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A neural network controller design is studied for a class of nonlinear chaotic systems with uncertain parameters. Because the chaos
phenomena are often in this class of systems, it is indispensable to control this class of systems. At the same time, due to the presence
of uncertainties in the chaotic systems, it results in the difficulties of the controller design. The neural networks are employed to
estimate the uncertainties of the systems and a controller is designed to overcome the chaos phenomena.The main contribution of
this paper is that the adaptation law can be determined via the gradient descent algorithm to minimize a cost function of error. It
can prove the stability of the closed-loop system. The numerical simulation is specified to pinpoint the validation of the approach.

1. Introduction

The control problem for complex and ill-defined systems is a
very significant work in practice.The uncertainties, unknown
parameters, and unmodeled dynamics, and so forth, belong
to ill-defined systems.There aremany practical plants that are
ill-defined, such as robot, chemical systems, underactuated
systems, and chaotic systems, and their stability problems
are hard to be solved. A good way for solving ill-defined
systems is to use the neural network control scheme and
this scheme has been used to perform important task in
practice. Simultaneously, a lot of achievements have been
gained for some different classes of ill-defined systems. In [1–
9], the controller tracking designs were solved for ill-defined
continuous-time systems which contain uncertainties and
nonlinear property. For ill-defined discrete-time systems,
several design strategies were given in [10–13].

Recently, the stability of chaotic systems, which belong
to a class of ill-defined systems, has been an active research
direction. In [14], the control problem for chaotic systems
was studied. The functions of chaotic systems are nonlinear
and do not require satisfying Lipschitz condition. A synchro-
nization sliding mode control algorithm was proposed in
[15] for two classes of chaotic systems based on RBF neural

networks. A combined disturbance observer was proposed
and the update law of uncertain parameters was shown to
monitor the combined disturbance. A function projective
synchronization for fractional order chaotic systems with
unknown parameters was investigated in [16] by using
adaptive control modified method. In [17], a novel synchro-
nization modified function projective scheme for identical
and nonidentical hyperchaotic complex chaotic systems with
uncertain parameters was developed. An adaptive chatter-
free control via sliding mode design was pointed out in
[18] for uncertain chaotic system without the knowledge of
the bounds of the uncertain term representing the model
uncertainty and unknown disturbance. In [19], the time
stability for a general chaotic systemwas analyzed by utilizing
adaptive feedback terminal sliding mode control. However,
the adaptation laws of these approaches are obtained without
using gradient descentmethod. Amain advantage of gradient
descent method is that it can minimize a cost function of
error. This paper will use gradient descent method to control
a class of chaotic systems.

Based on the above presentations, an adaptive control
algorithm via the neural networks is investigated for a class of
chaotic systems. By using the neural network approximation,
the unknown function is modeled and chaos phenomena can
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be solved by using a stable controller. Adaptive law design is
proposed via the gradient descent algorithm to minimize a
cost function of error. The Lyapunov analysis is employed to
prove the stability of the closed-loop system and a simulation
is to validate the effectiveness of the approach.

2. Problem and Formulation

Consider the chaotic systems as the following form:
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where 𝛼
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𝑇
∈ 𝑅

3 is the state vector of the system
and 𝑢 ∈ 𝑅 is the scalar control input.

In this study, the control objective is to design an adaptive
neural control algorithm so that the system is stable; that is,
all the signals in the closed-loop system are bounded.

The error vector is defined as
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Then, we know that

𝑧

(3)
= 𝑓 (𝑥) + 𝑢.

(5)

It can be written as follows:
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stable. Therefore, there exists a matrix 𝑄 such that
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where 𝛽 > 0 and 𝜀 > 0 are the constants.
By adding and subtracting the term 𝑐 to (6), we know that

̇

𝑧 = 𝐴𝑧 − 𝐵𝛽 tanh(

𝐵

𝑇
𝑃𝑧

𝜀

) + 𝐵 [𝑓 (𝑥) + 𝑢 − 𝑐] . (10)

Based on the implicit function theorem, there exists an
ideal controller 𝑢∗(𝑥, c) so that

𝑓 (𝑥) + 𝑢

∗
(𝑥, 𝑐) − 𝑐 = 0. (11)

If 𝑢 is selected as 𝑢 = 𝑢

∗, (10) is simplified as

̇

𝑧 = 𝐴𝑧 − 𝐵𝛽 tanh(

𝐵

𝑇
𝑃𝑧

𝜀

) . (12)

Consider the following Lyapunov function:
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Because 𝐵
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unknown parameters.

3. Gradient Descent Controller Design

In Section 2, we assume that there is 𝑢

∗
(𝑥, 𝑐) can realize

the objective. We can determine the presence of the ideal
controller with the aid of implicit function theorem, but we
cannot get the way to build it. In this section, we use adaptive
neural system to determine the controller.
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𝜃
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vector. In this study, the approximation error is bounded; that
is, |𝛿(𝜉)| ≤ 𝛿 with 𝛿 > 0 being a constant.
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Here, we will minimize (23) based on the gradient descent
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where 𝜎 > 0 is a small constant.
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Equation (33) can be rewritten as
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1
,

and using −𝑥 tanh(𝑥/𝜀) + |𝑥| ≤ 𝑘𝜀, with 𝑘 = 0.2785, (47)
becomes

̇

𝑉

𝑧
= −𝑧

𝑇
𝑄𝑧 + 2











𝐵

𝑇
𝑃𝑧











𝜏

0
𝑧

−0.5𝜙𝑡
+ 2𝜏

1
𝑘𝜀. (48)

Consider the inequality

2











𝐵

𝑇
𝑃𝑧











𝜏

0
𝑧

−0.5𝜙𝑡
≤ 0.5𝑧

2
+ 2











𝐵

𝑇
𝑃











2

𝜏

2

0
𝑧

−𝜙𝑡
.

(49)

Equation (48) becomes

̇

𝑉

𝑧
≤ − [𝜌min (𝑄) − 0.5] ‖𝑧‖

2
+ 2











𝐵

𝑇
𝑃𝑧











𝜏

0
𝑧

−𝜙𝑡
+ 2𝜏

1
𝑘𝜀,

(50)

where 𝜌min(𝑄) denotes the minimum eigenvalue of the
matrix 𝑄 and satisfies the condition that 𝜌min(𝑄) > 0.5.
Equation (50) becomes

̇

𝑉

𝑧
≤ −𝜙

𝑧
𝑉

𝑧
+ 2











𝐵

𝑇
𝑃𝑧











𝜏

0
𝑧

−𝜙𝑡
+ 2𝜏

1
𝑘𝜀, (51)

where 𝜙

𝑧
= [𝜌min(𝑄) − 0.5]/𝜌max(𝑃) and 𝜌max(𝑃) is the

maximum eigenvalue of the matrix 𝑃.

Theorem 2. Consider (2). Suppose that the approximation
error in (18) is bounded. Then the control law can guarantee
the boundedness of the signals 𝑥 and 𝑢 and the convergence of
the error to the compact set

Ω

𝑧
= {𝑧 | ‖𝑧‖ ≤

√
2𝜏

1
𝑘𝜀 (𝜌min (𝑃) 𝜙𝑧)} . (52)
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Figure 1: The trajectories of 𝑥
1
.

Proof. Considering (51) we can notice that, for ̇

𝑉

𝑧
< 0 and

𝑉

𝑧
≥ (2|𝐵

𝑇
𝑃𝑧|𝜏

0
𝑧

−𝜙𝑡
+ 2𝜏

1
𝑘𝜀)/𝜙

𝑧
, the error vector 𝑧 is

bounded, and the state vector 𝑥 is bounded. Moreover, since
the term 2|𝐵

𝑇
𝑃𝑧|𝜏

0
𝑧

−𝜙𝑡 in (51), we can also conclude that the
function 𝑉

𝑧
will be asymptotically bounded as

𝑉

𝑧
<

2𝜏

1
𝑘𝜀

𝜙

𝑧

. (53)

Thus, the error will converge asymptotically to the compact
set

Ω

𝑧
= {𝑧 | ‖𝑧‖ ≤

√
2𝜏

1
𝑘𝜀 (𝜌min (𝑃) 𝜙𝑧)} . (54)

Based onTheorem 1, we can know that ̃𝜃 ∈ 𝐿

∞
; we have that

𝜃 ∈ 𝐿

∞
, together with 𝑤(𝜉) ∈ 𝐿

∞
, implies that 𝑢 ∈ 𝐿

∞
.

4. Simulation Results

In this section, in order to demonstrate the effectiveness of
the proposed adaptive neural controller, a system is given in
(2) where 𝛼

1
= 5.5, 𝛼

2
= 3, 𝛼

3
= −1, and 𝛼

4
= −1.

The purpose is to design an adaptive controller according
to (16) which can make all the signals in the system (2) keep
bounded. Based on Theorems 1 and 2, we can develop a
controller for system (1) satisfying the purpose.

The designed parameters of the proposed control
approach are chosen as 𝜂 = 1, 𝛽 = 20, 𝜀 = 0.02, 𝑘 = [1, 2, 1]

𝑇,
and 𝑃 = [

15 5 5

5 5 5

5 5 5

]. The initial conditions for the system states
are supposed as 𝑥

1
(0) = 0.1, 𝑥

2
(0) = 0.1, 𝑥

3
(0) = −0.5, and

𝜃(0) = [0.5, 0.1, 0.2].
The simulation results are obtained in Figures 1, 2, 3,

4, and 5. From Figures 1–3, we get the trajectories of the
states 𝑥

1
, 𝑥

2
, 𝑥

3
. It means that the states are bounded. Figure 4

illustrates the trajectory of the adaptation law and the action
of control input is given in Figure 5. Hence, we can see that
the proposed controllermakes the closed-loop systems stable.
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Figure 2: The trajectory of 𝑥
2
.
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Figure 3: The trajectory of 𝑥
3
.
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Figure 4: The trajectory of the adaptive law 𝜃.
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Figure 5: The control input 𝑢.

5. Conclusion

In this study, an adaptive control approach for a class of
chaotic systems has been developed. The main advantage
is to design an adaptive law based on the gradient descent
algorithm. This way can minimize a cost function of error.
Finally, the theorems and the effectiveness can be validated
by Lyapunov analysis and a simulation example. The future
research works are to extend the approach to a class of multi-
input multioutput systems.
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