐶𝑖𝑗𝑑𝑗𝑋𝑖𝑗) 𝜔𝑘 +∑

𝑖∈𝐼

∑

𝑘∈𝐾

𝑌𝑖𝛽𝑖𝑘

+∑

𝑖∈𝐼

∑

𝑗∈𝐽

(𝑑𝑗𝑋𝑖𝑗) 𝛼𝑖,

(14)

∑

𝑖∈𝐼

𝐹𝑖𝑌𝑖 +∑

𝑖∈𝐼

∑

𝑗∈𝐽

(𝐶𝑖𝑗𝑑𝑗𝑋𝑖𝑗) 𝜔𝑘 +∑

𝑖∈𝐼

∑

𝑘∈𝐾

𝑌𝑖𝛽𝑖𝑘

+∑

𝑖∈𝐼

∑

𝑗∈𝐽

(𝑑𝑗𝑋𝑖𝑗) 𝛼𝑖 ≤ 0,
(15)

∑

𝑖∈𝐼

𝑋𝑖𝑗 = 1, ∀𝑗 ∈ 𝐽, (16)

∑

𝑖∈𝐼

𝑋𝑖𝑗 ≤ 0, ∀𝑗 ∈ 𝐽, (17)

∑

𝑗∈𝐽

𝑑𝑗𝑋𝑖𝑗 ≤ 𝐾𝑖𝑌𝑖, ∀𝑖 ∈ 𝐼, (18)

∑

𝑗∈𝐽

𝑑𝑗𝑋𝑖𝑗 ≤ 0, ∀𝑖 ∈ 𝐼, (19)

𝑌𝑖, 𝑋𝑖𝑗 ∈ {0, 1} . (20)

The master problem is an integer problem and its vari-
ables are considered as complicating variables. To determine
the values of these variables, the Benders master problem
must be solved. Since the number of primal cuts is too
large, Benders [17] proposed to solve a Relaxed Master
Problem (RMP), by taking only a subset or Benders cuts,
and to generate these cuts, one by one, in each iteration
of the algorithm. Relaxed Master Problem provides feasible
solutions through Benders optimality cuts (14) because they
are based on optimality conditions of the subproblem and
through valid constraints called feasibility cuts in every
iteration of the algorithm. Feasibility cuts (15), (16), (17), (18),
and (19) enforce necessary conditions for feasibility of the
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Table 1: Comparison of the instances.

Instance 𝐾 𝐼 𝐽 Continuous variables Binary variables Constraints
INST 0 2 2 2 4 6 10
INST 1 4 5 17 20 90 36
INST 2 4 10 17 40 180 51
INST 3 6 25 40 150 1025 121
INST-R CASE 44 56 254 2464 14280 466

{Initialization}
𝑌𝑖, 𝑋𝑖𝑗 := Fix integer variables to given feasible integer values
LB := −∞

UB := +∞

while UB − LB > 𝜀 do
{solve subproblem SP}
if Unbounded then

Get unbounded ray 𝜔
𝑘
, 𝛽
𝑖𝑘
, 𝛼
𝑖

Add feasibility cut to master problem (MP)
else

Get extreme point 𝜔𝑘, 𝛽𝑖𝑘, 𝛼𝑖
Add optimality cut to master problem (MP)
UB := min{UB, SP}

endif
{solve master problem (MP)}
LB := Ω

endwhile

Procedure 1: Benders Decomposition (𝑌𝑖, 𝑋𝑖𝑗, 𝜔𝑘, 𝛽𝑖𝑘, 𝛼𝑖).

primal subproblem. Master problem provides a lower bound
of the original problem (P).

Benders Algorithm. A brief summary of the algorithm is given
in Procedure 1 for completeness.

5. Computational Experience

The full scale model and the decomposition strategy pro-
posed were implemented in GAMS [18] using the solver
CPLEX [19] for MIP and LP problems (master problem and
Benders subproblem). All mathematical models were carried
out on an AMD Phenom II N970 Quad-Core with a 2.2GHz
processor and 4GB RAM. Because the major difficulty of
Benders method is the solution of master problem, and
because [2] suggests that the Benders master problem should
not be solved to optimality, we set GAMS parameter OPTCR
at 0.0015; that is, the relative termination tolerance is within
0.15% of the best possible solution. In the first iteration of
algorithm, we fixed all integer variables to 1. Additionally,
the size of all MIP models was reduced through presolver
phase of CPLEX. Benders algorithm stops when the values
of lower bound and upper bound are equal, except for a small
tolerance 𝜀 = 0.15%:

𝜀 = [
(UB − LB)

UB
] ⋅ 100%. (21)
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Figure 4: Model complexity.

To test the efficiency in terms of CPU time and quality
of our solution method, we solved instances with data having
demand distribution characteristics that reflect real applica-
tions. We generated randomly four instances with different
number of plants, cross-dock warehouses, and distribution
centers. Additionally, we solved a realistic case of a soda
bottling company. Table 1 indicates the specific size of each
instance.

The model complexity of each instance can be seen in
Figure 4. This figure shows the increase in problem size in
terms of the number of constraints, continuous variables, and
binary variables.

5.1. Results. Benders Decomposition described in the pre-
vious section was used to design the optimal distribution
system for the soda bottling company. Because the amount
of memory and the computational effort needed to solve the
instances grow significantly with the number of variables
and constraints, we propose a decomposition strategy based
on Benders Decomposition. The comparison results demon-
strate that the 𝜀-optimal solution is very close to the optimal
solution (GAMS-CPLEX Solution).

Table 2 illustrates that the comparison results demon-
strate that the CPU time of proposed decomposition strategy
is less than direct solution with GAMS-CPLEX. The GAP is
less than 0.2%:
GAP

= [
(GAMS Solution − Benders Decomposition Solution)

GAMS Solution
]

⋅ 100%.

(22)
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Table 2: Performance of Benders Decomposition and direct solution of full scale problem.

Instance Opt. value CPU time LB UB GAP CPU time
GAMS-CPLEX (sec.) (%) (sec.)

INST 0 1270 1.5 1270 1270 <0.2 0.5
INST 1 179170 2.5 179168 179168 <0.2 1.5
INST 2 485140 3.5 485142 485142 <0.2 2.5
INST 3 1.00E + 07 930 1.00E + 07 1.00E + 07 <0.2 630
INST-R CASE 8.45E + 10 4160 8.43E + 10 8.43E + 10 0.2 2160

7

6

5

4

3

2

1

0

−1

×10
6

O
bj

ec
tiv

e f
un

ct
io

n

Lower bound
Upper bound
CPLEX

INST1

1 2 3 4 5

Iterations

Figure 5: Benders versus full scale solution.
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The progression of upper bound and lower bound values
over the iterations around the optimum in all instances is
plotted in Figures 5, 6, 7, and 8. Clearly, the use of feasibility
cuts is very effective in speeding up convergence and they
affect the quality of both the upper and the lower bounds. In
our numerical studies, we observe similar high performance
in convergence with feasibility cuts in other instances. For
all the instances solved, tight lower and upper bounds were
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obtained with a small GAP in just a few iterations of the
proposed algorithm.

These measures reported show that the performance of
the Benders Decomposition seems to be indifferent to its
size when feasibility cuts are implemented. The results of
the experiments reported in Table 2 show that the proposed
Benders procedure produces very good feasible solutions
compared to the optimal/best available ones generated by
CPLEX in significantly less CPU time.
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6. Conclusions

In this paper, we present an optimal design of a soda
bottling company distribution system problem.We proposed
a decomposition strategy that shows acceptable convergence
properties. In all instances, the number of iterations required
to get convergence is less than five. The feasibility cuts allow
reaching an 𝜀-optimal solution. The total CPU time required
to solve the large-scale case study based on the realistic com-
pany situation was less than 2200 seconds. This instance has
14280 binary variables, 2464 continuous variables, and 466
constraints.The proposed decomposition strategywas shown
to be very efficient for the case study. For this class of prob-
lems, global optimality is not guaranteed in a reasonable time,
but the solution through Benders Decomposition provides
good feasible solutions and good bounds to the optimum.

Moreover, it is important to mention that the main
objective was to compare the CPU effort and the quality
bounds of the full scale solution through a commercial solver
and the proposed decomposition strategy. We can finally
conclude that we could propose a strategy for designing the
distribution system of a soda bottling company in competi-
tive CPU times. The solutions obtained are close to the opti-
mal values reported by commercial optimizers. This ensures
having a flexible and scalable solution tool when the company
decides to increase the number of its facilities.
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