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This paper investigates the problem of fuzzy controller design for nonaffine-in-control singularly perturbed switched systems
(NCSPSSs). First, the NCSPSS is approximated by Takagi-Sugeno (T-S) models which include not only state but also control
variables in the premise part of the rules. Then, a dynamic state feedback controller design method is proposed in terms of linear
matrix inequalities. Under the controller, stability bound estimation problemof the closed-loop system is solved. Finally, an example
is given to show the feasibility and effectiveness of the obtained methods.

1. Introduction

Switched systems, which consist of a finite number of subsys-
tems and a logical rule governing the switching among the
subsystems, are widely encountered in mechanical systems,
power systems, and aircraft [1–3]. One of the basic problems
of switched systems is the stability analysis of switched
systems under arbitrary switching signals [1]. For this prob-
lem, it is necessary to assume that all the subsystems are
asymptotically stable [4]. But this assumption is not sufficient
for stability of the switched systems [4]. To assure stability
under arbitrary switching signals, a minimal interval of time
between two successive switchings (called dwell time) or a
commonLyapunov function for all the subsystems is required
[4–8].

On the other hand, many practical systems exhibit multi-
ple time scale behavior, which can lead to high dimensionality
and ill-conditioned numerical issues in the analysis and
design problems [9, 10]. Singular perturbation theory has
been developed to deal with these problems [11, 12]. In
this framework, the system analysis and synthesis problems
are based on decomposing the system into fast and slow
subsystems [9]. In the past several decades, the theory of
singularly perturbed systems has attracted much attention
and been applied to chemical processes [13], power systems
[14], electromechanical systems [15], and so forth.On stability

analysis and stabilization problems of SPSs, there exist two
kinds of approaches.One is to present a condition for the exis-
tence of an upper bound 𝜀max for the singular perturbation
parameter 𝜀, such that the stability of the SPS is ensured for
all 𝜀 ∈ (0, 𝜀max] [16, 17]. The other is to propose a method to
compute the stability bound 𝜀max [18, 19].

Singularly perturbed switched systems (SPSSs) whose
subsystems are SPSs are of practical interest inmany industry
processes [20, 21]. An example is given in [22], where the
tail end phase of the rolling process in a hot strip mill
was modeled as a SPSS. The classical theory for SPSs is
based on the Levinson-Tikhonov theorem [23] which shows,
under the assumption that the SPS can be decomposed into
slow and fast subsystems, that asymptotic stability of the
subsystems is a sufficient condition for the stability of the
SPS [16, 24]. However, this principle does not hold for SPSSs.
It was shown that stability of the slow and fast switched
subsystems is not sufficient for stability of the original SPSS
and a dwell-time condition [25, 26] or a constraint taking
into account the coupling between slow and fast subsystems
has to be considered [20, 21, 27]. Although there have been
plenty of methods to estimate the stability bound of SPSs,
few approaches were proposed for SPSSs. The exception is
given by [28], where a stability bound estimationmethod was
proposed for linear SPSSs whose switching subsystems have
the same fast subsystems.
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Fuzzy control has found a great variety of applications
in control engineering [29, 30]. Takagi-Sugeno (T-S) model
based fuzzy control has become one of the most successful
approaches since T-S model is a universal approximator for
a wide class of nonlinear systems [31–34]. Recently, many
researchers have focused on the analysis and design of T-
S fuzzy SPSs. Stability analysis and stabilization problems
for both continuous- and discrete-time T-S fuzzy SPSs were
investigated in [17, 35], and some LMI-based approaches
were derived. To get a satisfactory transient behavior, 𝐻

∞

control for T-S fuzzy SPSs with pole placement constraints
was considered in [36]. Using the results in [17, 35, 36], the
stability of the resulting closed-loop systems is only ensured
for sufficiently small singular perturbation parameter 𝜀. The
problem of the stability bound estimation for T-S fuzzy
systems was considered in [37, 38]. Since the T-S models
used in [17, 35–38] are only able to approximate affine
nonlinear systems, the proposed methods can not be applied
to nonaffine systems. However, there are many nonaffine-
in-control systems rising from practical applications, such
as magnetic servo levitation control system [39], pendulum
control systems [40], and chemical reactions [41].

Motivated by [42, 43], where a class of generalized T-
S fuzzy dynamic models were proposed and shown to be
universal approximators to general nonlinear systems, this
paper investigates the problem of fuzzy controller design for
nonaffine-in-control singularly perturbed switched systems
(NCSPSSs). T-S models which include not only state but also
control variables in the premise part of the rules are estab-
lished to approximate the NCSPSS. A fuzzy dynamic state
feedback controller is constructed. Under the assumption
that the fast subsystems are stable, a controller designmethod
is proposed. Then, the stability bound of the closed-loop
system is addressed and an LMI-basedmethod is established.
Finally, a numerical example is included to illustrate the
proposed results.

The rest of this paper is organized as follows. In Section 2,
the problems under consideration are defined.The controller
design method which is reduced to the feasibility of a set
of 𝜀-independent LMIs is given in Section 3. In Section 4,
the estimation problem of stability bound is considered. An
academic example is given in Section 5 to show the effec-
tiveness and advantage of the obtained methods. Section 6
concludes the paper.

2. System Description

Consider the following nonlinear singularly perturbed
switched system:

𝑥̇ (𝑡) = 𝑓
𝜎

(𝑥 (𝑡) , 𝑧 (𝑡) , 𝑢 (𝑡)) , (1a)

𝜀𝑧̇ (𝑡) = 𝑔
𝜎

(𝑥 (𝑡) , 𝑧 (𝑡) , 𝑢 (𝑡)) , (1b)

where 𝑥(𝑡) ∈ R𝑛 and 𝑧(𝑡) ∈ R𝑚 are the states, 𝑢(𝑡) ∈ R𝑝

is the input, and 𝜀 > 0 denotes the singular perturbation
parameter. 𝜎 is the switching rule, which takes its values in
the finite set Π = {1, 2, . . . , 𝑁}. 𝑓 and 𝑔 are the Lipschitz
functions and nonaffine in control.

By using the algorithm in [42], each nonlinear subsystem
𝑗 (𝑗 = 1, . . . , 𝑁) could be represented by a T-S fuzzy model
described by 𝑟

𝑗
rules of the following form.

The 𝑖th rule is

Plant Rule 𝑖:

IF 𝑥
1
(𝑡) is 𝜇𝑗

𝑖1
, . . . , 𝑥

𝑛
(𝑡) is 𝜇𝑗

𝑖𝑛
;

𝑧
1
(𝑡) is ]𝑗

𝑖1
, . . . , 𝑧

𝑚
(𝑡) is ]𝑗

𝑖𝑛
;

𝑢
1
(𝑡) is 𝜉𝑗

𝑖1
, . . . , 𝑢

𝑝
(𝑡) is 𝜉𝑗

𝑖𝑝
;

THEN 𝑥̇ (𝑡) = 𝐴𝑗

𝑖11
𝑥 (𝑡) + 𝐴

𝑗

𝑖12
𝑧 (𝑡) + 𝐵

𝑗

𝑖1
𝑢 (𝑡)

𝜀𝑧̇ (𝑡) = 𝐴
𝑗

𝑖21
𝑥 (𝑡) + 𝐴

𝑗

𝑖22
𝑧 (𝑡) + 𝐵

𝑗

𝑖2
𝑢 (𝑡)

for 𝑖 = 1, 2, . . . , 𝑟
𝑗
,

(2)

where 𝜇𝑗

𝑖𝑘
, ]𝑗

𝑖𝑘
, 𝜉

𝑗

𝑖𝑘
are fuzzy sets.

Denote

ℎ
𝑗

𝑖
(𝑥, 𝑧, 𝑢) =

∏
𝑛

𝑘=1
𝜇

𝑗

𝑖𝑘
(𝑥

𝑘
)∏

𝑚

𝑘=1
]𝑗
𝑖𝑘
(𝑧

𝑘
)∏

𝑝

𝑘=1
𝜉
𝑗

𝑖𝑘
(𝑢

𝑘
)

∑

𝑟𝑗

𝑖=1
∏

𝑛

𝑘=1
𝜇

𝑗

𝑖𝑘
(𝑥

𝑘
)∏

𝑚

𝑘=1
]𝑗
𝑖𝑘
(𝑧

𝑘
)∏

𝑝

𝑘=1
𝜉
𝑗

𝑖𝑘
(𝑢

𝑘
)

,

ℎ
𝑗

𝑖
≥ 0,

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
= 1.

(3)

The scalars ℎ𝑗
𝑖
are the membership functions. By using

the usual center-average defuzzifier, product inference, and
singleton fuzzifier, the T-S fuzzy system can be inferred as

𝑥̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖11
𝑥 (𝑡) + 𝐴

𝑗

𝑖12
𝑧 (𝑡) + 𝐵

𝑗

𝑖1
𝑢 (𝑡) + Δ

𝑗

(𝑥, 𝑧, 𝑢)] ,

(4a)

𝜀𝑧̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖21
𝑥 (𝑡) + 𝐴

𝑗

𝑖22
𝑧 (𝑡) + 𝐵

𝑗

𝑖2
𝑢 (𝑡) + Δ

𝑗

(𝑥, 𝑧, 𝑢)] ,

(4b)

whereΔ𝑗

(𝑥, 𝑧, 𝑢) denotes the approximation error. According
to [42], the error can be made arbitrarily small by choosing
large enough number of fuzzy rules. Thus we omit the
approximation error Δ𝑗

(𝑥, 𝑧, 𝑢) in the rest of the paper.

Remark 1. The T-S models used in [17, 35–38] are only able
to approximate affine nonlinear SPSs, while the T-S model
in (4a) and (4b) can represent nonaffine-in-control systems
given as in (1a) and (1b), since the control variables are
included in the premise part of the rules. As shown in the
previous section, there are various examples of nonaffine-in-
control systems and SPSSs in practical applications. There-
fore, theT-S fuzzymodel in (4a) and (4b)will lay a foundation
for fuzzy control of nonaffine-in-control SPSSs and can be
applied to various applications such as aircraft control, elec-
trical and electromechanical systems, and chemical reactions.
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The design of state feedback stabilizing fuzzy controllers
for the fuzzy system (4a) and (4b) is based on the dynamic
state feedback control method. The fuzzy controller is
described by the following.

The 𝑖th rule is

Plant Rule 𝑖:

IF 𝑥
1
(𝑡) is 𝜇𝑗

𝑖1
, . . . , 𝑥

𝑛
(𝑡) is 𝜇𝑗

𝑖𝑛
;

𝑧
1
(𝑡) is ]𝑗

𝑖1
, . . . , 𝑧

𝑚
(𝑡) is ]𝑗

𝑖𝑛
;

𝑢
1
(𝑡) is 𝜉𝑗

𝑖1
, . . . , 𝑢

𝑝
(𝑡) is 𝜉𝑗

𝑖𝑝
;

THEN 𝑢̇ (𝑡) = 𝐷𝑗

𝑖
𝑥 (𝑡) + 𝑀

𝑗

𝑖
𝑧 (𝑡) + 𝑁

𝑗

𝑖
𝑢 (𝑡)

for 𝑖 = 1, 2, . . . , 𝑟
𝑗
.

(5)

Because the controller rules are the same as the plant
rules, the controller is given as follows:

𝑢̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐷

𝑗

𝑖
𝑥 (𝑡) + 𝑀

𝑗

𝑖
𝑧 (𝑡) + 𝑁

𝑗

𝑖
𝑢 (𝑡)] . (6)

Then we have the closed-loop system:

𝑢̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐷

𝑗

𝑖
𝑥 (𝑡) + 𝑀

𝑗

𝑖
𝑧 (𝑡) + 𝑁

𝑗

𝑖
𝑢 (𝑡)] , (7a)

𝑥̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖11
𝑥 (𝑡) + 𝐴

𝑗

𝑖12
𝑧 (𝑡) + 𝐵

𝑗

𝑖1
𝑢 (𝑡)] , (7b)

𝜀𝑧̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖21
𝑥 (𝑡) + 𝐴

𝑗

𝑖22
𝑧 (𝑡) + 𝐵

𝑗

𝑖2
𝑢 (𝑡)] , (7c)

which can be rewritten in the following compact form:

̇𝜂 (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖11
𝜂 (𝑡) + 𝐴

𝑗

𝑖12
𝑧 (𝑡) + 𝐵

𝑗

𝑖1
V (𝑡)] , (8a)

𝜀𝑧̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖21
𝜂 (𝑡) + 𝐴

𝑗

𝑖22
𝑧 (𝑡)] , (8b)

where

𝜂 (𝑡) = [

𝑢 (𝑡)

𝑥 (𝑡)
] , 𝐴

𝑗

𝑖11
= [

0 0

𝐵
𝑗

𝑖1
𝐴

𝑗

𝑖11

] ,

𝐴

𝑗

𝑖12
= [

0

𝐴
𝑗

𝑖12

] , 𝐵

𝑗

𝑖1
= [

𝐼

0
] ,

𝐴

𝑗

𝑖21
= [𝐵

𝑗

𝑖2
𝐴

𝑗

𝑖21
] , 𝐴

𝑗

𝑖22
= 𝐴

𝑗

𝑖22
,

𝐾
𝑗

𝑖
= [𝑁

𝑗

𝑖
𝐷

𝑗

𝑖
] , V (𝑡) = 𝐾𝑗

𝑖
𝜂 (𝑡) + 𝑀

𝑗

𝑖
𝑧 (𝑡) .

(9)

Upon introducing the indicator function

𝜃 (𝑡) = [𝜃
1
(𝑡) , . . . , 𝜃

𝑁
(𝑡)] , (10)

where 𝜃
𝑗
(𝑡) = 1 if the switching system is in mode 𝑗 and

𝜃
𝑗
(𝑡) = 0 if it is in a different mode, one can write the whole

closed-loop system corresponding to (1a) and (1b) as follows:

̇𝜂 (𝑡) =

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖11
𝜂 (𝑡) + 𝐴

𝑗

𝑖12
𝑧 (𝑡) + 𝐵

𝑗

𝑖1
V (𝑡)] , (11a)

𝜀𝑧̇ (𝑡) =

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖21
𝜂 (𝑡) + 𝐴

𝑗

𝑖22
𝑧 (𝑡)] . (11b)

Assume that 𝐴𝑗

𝑖22
, 𝑗 = 1, . . . , 𝑁, 𝑖 = 1, . . . , 𝑟𝑗, are Hurwitz

matrices, which is a common assumption for investigations
on standard SPSs. Then the corresponding slow and fast
subsystems of the SPF (11a) and (11b) are obtained as follows:

̇𝜂
𝑠
(𝑡) =

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖𝑠
𝜂
𝑠
(𝑡) + 𝐵

𝑗

𝑖𝑠
V
𝑠
(𝑡)] , (12a)

𝜀𝑧̇
𝑓
(𝑡) =

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖22
𝑧
𝑓
(𝑡)] , (12b)

where 𝐴𝑗

𝑖𝑠
= 𝐴

𝑗

𝑖11
− 𝐴

𝑗

𝑖12
𝐴

𝑗

𝑖22

−1

𝐴

𝑗

𝑖21
, 𝐵𝑗

𝑖𝑠
= 𝐵

𝑗

𝑖1
.

3. Controller Design

This section will present a controller design method.

Theorem 2. If there exist matrices 𝑃
𝑠
= (𝑃

𝑠
)
𝑇

> 0, 𝑃
𝑓
= (𝑃

𝑓
)
𝑇

>

0, 𝑄𝑗

𝑖𝑠
= (𝑄

𝑗

𝑖𝑠
)
𝑇

> 0, 𝑄𝑗

𝑖𝑓
= (𝑄

𝑗

𝑖𝑓
)
𝑇

> 0, 𝑍𝑗

𝑖𝑠
, and 𝑍𝑗

𝑖𝑓
of

appropriate dimensions satisfying the LMIs,

𝐴

𝑗

𝑖𝑠
𝑃
𝑠
+ 𝑃

𝑠
(𝐴

𝑗

𝑖𝑠
)

𝑇

+ 𝐵

𝑗

𝑖𝑠
𝑍

𝑗

𝑖𝑠
+ (𝐵

𝑗

𝑖𝑠
𝑍

𝑗

𝑖𝑠
)

𝑇

+ 𝑄
𝑗

𝑖𝑠
< 0, (13)

𝐴

𝑗

𝑖22
𝑃
𝑓
+ 𝑃

𝑓
(𝐴

𝑗

𝑖22
)

𝑇

+ 𝑄
𝑗

𝑖𝑓
< 0, (14)

[

[

[

[

[

[

[

[

[

𝐺
𝑗

𝑖
⋆ ⋆ ⋆

𝐹
𝑗

𝑖
𝑄

𝑗

𝑖𝑓
⋆ ⋆

𝑌
𝑗

𝑖
0 𝑃

𝑓
⋆

(𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
)

𝑇

+ 𝑌
𝑗

𝑖
0 0 𝑃

𝑓

]

]

]

]

]

]

]

]

]

> 0, (15)

where 𝑗 = 1, . . . , 𝑁, 𝑖 = 1, . . . , 𝑟𝑗, 𝑌𝑗

𝑖
= −∑

𝑁

𝑘=1
∑

𝑟𝑘

𝑙=1
(𝐴

𝑘

𝑙22
)

−1

×

𝐴

𝑘

𝑙21
𝑃
𝑠
|
(𝑘,𝑙) ̸=(𝑗,𝑖)

, 𝐺𝑗

𝑖
= 𝑄

𝑗

𝑖𝑠
− 𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
− (𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
)

𝑇

, and 𝐹𝑗

𝑖
=

−(𝐴

𝑗

𝑖22
𝑌

𝑗

𝑖
+𝑃

𝑓
(𝐴

𝑗

𝑖12
)

𝑇

+(𝑍
𝑗

𝑖𝑓
)

𝑇

(𝐵

𝑗

𝑖1
)

𝑇

), then there exists a positive
scalar 𝜀max such that, for all 𝜀 ∈ (0, 𝜀max], the closed-loop system
(11a) and (11b) is stable and the controller gains are

𝐿
𝑗

𝑖
≜ [𝑁

𝑗

𝑖
𝐷

𝑗

𝑖
𝑀

𝑗

𝑖
] = [𝐾

𝑗

𝑖𝑠
+ 𝐾

𝑗

𝑖𝑓
(𝐴

𝑗

𝑖22
)

−1

𝐴

𝑗

𝑖21
𝐾

𝑗

𝑖𝑓

] (16)

with 𝐾𝑗

𝑖𝑠
= 𝑍

𝑗

𝑖𝑠
𝑃

−1

𝑠
, 𝐾𝑗

𝑖𝑓
= 𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
.
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Proof. Let

𝑃
1
(𝜀) = 𝜀𝑃

𝑠
,

𝑃
2
(𝜀) = 𝜀𝑃

2
= −𝜀

𝑁

∑

𝑘=1

𝑟𝑘

∑

𝑙=1

(𝐴

𝑘

𝑙22
)

−1

𝐴

𝑘

𝑙21
𝑃
𝑠
,

𝑃
3
(𝜀) = 𝑃

𝑓
+ 𝜀𝑃

2
𝑃

−1

𝑠
𝑃

𝑇

2
,

𝑍
𝑗

𝑖1
(𝜀) = 𝜀 (𝑍

𝑗

𝑖𝑠
+ 𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
𝑌

𝑗

𝑖
) ,

𝑍
𝑗

𝑖2
(𝜀) = 𝑍

𝑗

𝑖𝑓
+ 𝜀𝑍

𝑗

𝑖𝑠
𝑃

−1

𝑠
𝑃

𝑇

2
,

𝑄
𝑗

𝑖1
(𝜀) = 𝜀 (𝑄

𝑗

𝑖𝑠
− (𝐴

𝑗

𝑖12
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
)𝑌

𝑗

𝑖

− [(𝐴

𝑗

𝑖12
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
)𝑌

𝑗

𝑖
]

𝑇

) ,

𝑄
𝑗

𝑖2
(𝜀) = − (𝐴

𝑗

𝑖22
𝑌

𝑗

𝑖
+ 𝑃

𝑓
(𝐴

𝑗

𝑖12
)

𝑇

+ (𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
)

𝑇

) ,

𝑄
𝑗

𝑖3
(𝜀) = 𝜀

−1

𝑄
𝑗

𝑖𝑓
.

(17)

It follows from (15) that

[

[

[

[

[

[

[

[

[

[

[

𝐺
𝑗

𝑖
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
(𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
)

𝑇

+ 2 (𝑌
𝑗

𝑖
)

𝑇

𝑃
−1

𝑓
𝑌

𝑗

𝑖
⋆ ⋆ ⋆

𝐹
𝑗

𝑖
𝑄

𝑗

𝑖𝑓
⋆ ⋆

𝑌
𝑗

𝑖
0 𝑃

𝑓
⋆

(𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
)

𝑇

+ 𝑌
𝑗

𝑖
0 0 𝑃

𝑓

]

]

]

]

]

]

]

]

]

]

]

> 0.

(18)

Using the Schur complement, inequality (18) implies that

[

[

𝑄
𝑗

𝑖𝑠
− (𝐴

𝑗

𝑖12
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
)𝑌

𝑗

𝑖
− [(𝐴

𝑗

𝑖12
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
)𝑌

𝑗

𝑖
]

𝑇

⋆

𝐹
𝑗

𝑖
𝑄

𝑗

𝑖𝑓

]

]

> 0

(19)
which is equivalent to

[

𝜀 (𝑄
𝑗

𝑖𝑠
− (𝐴

𝑗

𝑖12
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
)𝑌

𝑗

𝑖
− [(𝐴

𝑗

𝑖12
+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
)𝑌

𝑗

𝑖
]

𝑇

) ⋆

𝐹
𝑗

𝑖
𝜀
−1

𝑄
𝑗

𝑖𝑓

]

> 0, ∀𝜀 > 0.

(20)
Then we have

[

[

𝑄
𝑗

𝑖1
(𝜀) ⋆

𝑄
𝑗

𝑖2
(𝜀) 𝑄

𝑗

𝑖3
(𝜀)

]

]

> 0. (21)

System (8a) and (8b) can be rewritten as

̇𝜒 (𝑡) =

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[(𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
) 𝜒 (𝑡)] , (22)

where

𝜒 = [

𝜂

𝑧
] , 𝐴

𝑗

𝑖
(𝜀) =

[

[

𝐴

𝑗

𝑖11
𝐴

𝑗

𝑖12

𝜀
−1

𝐴

𝑗

𝑖21
𝜀
−1

𝐴

𝑗

𝑖22

]

]

,

𝐵

𝑗

𝑖
=
[

[

𝐵

𝑗

𝑖1

0

]

]

, 𝐿
𝑗

𝑖
= [𝐾

𝑗

𝑖
𝑀

𝑗

𝑖
] .

(23)

Let

𝑃 (𝜀) = [

𝑃
1
(𝜀) ⋆

𝑃
2
(𝜀) 𝑃

3
(𝜀)

] . (24)

Define𝑋𝑗

𝑖1
(𝜀),𝑋𝑗

𝑖2
(𝜀), and𝑋𝑗

𝑖3
(𝜀) as

𝑋
𝑗

𝑖1
(𝜀) = 𝐴

𝑗

𝑖11
𝑃
1
(𝜀) + (𝐴

𝑗

𝑖11
𝑃
1
(𝜀))

𝑇

+ 𝐴

𝑗

𝑖12
𝑃
2
(𝜀)

+ (𝐴

𝑗

𝑖12
𝑃
2
(𝜀))

𝑇

+ 𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖1
(𝜀)

+ (𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖1
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖1
(𝜀) ,

𝑋
𝑗

𝑖2
(𝜀) = 𝜀

−1

𝐴

𝑗

𝑖22
𝑃
2
(𝜀) + 𝜀

−1

𝐴

𝑗

𝑖21
𝑃
1
(𝜀) + 𝑃

3
(𝜀) (𝐴

𝑗

𝑖12
)

𝑇

+ (𝐴

𝑗

𝑖11
𝑃

𝑇

2
(𝜀))

𝑇

+ (𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖2
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖2
(𝜀) ,

𝑋
𝑗

𝑖3
(𝜀) = 𝜀

−1

(𝐴

𝑗

𝑖22
𝑃
3
(𝜀) + (𝐴

𝑗

𝑖22
𝑃
3
(𝜀))

𝑇

+𝐴

𝑗

𝑖21
𝑃

𝑇

2
(𝜀) + (𝐴

𝑗

𝑖21
𝑃

𝑇

2
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖3
(𝜀)) .

(25)
By simple calculation, we have

𝑋
𝑗

𝑖1
(𝜀) = 𝜀 (𝐴

𝑗

𝑖𝑠
𝑃
𝑠
+ 𝑃

𝑠
(𝐴

𝑗

𝑖𝑠
)

𝑇

+ 𝐵

𝑗

𝑖𝑠
𝑍

𝑗

𝑖𝑠

+ (𝐵

𝑗

𝑖𝑠
𝑍

𝑗

𝑖𝑠
)

𝑇

+ 𝑄
𝑗

𝑖𝑠
) = 𝜀𝑋

𝑗

𝑖𝑠
,

𝑋
𝑗

𝑖2
(𝜀) = 𝜀 (𝑃

2
𝑃

−1

𝑠
𝑃

𝑇

2
(𝐴

𝑗

𝑖12
)

𝑇

+ (𝐴

𝑗

𝑖11
𝑃

𝑇

2
)

𝑇

+ (𝐵

𝑗

𝑖1
𝑍

𝑗

𝑖𝑠
𝑃

−1

𝑠
𝑃

𝑇

2
)

𝑇

) = 𝜀𝑋
𝑗

𝑖2
,

𝑋
𝑗

𝑖3
(𝜀) = 𝜀

−1

(𝐴

𝑗

𝑖22
𝑃
𝑓
+ 𝑃

𝑓
(𝐴

𝑗

𝑖22
)

𝑇

+ 𝑄
𝑗

𝑖𝑓
+ 𝑂 (𝜀))

= 𝜀
−1

(𝑋
𝑗

𝑖𝑓
+ 𝑂 (𝜀)) .

(26)

LMI conditions (13) and (14) imply that

𝑋
𝑗

𝑖𝑠
< 0, 𝑋

𝑗

𝑖𝑓
< 0 (27)

which indicates that there exists a positive scalar 𝜀
0
> 0, such

that, for any 𝜀 ∈ (0, 𝜀
0
], it holds that

[

[

𝑋
𝑗

𝑖1
(𝜀) ⋆

𝑋
𝑗

𝑖2
(𝜀) 𝑋

𝑗

𝑖3
(𝜀)

]

]

=
[

[

[

𝜀𝑋
𝑗

𝑖𝑠
⋆

𝜀𝑋
𝑗

𝑖2
𝜀
−1

(𝑋
𝑗

𝑖𝑓
+ 𝑂 (𝜀))

]

]

]

< 0. (28)
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On the other hand, it is easy to see that

[

[

𝑋
𝑗

𝑖1
(𝜀) ⋆

𝑋
𝑗

𝑖2
(𝜀) 𝑋

𝑗

𝑖3
(𝜀)

]

]

= 𝐴

𝑗

𝑖
(𝜀) 𝑃 (𝜀) + 𝐵

𝑗

𝑖
𝑍

𝑗

𝑖
(𝜀)

+ 𝑄
𝑗

𝑖
(𝜀) + 𝑃 (𝜀) (𝐴

𝑗

𝑖
(𝜀))

𝑇

+ (𝐵

𝑗

𝑖
𝑍

𝑗

𝑖
(𝜀))

𝑇

.

(29)

Then it follows from (28) and (29) that

𝐴

𝑗

𝑖
(𝜀) 𝑃 (𝜀) + 𝐵

𝑗

𝑖
𝑍

𝑗

𝑖
(𝜀) + 𝑃 (𝜀) (𝐴

𝑗

𝑖
(𝜀))

𝑇

+ (𝐵

𝑗

𝑖
𝑍

𝑗

𝑖
(𝜀))

𝑇

< 0,

𝜀 ∈ (0, 𝜀
0
] .

(30)

Let 𝐿𝑗

𝑖
(𝜀) = 𝑍

𝑗

𝑖
(𝜀)(𝑃(𝜀))

−1; then

𝐿
𝑗

𝑖
(𝜀) = 𝑍

𝑗

𝑖
(𝜀) (𝑃 (𝜀))

−1

= [𝜀 (𝑍
𝑗

𝑖𝑠
+ 𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
𝑌

𝑗

𝑖
) 𝑍

𝑗

𝑖𝑓
+ 𝜀𝑍

𝑗

𝑖𝑠
𝑃

−1

𝑠
𝑃

𝑇

2
]

×
[

[

𝜀𝑃
𝑠

𝜀𝑃
𝑇

2

𝜀𝑃
2
𝑃
𝑓
+ 𝜀𝑃

2
𝑃

−1

𝑠
𝑃

𝑇

2

]

]

−1

= [𝑍
𝑗

𝑖𝑠
+ 𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
𝑌

𝑗

𝑖
𝑍

𝑗

𝑖𝑓
+ 𝜀𝑍

𝑗

𝑖𝑠
𝑃

−1

𝑠
𝑃

𝑇

2
]

×
[

[

𝑃
𝑠

𝜀𝑃
𝑇

2

𝑃
2
𝑃
𝑓
+ 𝜀𝑃

2
𝑃

−1

𝑠
𝑃

𝑇

2

]

]

−1

󳨀→ [𝑍
𝑗

𝑖𝑠
+ 𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
𝑌

𝑗

𝑖
𝑍

𝑗

𝑖𝑓
] [

𝑃
𝑠
0

𝑃
2
𝑃
𝑓

]

−1

(as 𝜀 󳨀→ 0)

= [𝐾
𝑗

𝑖𝑠
+ 𝐾

𝑗

𝑖𝑓
(𝐴

𝑗

𝑖22
)

−1

𝐴
𝑗

𝑖21
𝐾

𝑗

𝑖𝑓

] ,

(31)

where𝐾𝑗

𝑖𝑠
= 𝑍

𝑗

𝑖𝑠
𝑃

−1

𝑠
and𝐾𝑗

𝑖𝑓
= 𝑍

𝑗

𝑖𝑓
𝑃

−1

𝑓
.

Thus, for sufficiently small 𝜀, the controller gains can be
chosen as

𝐿
𝑗

𝑖
= [𝐾

𝑗

𝑖𝑠
+ 𝐾

𝑗

𝑖𝑓
(𝐴

𝑗

𝑖22
)

−1

𝐴
𝑗

𝑖21
𝐾

𝑗

𝑖𝑓

] . (32)

Then, by (30), (31), and (32), there exists a positive scalar
𝜀max < 𝜀0, such that

(𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
)𝑃 (𝜀) + 𝑃 (𝜀) (𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
)

𝑇

< 0,

∀𝜀 ∈ (0, 𝜀max]

(33)

which is equivalent to
𝑗

∏

𝑖

(𝜀) ≜ 𝑃
−1

(𝜀) [(𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
)]

+ [(𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
)]

𝑇

𝑃
−1

(𝜀) < 0, ∀𝜀 ∈ (0, 𝜀max] .

(34)

Define Lyapunov function

𝑉 (𝜒 (𝑡)) = 𝜒
𝑇

(𝑡) 𝑃
−1

(𝜀) 𝜒 (𝑡) . (35)

Computing the derivative of𝑉(𝜒(𝑡)) along the trajectories
of system (22) and taking into account (34), we have

𝑉̇ (𝜒 (𝑡))

= 2𝜒
𝑇

(𝑡) 𝑃
−1

(𝜀) ̇𝜒 (𝑡)

= 2𝜒
𝑇

(𝑡) 𝑃
−1

(𝜀)(

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[(𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
) 𝜒 (𝑡)])

= 2

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
𝜒

𝑇

(𝑡) 𝑃
−1

(𝜀) [(𝐴

𝑗

𝑖
(𝜀) + 𝐵

𝑗

𝑖
𝐿

𝑗

𝑖
) 𝜒 (𝑡)]

=

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
𝜒

𝑇

(𝑡)

𝑗

∏

𝑖

(𝜀) 𝜒 (𝑡) < 0,

∀𝜀 ∈ (0, 𝜀max] , 𝜒 (𝑡) ̸= 0.

(36)

Therefore, the closed-loop system (11a) and (11b) is stable for
all 𝜀 ∈ (0, 𝜀max]. This completes the proof.

Remark 3. LMIs (13), (14), and (15) are independent of the
singular perturbation parameter 𝜀 and thus well-defined.
The feasibility of the LMIs can be checked by the existing
algorithms [44]. If the LMIs are feasible, an 𝜀-independent
stabilization controller can be obtained when 𝜀 is small
enough.

Remark 4. In [17, 35–38], some T-S model based control
approaches have been proposed for nonlinear SPSs. The
results are based on the parallel distributed compensation
(PDC) scheme and can design state feedback controllers for
affine-in-control nonlinear systems. In contrast, this paper
employed a dynamic state feedback fuzzy controller and
can be applied to nonaffine-in-control singularly perturbed
switched systems.

Remark 5. LMIs (14) imply that the controller designmethod
is valid only if the fast subsystem is open-loop stable, which
limits the method to standard NCSPSS. Control of nonstan-
dard NCSPSS is still an open problem.

Remark 6. T-S models, which use a set of fuzzy rules to de-
scribe a nonlinear system in terms of a set of local linearmod-
els, offer an efficient approach to stability analysis and con-
troller design of complex nonlinear systems. In this frame-
work, most of the stability analysis and controller design
problems can be reduced to solve LMI problems. A larger
number of individual subsystems or fuzzy rules will lead to
larger computational burden. Fortunately, there have been
some efficient algorithms to deal with LMI problems with
reasonable large dimensions [44].



6 Mathematical Problems in Engineering

4. Stability Bound Analysis

Stability bound is a key stability index of SPSs. Theorem 2
guarantees the existence of the stability bound 𝜀max. This
section will propose a method to estimate the stability bound
of the closed-loop system. To begin with, the closed-loop
system is written as

̇𝜂 (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖11
𝜂 (𝑡) + 𝐴

𝑗

𝑖12
𝑧 (𝑡)] , (37a)

𝜀𝑧̇ (𝑡) =

𝑟
𝑗

∑

𝑖=1

ℎ
𝑗

𝑖
[𝐴

𝑗

𝑖21
𝜂 (𝑡) + 𝐴

𝑗

𝑖22
𝑧 (𝑡)] , (37b)

where

𝐴
𝑗

𝑖11
=
[

[

𝑁
𝑗

𝑖
𝐷

𝑗

𝑖

𝐵
𝑗

𝑖1
𝐴

𝑗

𝑖11

]

]

, 𝐴
𝑗

𝑖12
=
[

[

𝑀
𝑗

𝑖

𝐴
𝑗

𝑖12

]

]

. (38)

Theorem 7. If there exists matrices 𝑃
𝑠
= (𝑃

𝑠
)
𝑇

> 0, 𝑃
𝑓
=

(𝑃
𝑓
)
𝑇

> 0, 𝑄𝑗

𝑖𝑠
= (𝑄

𝑗

𝑖𝑠
)

𝑇

> 0, and 𝑄𝑗

𝑖𝑓
= (𝑄

𝑗

𝑖𝑓
)

𝑇

> 0 of
appropriate dimensions, such LMIs,

𝑋
𝑗

𝑖𝑠
< 0,

𝑋
𝑗

𝑖𝑓
< 0,

[

[

𝑋
𝑗

𝑖𝑠
⋆

𝜀max𝑋
𝑗

𝑖2
𝑋

𝑗

𝑖𝑓
+ 𝜀max𝑀

]

]

< 0,

(39)

[

[

[

𝑄
𝑗

𝑖𝑠
− 𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
− (𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
)

𝑇

⋆

−(𝐴
𝑗

𝑖22
𝑌

𝑗

𝑖
+ 𝑃

𝑓
(𝐴

𝑗

𝑖12
)

𝑇

) 𝑄
𝑗

𝑖𝑓

]

]

]

> 0, (40)

are verified for 𝑗 = 1, . . . , 𝑁, 𝑖 = 1, . . . , 𝑟𝑗 with

𝑋
𝑗

𝑖𝑠
= 𝐴

𝑗

𝑖𝑠
𝑃
𝑠
+ 𝑃

𝑠
(𝐴

𝑗

𝑖𝑠
)

𝑇

+ 𝑄
𝑗

𝑖𝑠
,

𝑋
𝑗

𝑖𝑓
= 𝐴

𝑗

𝑖22
𝑃
𝑓
+ 𝑃

𝑓
(𝐴

𝑗

𝑖22
)

𝑇

+ 𝑄
𝑗

𝑖𝑓
,

𝑀 = 𝐴
𝑗

𝑖22
Θ𝑃

𝑠
Θ

𝑇

− 𝐴
𝑗

𝑖21
𝑃
𝑠
Θ

𝑇

+ (𝐴
𝑗

𝑖22
Θ𝑃

𝑠
Θ

𝑇

− 𝐴
𝑗

𝑖21
𝑃
𝑠
Θ

𝑇

)

𝑇

,

Θ =

𝑁

∑

𝑘=1

𝑟𝑘

∑

𝑙=1

(𝐴
𝑘

𝑙22
)

−1

𝐴
𝑘

𝑙21
,

𝑌
𝑗

𝑖
= −

𝑁

∑

𝑘=1

𝑟𝑘

∑

𝑙=1

(𝐴
𝑘

𝑙22
)

−1

𝐴
𝑘

𝑙21
𝑃
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(𝑘,𝑙) ̸=(𝑗,𝑖)

.

(41)

Then, the closed-loop system is stable for ∀𝜀 ∈ (0, 𝜀max].

Proof. Let

𝑃
1
(𝜀) = 𝜀𝑃

𝑠
,

𝑃
2
(𝜀) = 𝜀𝑃

2
= −𝜀

𝑁

∑

𝑘=1

𝑟𝑘

∑

𝑙=1

(𝐴
𝑘

𝑙22
)

−1

𝐴
𝑘

𝑙21
𝑃
𝑠
,

𝑃
3
(𝜀) = 𝑃

𝑓
+ 𝜀𝑃

2
𝑃

−1

𝑠
𝑃

𝑇

2
,

𝑄
𝑗

𝑖1
(𝜀) = 𝜀 (𝑄

𝑗

𝑖𝑠
− 𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
− (𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
)

𝑇

) ,

𝑄
𝑗

𝑖2
(𝜀) = − (𝐴

𝑗

𝑖22
𝑌

𝑗

𝑖
+ 𝑃

𝑓
(𝐴

𝑗

𝑖12
)

𝑇

) ,

𝑄
𝑗

𝑖3
(𝜀) = 𝜀

−1

𝑄
𝑗

𝑖𝑓
.

(42)

It follows from (40) that

[

[

[

𝜀 (𝑄
𝑗

𝑖𝑠
− 𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
− (𝐴

𝑗

𝑖12
𝑌

𝑗

𝑖
)

𝑇

) ⋆

−(𝐴
𝑗

𝑖22
𝑌

𝑗

𝑖
+ 𝑃

𝑓
(𝐴

𝑗

𝑖12
)

𝑇

) 𝜀
−1

𝑄
𝑗

𝑖𝑓

]

]

]

> 0, ∀𝜀 > 0

(43)

that is,

[

[

𝑄
𝑗

𝑖1
(𝜀) ⋆

𝑄
𝑗

𝑖2
(𝜀) 𝑄

𝑗

𝑖3
(𝜀)

]

]

> 0, ∀𝜀 > 0. (44)

We can rewrite (37a) and (37b) as

̇𝜒 (𝑡) =

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[(𝐴

𝑗

𝑖
(𝜀)) 𝜒 (𝑡)] , (45)

where

𝜒 = [

𝜂

𝑧
] , 𝐴

𝑗

𝑖
(𝜀) =

[

[

𝐴
𝑗

𝑖11
𝐴

𝑗

𝑖12

𝜀
−1

𝐴
𝑗

𝑖21
𝜀
−1

𝐴
𝑗

𝑖22

]

]

. (46)

Let

𝑃 (𝜀) = [

𝑃
1
(𝜀) ⋆

𝑃
2
(𝜀) 𝑃

3
(𝜀)

] . (47)

Define𝑋𝑗

𝑖1
(𝜀), 𝑋

𝑗

𝑖2
(𝜀), 𝑋

𝑗

𝑖3
(𝜀) as

𝑋
𝑗

𝑖1
(𝜀) = 𝐴

𝑗

𝑖11
𝑃
1
(𝜀) + (𝐴

𝑗

𝑖11
𝑃
1
(𝜀))

𝑇

+ 𝐴
𝑗

𝑖12
𝑃
2
(𝜀) + (𝐴

𝑗

𝑖12
𝑃
2
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖1
(𝜀) ,

𝑋
𝑗

𝑖2
(𝜀) = 𝜀

−1

𝐴
𝑗

𝑖22
𝑃
2
(𝜀) + 𝜀

−1

𝐴
𝑗

𝑖21
𝑃
1
(𝜀)

+ 𝑃
3
(𝜀) (𝐴

𝑗

𝑖12
)

𝑇

+ (𝐴
𝑗

𝑖11
𝑃

𝑇

2
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖2
(𝜀) ,

𝑋
𝑗

𝑖3
(𝜀) = 𝜀

−1

(𝐴
𝑗

𝑖22
𝑃
3
(𝜀) + (𝐴

𝑗

𝑖22
𝑃
3
(𝜀))

𝑇

+𝐴
𝑗

𝑖21
𝑃

𝑇

2
(𝜀) + (𝐴

𝑗

𝑖21
𝑃

𝑇

2
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖3
(𝜀))

(48)
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which are equivalent to

𝑋
𝑗

𝑖1
(𝜀) = 𝜀 (𝐴

𝑗

𝑖𝑠
𝑃
𝑠
+ 𝑃

𝑠
(𝐴

𝑗

𝑖𝑠
)

𝑇

+ 𝑄
𝑗

𝑖𝑠
) = 𝜀𝑋

𝑗

𝑖𝑠
,

𝑋
𝑗

𝑖2
(𝜀) = 𝜀 (𝑃

2
𝑃

−1

𝑠
𝑃

𝑇

2
(𝐴

𝑗

𝑖12
)

𝑇

+ (𝐴
𝑗

𝑖11
𝑃

𝑇

2
)

𝑇

) = 𝜀𝑋
𝑗

𝑖2
,

𝑋
𝑗

𝑖3
(𝜀) = 𝜀

−1

(𝐴
𝑗

𝑖22
𝑃
𝑓
+ 𝑃

𝑓
(𝐴

𝑗

𝑖22
)

𝑇

+ 𝑄
𝑗

𝑖𝑓
+ 𝜀𝑀)

= 𝜀
−1

(𝑋
𝑗

𝑖𝑓
+ 𝜀𝑀) .

(49)

From LMIs (39), it follows that

[

[

𝑋
𝑗

𝑖𝑠
⋆

𝜀𝑋
𝑗

𝑖2
𝑋

𝑗

𝑖𝑓
+ 𝜀𝑀

]

]

< 0, ∀𝜀 ∈ (0, 𝜀max] (50)

which is equivalent to

[

[

𝜀𝑋
𝑗

𝑖𝑠
⋆

𝜀
2

𝑋
𝑗

𝑖2
𝜀𝑋

𝑗

𝑖𝑓
+ 𝜀

2

𝑀

]

]

< 0, ∀𝜀 ∈ (0, 𝜀max] (51)

which implies that

[

[

𝜀𝑋
𝑗

𝑖𝑠
⋆

𝜀𝑋
𝑗

𝑖2
𝜀
−1

𝑋
𝑗

𝑖𝑓
+𝑀

]

]

< 0, ∀𝜀 ∈ (0, 𝜀max] . (52)

Since

[

[

𝜀𝑋
𝑗

𝑖𝑠
⋆

𝜀𝑋
𝑗

𝑖2
𝜀
−1

𝑋
𝑗

𝑖𝑓
+𝑀

]

]

=
[

[

𝑋
𝑗

𝑖1
(𝜀) ⋆

𝑋
𝑗

𝑖2
(𝜀) 𝑋

𝑗

𝑖3
(𝜀)

]

]

= 𝐴
𝑗

𝑖
(𝜀) 𝑃 (𝜀) + 𝑃 (𝜀) (𝐴

𝑗

𝑖
(𝜀))

𝑇

+ 𝑄
𝑗

𝑖
(𝜀) ,

(53)

it follows from (44) and (52) that

𝐴
𝑗

𝑖
(𝜀) 𝑃 (𝜀) + 𝑃 (𝜀) (𝐴

𝑗

𝑖
(𝜀))

𝑇

< 0, ∀𝜀 ∈ (0, 𝜀max] (54)

then

𝑗

∏

𝑖

≜ 𝑃
−1

(𝜀) 𝐴
𝑗

𝑖
(𝜀) + (𝐴

𝑗

𝑖
(𝜀))

𝑇

𝑃
−1

(𝜀) < 0, ∀𝜀 ∈ (0, 𝜀max] .

(55)

Define Lyapunov function

𝑉 (𝜒 (𝑡)) = 𝜒
𝑇

(𝑡) 𝑃
−1

(𝜀) 𝜒 (𝑡) . (56)

Computing the derivative of𝑉(𝜒(𝑡)) along the trajectories
of system (45) and taking into account (55), we have

𝑉̇ (𝜒 (𝑡))

= 2𝜒
𝑇

(𝑡) 𝑃
−1

(𝜀) ̇𝜒 (𝑡)

= 2𝜒
𝑇

(𝑡) 𝑃
−1

(𝜀)(

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
[(𝐴

𝑗

𝑖
(𝜀)) 𝜒 (𝑡)])

= 2

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
𝜒

𝑇

(𝑡) 𝑃
−1

(𝜀) [(𝐴
𝑗

𝑖
(𝜀)) 𝜒 (𝑡)]

=

𝑁

∑

𝑗=1

𝑟
𝑗

∑

𝑖=1

𝜃
𝑗
ℎ
𝑗

𝑖
𝜒

𝑇

(𝑡)

𝑗

∏

𝑖

(𝜀) 𝜒 (𝑡) < 0, ∀𝜀 ∈ (0, 𝜀max] .

(57)

Thus, the closed-loop system is stable for ∀𝜀 ∈ (0, 𝜀max]. This
completes the proof.

Remark 8. Stability bound problem of SPSS is challenging.
The existingmethod in [28] is limited to linear SPSS.Theorem
7 describes an efficientmethod to compute stability bound of
nonlinear SPSS.Thebest estimation of the stability bound can
be obtained by the following optimization problem:

max
𝑃𝑠>0,𝑃𝑓>0,𝑄

𝑗

𝑖𝑠
>0,𝑄
𝑗

𝑖𝑓
>0

𝜀max

s.t. LMIs (39) and (40) ,
(58)

which can be effectively solved by a one-dimensional search
algorithm with the aid of LMI Control Toolbox inMatlab 7.0.

Remark 9. It is known that LMI-based stability conditions
for T-S fuzzy systems are usually sufficient conditions [30].
Theorem 2 is derived by using common Lyapunov function,
which may lead to conservatism in some cases. Our future
work will try to reduce the conservatism by using piecewise
quadratic Lyapunov functions and fuzzy Lyapunov functions,
which have been demonstrated to be less conservative under
certain assumptions [31].

5. A Numerical Example

To illustrate the proposed results, we consider the follow-
ing singularly perturbed switched system composed of two
modes.

Mode 1:

𝑥̇ (𝑡) = − sin (𝑥 (𝑡)) + 𝑧 (𝑡) + arctan (𝑢 (𝑡)) + 0.55𝑢 (𝑡) ,
(59a)

𝜀𝑧̇ (𝑡) = 𝑥 (𝑡) − 𝑧 (𝑡) + arctan (𝑢 (𝑡)) + 0.55𝑢 (𝑡) . (59b)

Mode 2:

𝑥̇ (𝑡) = −𝑥 (𝑡) + 𝑧 (𝑡) + arctan (𝑢 (𝑡)) + 0.55𝑢 (𝑡) , (60a)

𝜀𝑧̇ (𝑡) = 𝑥 (𝑡) − 𝑧 (𝑡) + arctan (𝑢 (𝑡)) + 0.55𝑢 (𝑡) . (60b)
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For the individual systems, we choose the interpolation
points set as follows.

Mode 1:

𝑂
1
= {(0, 0, 0) , (0, 0, ±2) , (0, 0, ±4) ,

(±60
∘

, 0, 0) , (±60
∘

, 0, ±2) , (±60
∘

, 0, ±4) ,

(±90
∘

, 0, 0) , (±90
∘

, 0, ±2) , (±90
∘

, 0, ±4)} .

(61)

Mode 2:

𝑂
2
= {(0, 0, 0) , (0, 0, ±2) , (0, 0, ±4)} . (62)

UsingAlgorithm 2.1 in [42], we have theT-S fuzzymodels
of the system.

Mode 1:

𝐴
1

111
= −1, 𝐴

1

112
= 1, 𝐴

1

121
= 1,

𝐴
1

122
= −1, 𝐵

1

11
= 1.55, 𝐵

1

12
= 1.55,

𝐴
1

211
= −1, 𝐴

1

212
= 1, 𝐴

1

221
= 1,

𝐴
1

222
= −1, 𝐵

1

21
= 1.1036, 𝐵

1

22
= 1.1036,

𝐴
1

311
= −1, 𝐴

1

312
= 1, 𝐴

1

321
= 1,

𝐴
1

322
= −1, 𝐵

1

31
= 0.8815, 𝐵

1

32
= 0.8815,

𝐴
1

411
= −0.6366, 𝐴

1

412
= 1, 𝐴

1

421
= 1,

𝐴
1

422
= −1, 𝐵

1

41
= 1.55, 𝐵

1

42
= 1.55,

𝐴
1

511
= −0.6366, 𝐴

1

512
= 1, 𝐴

1

521
= 1,

𝐴
1

522
= −1, 𝐵

1

51
= 1.1036, 𝐵

1

52
= 1.1036,

𝐴
1

611
= −0.6366, 𝐴

1

612
= 1, 𝐴

1

621
= 1,

𝐴
1

622
= −1, 𝐵

1

61
= 0.8815, 𝐵

1

62
= 0.8815,

𝐴
1

711
= 0, 𝐴

1

712
= 1, 𝐴

1

721
= 1,

𝐴
1

722
= −1, 𝐵

1

71
= 1.55, 𝐵

1

72
= 1.55,

𝐴
1

811
= 0, 𝐴

1

812
= 1, 𝐴

1

821
= 1,

𝐴
1

822
= −1, 𝐵

1

81
= 1.1036, 𝐵

1

82
= 1.1036,

𝐴
1

911
= 0, 𝐴

1

912
= 1, 𝐴

1

921
= 1,

𝐴
1

922
= −1, 𝐵

1

91
= 0.8815, 𝐵

1

92
= 0.8815.

(63)
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Figure 1: Membership function of 𝑥.
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Figure 2: Membership function of 𝑢.

Mode 2:

𝐴
2

111
= −1, 𝐴

2

112
= 1, 𝐴

2

121
= 1,

𝐴
2

122
= −1, 𝐵

2

11
= 1.55, 𝐵

2

12
= 1.55,

𝐴
2

211
= −1, 𝐴

2

212
= 1, 𝐴

2

221
= 1,

𝐴
2

222
= −1, 𝐵

2

21
= 1.1036, 𝐵

2

22
= 1.1036,

𝐴
2

311
= −1, 𝐴

2

312
= 1, 𝐴

2

321
= 1,

𝐴
2

322
= −1, 𝐵

2

31
= 0.8815, 𝐵

2

32
= 0.8815.

(64)

Triangle-type membership functions are employed as the
fuzzy basis functions (see Figures 1 and 2 for the details).
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Figure 3: Switching rule 𝜎(𝑡).

Solving the LMIs in Theorem 2, we have the stabilizing
controller gains:

𝐾

1

1
= [−291.3404 −246.0669 0.0486] ,

𝐾

1

2
= [−254.0467 −214.4164 −0.0100] ,

𝐾

1

3
= [−230.2670 −194.1520 −0.0237] ,

𝐾

1

4
= [−267.1146 −225.4624 0.0519] ,

𝐾

1

5
= [−230.0488 −194.0072 −0.0113] ,

𝐾

1

6
= [−205.9095 −173.4338 −0.0298] ,

𝐾

1

7
= [−224.7013 −189.3868 −0.0639] ,

𝐾

1

8
= [−188.2509 −158.4596 −0.0166] ,

𝐾

1

9
= [−164.7476 −138.4243 −0.0524] ,

𝐾

2

1
= [−291.3404 −246.0669 −0.0486] ,

𝐾

2

2
= [−254.0467 −214.4164 −0.0100] ,

𝐾

2

3
= [−230.2670 −194.1520 −0.0237] .

(65)

Under this controller, the stability bound of the closed-
loop system is 𝜀max = 0.0685 by usingTheorem 7.

For simulation, we choose 𝜀 = 0.01, 𝑥(0) = 1, 𝑧(0) =
−1, 𝑢(0) = 0, and the switching rule shown in Figure 3.
Applying the fuzzy controller to the original system, the state
trajectories and control input of the closed-loop system are
shown in Figure 4. It can be seen that the closed-loop system
is stable.

6. Conclusion

In this paper, we considered the problem of fuzzy con-
troller design for nonaffine-in-control singularly perturbed

0 0.5 1 1.5 2 2.5 3
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0.2

0.4

0.6

0.8
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x

z

t (s)

𝜇

Figure 4: State trajectories and control input.

switched systems (NCSPSSs). A general class of Takagi-
Sugeno (T-S) models including both state and control vari-
ables in the premise part of the rules were established to
approximate the NCSPSS. By LMI technique, the controller
design and stability bound estimation problems were solved.
The presented example demonstrated the feasibility and
effectiveness of the obtained methods. It can be seen that
the proposed results are limited to standard NCSPSS. Thus,
one of our future works is to investigate control and analysis
problems of nonstandard NCSPSS.
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