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We apply the polynomial function to approximate the functional coefficients of the state-dependent autoregressivemodel for chaotic
time series prediction.We present a novel local nonlinearmodel called local polynomial coefficient autoregressive prediction (LPP)
model based on the phase space reconstruction. The LPP model can effectively fit nonlinear characteristics of chaotic time series
with simple structure and have excellent one-step forecasting performance. We have also proposed a kernel LPP (KLPP) model
which applies the kernel technique for the LPPmodel to obtain better multistep forecasting performance.The proposedmodels are
flexible to analyze complex and multivariate nonlinear structures. Both simulated and real data examples are used for illustration.

1. Introduction

Chaos is widely encountered in nature and many scientific
areas since Lorenz found chaotic motion in his research on
meteorology [1]. Over the latest decades, researchers in many
fields have paidmuch attention to chaos [2–13], andmodeling
and prediction of chaotic time series have become popular in
the areas of meteorology [1, 2], medicine [3], economics [4],
signal processing [5], traffic flow [6], power load [7], Sunspot
prediction [8–11], and many others [12, 13].

Although prediction of chaotic time series is very diffi-
cult, the chaos theory [14] provides a useful tool to predict
chaotic time series. With the development of chaos theory
and research on its application technique, the global [15]
and local [16] methods are proposed as two main categories.
The global method makes an attempt to approximate the
whole time series on all attractors and seeks a function
which is valid at every point. Then, we can get the future
values from knowledge of all the previous elements of the
time series. However, the parameters may be changed when
new information is added into the model. The local method
only use part of the past information to approximate the
local attractor. The future values can be inferred by using

the neighborhoods of the current points. Many prediction
methods have gained popularity in practice during the last
decades based on two main categories. Such as adaptive
prediction [17–19], the support vector machine (SVM) [20–
27], polynomial estimation [28–30], and neural network [8–
11, 31–36].

Recently, some researchers studies have shown that local
methods can obtain generally better results than those
obtained with global methods [18]. And some researchers
found that the forecast accuracy can be improved by using
some combining techniques both in the global and local
method. By using those combining techniques, the param-
eters can be obtained faster and the analysis of residual
can be underestimated if residuals are not randomness.
Such as SVM combined with neurofuzzy model [21], SVM
combined with PCA [26], ARMA combined with RESN [8],
and neural network combined with neurofuzzy model [34].
Those methods can obtain generally better results than those
obtained with single model, but they are complex, affected by
personal experience and easy to be overfitted.

To overcome these disadvantages, we propose to approx-
imate the local attractor by using local polynomial coeffi-
cient autoregressive prediction (LPP) model. The functional
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Figure 1: Results of the Lorenz time series: (a) and (b) are one-step prediction value and error, respectively; (c) and (d) aremultistep prediction
value and error, respectively.

coefficients of the state-dependent autoregressive model can
effectively fit nonlinear characteristics of nonlinear time
series. By using the polynomial function to approximate the
functional coefficients, we can use LPPmodel to approximate
the local attractor. The local attractor can be obtained by
utilizing Takens embedding theorem [10]. The kernel predic-
tion can improve the forecast accuracy [37, 38]. We combine
the LPP with the kernel technique to develop a kernel LPP
(KLPP) model to improve the multistep forecast accuracy.
The KLPP model can be applied to choose proper radius
of the nearest neighbors by using the kernel function. In
this work, we compare our models with those reported in
the literature to illustrate the effectiveness of our models in
predicting chaotic time series.

The paper is organized as follows. In Section 2, the
concept of the state-dependent autoregressivemodel, the LPP
model, and the KLPP model are proposed, and the optimal
parameter set is established by using GDF which is a tool to
evaluate the goodness of the model with the chosen number
of neighbors [12]. In Section 3, the prediction errors of the
generated time series are computed to analyze the predic-
tion effectiveness. Section 3 uses three simulated chaotic
systems and one real life time series as examples to evaluate

the proposed models.The conclusion of this paper is given in
Section 4.

2. The LPP Model and KLPP Model

2.1. Data Structure in Phase Space Reconstruction. Suppose
that we have a scalar chaotic time series 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
. The

first step of a local prediction is the phase space reconstruc-
tion. According to Takens embedding theory, the phase space
can be reconstructed and the construct phase points 𝑋

𝑡
=

(𝑥
𝑡
, 𝑥
𝑡+𝜏
, . . . , 𝑥

𝑡+(𝑚−1)𝜏
)
𝑇, where 𝑡 = 1, 2, . . . ,𝑀, and 𝑀 =

𝑛−(𝑚−1)𝜏.The embedding dimension𝑚 and the time delay
𝜏 can be obtained by the Cao method [39].Then, a continued
vector mapping 𝐹 : R𝑚 → Rm or 𝑓 : R𝑚 → R can be used
to describe the unknown evolution from 𝑋

𝑡
to 𝑋
𝑡+1

. That is,
𝑋
𝑡+1
= 𝐹(𝑋

𝑡
) and 𝑥

𝑡+1
= 𝑓(𝑥

𝑡
).

2.2. The LPP Model. The state-dependent autoregressive
model can be described as follows:

𝑥
𝑡
= 𝑔
0
(𝑋
𝑡−1
) +

𝑚

∑

𝑗=1

𝑔
𝑗
(𝑋
𝑡−1
) 𝑥
𝑡−𝑗
, (1)
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Figure 2: Results of the Lorenz time series one-step prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the
number of nearest neighbor points; (d) is the radius of the neighbors.

where𝑋
𝑡−1
= (𝑥
𝑡−1
, 𝑥
𝑡−2
, . . . , 𝑥

𝑡−𝑚
) and functional coefficient

𝑔
𝑗
(⋅), 𝑗 = 0, 1, . . . , 𝑚 is a continued vector mapping 𝑔

𝑗
:

R𝑚 → R.
On main purpose of this work is to estimate the mapping

𝑓 by using this model. The state-dependent autoregressive
model in an 𝑚-dimensional reconstructed phase space can
be given as follows:

𝑥
𝑡+1
= 𝑔
0
(𝑋
𝑡
) +

𝑚

∑

𝑗=1

𝑔
𝑗
(𝑋
𝑡
) 𝑥
𝑡−(𝑗−1)𝜏

, (2)

where 𝑋
𝑡
= (𝑥

𝑡
, 𝑥
𝑡−𝜏
, . . . , 𝑥

𝑡−(𝑚−1)𝜏
), 𝑚 is the embedding

dimension, and 𝜏 is the time delay.
We approximate 𝑔

𝑗
(𝑋
𝑡
) by a polynomial function

𝑔
𝑗
(𝑋
𝑡
) =̂ 𝑎
𝑗
(𝑢) = ∑

𝑟

𝑖=0
𝑎
𝑗𝑖
𝑢
𝑖, where the 𝑢 as the lag 𝑑(∈ (𝜏, 2𝜏,

. . . , (𝑚−1)𝜏)) variable 𝑥
𝑡−𝑑

and 𝑗 = 0, 1, . . . , 𝑚.Then, the LPP
model in an 𝑚-dimensional phase space can be described as
follows:

𝑥
𝑡+1
= 𝑎
0
(𝑢) +

𝑚

∑

𝑗=1

𝑎
𝑗
(𝑢) 𝑥
𝑡−(𝑗−1)𝜏

, (3)

where 𝑎
𝑗
(𝑢) = ∑

𝑟

𝑖=0
𝑎
𝑗𝑖
𝑢
𝑖, the 𝑢 is the lag 𝑑(∈ (𝜏, 2𝜏, . . . , (𝑚 −

1)𝜏)) variable 𝑥
𝑡−𝑑

, and 𝑟 is the length of the polynomial
function. Then, we have

𝑥
𝑡+1
=

𝑟

∑

𝑖=0

𝑎
0𝑖
(𝑥
𝑡−𝑑
)
𝑖

+

𝑚

∑

𝑗=1

𝑟

∑

𝑖=0

𝑎
𝑗𝑖
(𝑥
𝑡−𝑑
)
𝑖

𝑥
𝑡−(𝑗−1)𝑟

. (4)

The classical state-dependent autoregressivemodel has short-
comings such as low accuracy and low processing speed
and it is affected by personal experience. The proposed
method use the polynomial function to approximate the
functional coefficients of the state-dependent autoregressive
model, which makes it characterized by parameter model to
reduce personal experience and improves processing speed.
Also the proposedmethod is combinedwith the chaos theory,
which makes it obtain high prediction accuracy.

2.2.1. The LPP Estimation and Determination of the Optimal
Parameters (𝑞,𝑟). In order to obtain LPP model as the
approximation of themapping𝑓 at the current state point𝑋

𝑀

in the reconstructed phase space, we select 𝑞 nearest neighbor
points 𝑋

𝑀𝑗
(𝑗 = 1, 2, . . . , 𝑞) by using the Euclidean distances

𝑑(𝑖) = ‖𝑋
𝑖
−𝑋
𝑀
‖
2
(𝑖 = 1, 2, . . . ,𝑀−1) and fit a LPPmodel to
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Figure 3: Results of the Lorenz time series multistep prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the
number of nearest neighbor points; (d) is the radius of the neighbors.

predict the future point 𝑥
𝑀𝑗+(𝑚−1)𝜏+1

of 𝑋
𝑀𝑗
(𝑗 = 1, 2, . . . , 𝑞).

We can estimate the parameters 𝑎
𝑗𝑖
through the least square

equation

min
𝑎𝑗𝑖∈R

𝑞

∑

𝑡=1

[

[

𝑥
𝑀𝑡+(𝑚−1)𝜏+1

−

𝑚

∑

𝑗=0

{

𝑟

∑

𝑖=0

𝑎
𝑗𝑖
𝑥
𝑖

𝑀𝑡+(𝑚−1)𝜏−𝑑
}𝑥
𝑀𝑡+(𝑗−1)𝜏

]

]

2

,

(5)

where 𝑗 = 0, 1, . . . , 𝑚 and 𝑖 = 0, 1, . . . , 𝑟.
Define ̂𝜃 ≡ (𝑎

00
, . . . , 𝑎

0𝑟
, . . . , 𝑎

𝑚0
, . . . , 𝑎

𝑚𝑟
)
𝑇

(𝑚+1)(𝑟+1)×1
and

set

𝜒 =

[

[

[

[

[

𝑈
1
𝑥
𝑀1−𝜏

𝑈
1
𝑥
𝑀1

⋅ ⋅ ⋅ 𝑈
1
𝑥
𝑀1+(𝑚−1)𝜏

𝑈
2
𝑥
𝑀2−𝜏

𝑈
2
𝑥
𝑀2

⋅ ⋅ ⋅ 𝑈
2
𝑥
𝑀2+(𝑚−1)𝜏

.

.

.

.

.

. d
.
.
.

𝑈
𝑞
𝑥
𝑀𝑞−𝜏

𝑈
𝑞
𝑥
𝑀𝑞

⋅ ⋅ ⋅ 𝑈
𝑞
𝑥
𝑀𝑞+(𝑚−1)𝜏

]

]

]

]

]
𝑞×(𝑚+1)(𝑟+1)

,

𝑌 = (𝑥
𝑀1+(𝑚−1)𝜏+1

, . . . , 𝑥
𝑀𝑞+(𝑚−1)𝜏+1

)

𝑇

,

𝑈
𝑡
= (1, 𝑥

𝑀𝑡+(𝑚−1)𝜏−𝑑
, . . . , 𝑥

𝑟

𝑀𝑡+(𝑚−1)𝜏−𝑑
) ,

𝑥
𝑀𝑡−𝜏

≡ 1 (𝑡 = 1, 2, . . . , 𝑞) .

(6)

It follows from least squares theory that

̂
𝜃 = {𝜒

𝑇
𝜒}

−1

𝜒
𝑇
𝑌. (7)

By using (4), the prediction value 𝑥
𝑀+(𝑚−1)𝜏+1

can be calcu-
lated. We add 𝑥

𝑀+(𝑚−1)𝜏+1
to the training set and utilize the

prediction point 𝑋
𝑀+1

= (𝑥
𝑀+1

, 𝑥
𝑀+1+𝜏

, . . . , 𝑥
𝑀+1+(𝑚−1)𝜏

)
𝑇

as the last phase point 𝑋
𝑀+1

. Then, we can compute the
multistep prediction 𝑥

𝑀+(𝑚−1)𝜏+2
by the same scheme in the

forecast of 𝑥
𝑀+(𝑚−1)𝜏+1

.
By using a concept of generalized degrees of freedom

(GDF) [12, 13], the error variance can be measured. And the
optimal parameters of the prediction model can be obtained
by comparing the calculated GDF with different parameters.
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Figure 4: Results of Mackey-Glass time series: (a) and (b) are one-step prediction value and error, respectively; (c) and (d) are multistep
prediction value and error, respectively.

The unbiased estimators �̂�2GDF can be obtained in every step
of the prediction with different parameters as follows:

�̂�
2

GDF =
(𝑌 − �̂�) (𝑌 − �̂�)

𝑇

𝑞 − 𝐷

, (8)

where �̂� = 𝜒
̂
𝜃 = 𝜒{𝜒

𝑇
𝜒}
−1
𝜒
𝑇
𝑌, 𝐷 = tr{𝐻} =

tr{𝜒{𝜒𝑇𝜒}−1𝜒𝑇}, and 𝑞 is the number of nearest neighbor
points.

2.3. The KLPP Model. We combine the LPP with the kernel
technique to develop a kernel LPP (KLPP) model. The KLPP
model can be applied to choose proper radius of the nearest
neighbors by using the kernel function. We suppose that the
spatial correlation between phase points could be measured
by the kernel function. For the choice of the kernel function,
we adopt the Epanechnikov kernel. It is a truncated function
and is defined as follows:

𝐾(𝑧
𝑡
) =

3

4

(1 − 𝑧
2

𝑡
)
+
, (9)

where 𝑧
𝑡
≡ 𝑑(𝑡) − min{𝑑(1), 𝑑(2), . . . , 𝑑(𝑞)} (or 𝑧

𝑡
≡ 𝑑(𝑡)).

Epanechnikov kernel is the optimal kernel for the kernel

density estimation [40] and the local polynomial estimation
[41] which minimizes the mean square error. Also, it is a
truncated function which will help choose the neighborhood
radius. So, we adopt the Epanechnikov kernel for prediction,
although there are other kernel functions such as normal
function.

The estimators 𝑎
𝑗𝑖
is theminimizer of the sumofweighted

squares:

𝑞

∑

𝑡=1

[

[

𝑥
𝑀𝑡+(𝑚−1)𝜏+1

−

𝑚

∑

𝑗=0

{

𝑟

∑

𝑖=0

𝑎
𝑗𝑖
𝑥
𝑖

𝑀𝑡+(𝑚−1)𝜏−𝑑
}𝑥
𝑀𝑡+(𝑗−1)𝜏

]

]

2

𝐾
ℎ
(𝑧
𝑡
) ,

(10)

where 𝑗 = 0, 1, . . . , 𝑚, 𝑖 = 0, 1, . . . , 𝑟, and 𝐾
ℎ
(𝑧
𝑡
) ≡

(1/ℎ)𝐾(𝑧
𝑡
/ℎ). The parameter ℎ is used to control the bound-

ary of the nonnegative kernel function which is introduced
to choose radius of the nearest neighbors and emphasize
neighboring observations around𝑋

𝑀
when estimating 𝑎

𝑗𝑖
. It

is clear to see that the prediction accuracy of KLPP model
is sensitive to the radius of the neighbors. In this study,
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Figure 5: Results of Mackey-Glass time series one-step prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the
number of nearest neighbor points; (d) is the radius of the neighbors.

we choose the parameter ℎ, in terms of GDF, and the optimal
value of ℎ is the minimizer of the estimators �̂�2GDF.

Thus, the estimators 𝑎
𝑗𝑖
can be obtained from least squares

theory that

̂
𝜃 = {𝜒

𝑇
𝑊𝜒}

−1

𝜒
𝑇
𝑊𝑌, (11)

where 𝑌 = (𝑥
𝑀1+(𝑚−1)𝜏+1

, . . . , 𝑥
𝑀𝑞+(𝑚−1)𝜏+1

)
𝑇 and 𝑊 is a

𝑞 × 𝑞 diagonal matrix with 𝐾
ℎ
(𝑧
𝑖
) ≡ (1/ℎ)𝐾(𝑧

𝑖
/ℎ) as its

𝑖th diagonal element, 𝜒 is a 𝑞 × [(𝑚 + 1)(𝑟 + 1)] matrix
with [𝑈

𝑖
𝑥
𝑀𝑖−𝜏

, . . . , 𝑈
𝑖
𝑥
𝑀𝑖+(𝑚−1)𝜏

] as its 𝑖th row, and 𝑈
𝑖
=

[1, 𝑥
𝑀𝑖+(𝑚−1)𝜏−𝑑

, . . . , 𝑥
𝑟

𝑀𝑖+(𝑚−1)𝜏−𝑑
]. And the GDF method

chooses ℎ to minimize

�̂�
2

GDF (ℎ) =
(𝑌 − �̂�) (𝑌 − �̂�)

𝑇

𝑞 − 𝐷

, (12)

where �̂� = 𝜒
̂
𝜃 = 𝜒{𝜒

𝑇
𝑊𝜒}
−1
𝜒
𝑇
𝑊𝑌, 𝐷 = tr{𝐻} =

tr{𝜒{𝜒𝑇𝑊𝜒}−1𝜒𝑇𝑊}, and 𝑞 is the number of nearest neighbor
points with the Euclidean distance 𝑑(𝑖) = ‖𝑋

𝑖
− 𝑋
𝑀
‖ (𝑖 =

1, 2, . . . ,𝑀 − 1) less than ℎ.
Now, we outline the algorithm based on the basic idea of

our models.

Step 1. For a scalar time series 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, the phase space

reconstruct with the embedding dimension 𝑚 and the time
delay 𝜏 by the autocorrelation function method and the Cao
method; that is,𝑋

𝑡
= (𝑥
𝑡
, 𝑥
𝑡+𝜏
, . . . , 𝑥

𝑡+(𝑚−1)𝜏
)
𝑇.

Step 2. Compute the Euclidian distances 𝑑(𝑖) = ‖𝑋
𝑖
−

𝑋
𝑀
‖
2
(𝑖 = 1, 2, . . . ,𝑀−1) and select the Epanechnikov kernel

as the spatial correlation between phase points. Then, the
kernel coefficient can be calculated by (9).

Step 3. Identify the parameters 𝑎
𝑗𝑖
from (11).

Step 4. Calculate the �̂�2GDF in every step of the prediction
with different parameters ℎ, 𝑟, and 𝑎

𝑗𝑖
and select the optimal

parameters that make �̂�2GDF get minimum.

Step 5. Fit the KLPP with the optimal parameters and
calculate the prediction value 𝑥

𝑀+(𝑚−1)𝜏+1
.

Some additional remarks are now in order.
(i)With the Epanechnikov kernel, let 𝑘 be from 1 to 15 and

ℎ
𝑘
= ℎmin+((ℎmax−ℎmin)/14)×(𝑘−1) in Step 4, where ℎmin is

the Euclidian distance between the 2(𝑚 + 1)(𝑟 + 1)th nearest
neighbor and the reference point and ℎmax is the Euclidian
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Figure 6: Results of Mackey-Glass time series multistep prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the
number of nearest neighbor points; (d) is the radius of the neighbors.

distance between the [3(𝑚+1)(𝑟+1)+10]th nearest neighbor
and the reference point.

(ii) We acquire one-step and multistep prediction values
by using real value and prediction value to the training set as
the prediction steps developed, respectively.

(iii) To speed up the computation and avoid overfitting,
we may let 𝑟 ≤ 5.

(iv) For the algorithm of LPP model, we calculate the
parameters 𝑎

𝑗𝑖
from (7) in Step 3.

3. Numerical Experiments and
Performance Evaluation

Here, we consider three simulated chaotic systems, Lorenz,
Mackey-Glass, and Henon and one real life time series,
Sunspot time series, as examples to evaluate the proposed
models. Later, the results of proposed models are compared
with the results reported in the literature for the above exam-
ples. For themultistep prediction of chaotic time series, it will
produce data overflow when order of polynomial function is
larger and normalization can avoid this phenomenon. Thus,

those chaotic time series are selected and scaled between
[0, 1] as follows:

𝑥
−
new (𝑡) = 𝑥 (𝑡) −min (𝑥)

max (𝑥) −min (𝑥)
. (13)

The prediction errors of the generated time series are
computed to analyze the prediction effectiveness and com-
pare the presented models with the results in the literature
which are maximum absolute error (MAE), root mean
squared error (RMSE), and normalized mean squared error
(NMSE). Namely,

MAE = max {

𝑦 (𝑡) − 𝑦 (𝑡)





} ,

RMSE = √ 1
𝑛

𝑛

∑

𝑡=1

(𝑦 (𝑡) − 𝑦 (𝑡))
2

,

NMSE =
∑
𝑛

𝑡=1
(𝑦 (𝑡) − 𝑦 (𝑡))

2

∑
𝑛

𝑡=1
(𝑦 (𝑡) − 𝑦)

2
.

(14)
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Figure 7: Results of Henon time series: (a) and (b) are one-step prediction value and error, respectively; (c) and (d) are multistep prediction
value and error, respectively.

3.1. Performance Analysis in Lorenz Equations. The Lorenz
time series can be produced as follows [1]:

�̇� = 𝜎 (𝑦 − 𝑥) ,

̇𝑦 = (𝑟 − 𝑧) 𝑥 − 𝑦,

�̇� = 𝑥𝑦 − 𝑏𝑧,

(15)

where 𝜎, 𝑟, and 𝑏 are dimensionless parameters and most
commonly selected to be 𝜎 = 10, 𝑟 = 28, and 𝑏 = 8/3.
The standard fourth-order Runge-Kutta method is used to
get the Lorenz time series and the 𝑥-coordinate is used for
prediction. A time series with a length of 2000 is randomly
generated. 1800 samples are used for training, and the rest
are treated as testing. The results of one-step and multistep
predictions for Lorenz time series are shown in Figure 1, in
which we use LPP model and KLPP model.

From Figure 1, it can be seen that, for the one-step
prediction, both the prediction values of LPP and KLPP
models have small error values. For the multistep prediction,
we find out that KLPP model has smaller error values

than LPP model and the values of prediction are in good
agreement with the real time series.

The results of prediction are shown in Figures 2 and 3.
From Figure 2, we can see that the LPP model parameters
are in good agreement with the KLPPmodel parameters.The
polynomial ordersmainly take one or two, which avoids over-
fitting. The lag variables are selected from 𝑥

𝑡−𝜏
to 𝑥
𝑡−(𝑚−1)𝜏

at
different phase points.Thenumber of nearest neighbor points
of both LPP model and KLPP model is chosen in the vicinity
of 50, respectively. The radius of the neighbors changes from
0.05 to 0.3. From Figures 1 and 2, for one-step prediction, we
can see that both LPP model and KLPP model have similar
prediction performance. For the multistep prediction, the
prediction values of LPP start diverging significantly from the
120th time step, and the error values are larger than KLPP
model. In Figure 3, it can be seen that the parameters almost
do not change in account with the parameters in Figure 2.
This implies that the kernel can improve the performance of
the multistep prediction of chaotic time series.

3.2. Performance Analysis in Mackey-Glass Equations. The
Mackey-Glass model has been used in literature as a
benchmark model due to its chaotic characteristics [42].
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Figure 8: Results of Henon time series one-step prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the number
of nearest neighbor points; (d) is the radius of the neighbors.

Mackey-Glass time series is generated by the following dis-
crete form:

𝑥 (𝑡 + 1) = (1 − 𝑏) 𝑥 (𝑡) +

𝑎𝑥 (𝑡 − 𝜏)

1 + 𝑥 (𝑡 − 𝜏)
10
, (16)

where 𝑎 = 0.2, 𝑏 = 0.1, and 𝜏 = 17 and initial conditions
𝑥(𝑡)|
𝑡≤0

= 1.2. Thus, we can obtain a scalar chaotic time
series samples set with length of 2300 from (16). A segment of
1800 samples is used for training, while the remaining part is
treated as testing data. Figure 3 compares the real value with
prediction value for the rest samples for testing.

From Figure 4, we can see that both the one-step predic-
tion and the multistep prediction values of LPP and KLPP
models have small error values. And the multistep prediction
values come up with the real time series with a length of 500.
The multistep prediction values are of more accuracy than
Lorenz time series, which means the proposed models have
different performances in different chaotic time series.

From Figures 5 and 6, we can see that the parameters are
almost the same. The polynomial orders mainly take one or
two. The number of nearest neighbor points is chosen in the
vicinity of 50 and the radius of the neighbors changes from
0.05 to 0.3.

3.3. Performance Analysis in Henon Equations. Henon map-
ping is an evident dynamic system [43]. Its equations are
written by

𝑥 (𝑡 + 1) = 1 − 𝑎𝑥 (𝑡)
2
+ 𝑦 (𝑡) ,

𝑦 (𝑡 + 1) = 𝑏𝑥 (𝑡) ,

(17)

where 𝑎 = 1.4 and 𝑏 = 0.3. The 𝑥 values with a length of
1800 are generated to reconstruct the state space as training
data, and 500 samples are used for testing. Results are shown
in Figures 7, 8, and 9.

From Figure 7, we can see that the one-step prediction
values of LPP and KLPP models have small error values.
The multistep prediction values of LPP and KLPP models
start diverging significantly from the 25th time step and 35th
step, respectively. From Figures 8 and 9, we can see that the
polynomial orders mainly take 3, 4, and 5; the number of
nearest neighbor points is chosen from 50 to 100.This implies
that the proposed models are overfitting.

3.4. Performance Analysis in Sunspot Time Series. The
Sunspot time series is a good indication of solar activity for
solar cycles. The monthly smoothed Sunspot time series has



10 Mathematical Problems in Engineering

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

Time

Th
e p

ol
yn

om
ia

l o
rd

er

LPP
KLPP

(a)

Time
0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

D
ela

y 
of

 th
e l

ag
 v

ar
ia

bl
e

LPP
KLPP

(b)

Time
0 5 10 15 20 25 30 35 40 45 50

0
20
40
60
80

100
120
140

N
um

be
r o

f n
ea

re
st 

ne
ig

hb
or

 p
oi

nt
s

LPP
KLPP

(c)

Time
0 5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

1.2

Ra
di

us
 o

f t
he

 n
ei

gh
bo

rs

KLPP

(d)

Figure 9: Results of Henon time series multistep prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the number
of nearest neighbor points; (d) is the radius of the neighbors.

been obtained from the SIDC (World Data Center for the
Sunspot Index). To compare the results with different models
in the literature, data are selected in the same conditions
reported by [9, 10]. Sunspot series from November 1834 to
June 2001 (2000 points) are selected and scaled between [0, 1].
The first 1000 samples of time series are selected to train the
prediction models and the remainder 1000 samples are kept
to test the prediction models.

From Figure 10, it can be seen that, for the one-step
prediction, both prediction values of LPP and KLPP models
have accuracy prediction. For the multistep prediction, we
find out that KLPP model has smaller error values than LPP
model, and the values of prediction are in good agreement
with the real time series. The prediction values of LPP and
KLPP models start diverging significantly from the 10th and
320th time step, respectively. This implies that the kernel
can improve the performance of the multistep prediction of
chaotic time series.

From Figures 11 and 12, we can see that the polynomial
orders mainly take one or two. The number of nearest
neighbor points of both LPP and KLPP models is chosen in
the vicinity of 20, respectively. The radius of the neighbors
changes from 0.05 to 0.3 except for a few phase points. For
one-step prediction, the LPP and KLPP models have better

Table 1: The comparative results of different models of Lorenz time
series.

Prediction model RMSE MAE NMSE
RBF-OLS (2006) [34] 1.41𝐸 − 09

ERNN (2007) [9] 8.79𝐸 − 06 9.90𝐸 − 10

PSO-LSSVM (2009) [25] 1.80𝐸 − 04

FBMNN (2009) [10] 2.05𝐸 − 05

HE-NARXNN (2010) [11] 1.08𝐸 − 04 1.98𝐸 − 10

IEOP (2010) [33] 1.05𝐸 − 05

CSAA-SVR (2012) [23] 8.76𝐸 − 04

COA-SVR (2012) [24] 3.03𝐸 − 03

ESN (2012) [35] 2.50𝐸 − 03

HR (2012) [35] 1.50𝐸 − 03

WESN (2012) [31] 9.58𝐸 − 04

ARMA-RESN (2013) [8] 3.03𝐸 − 06

RBFNN (2013) [10] 5.00𝐸 − 03

LNF (2013) [21] 6.40𝐸 − 06

IEC-LSSVM (2014) [20] 1.18𝐸 − 07 4.41𝐸 − 07

The proposed LPP 2.03𝐸 − 05 1.04𝐸 − 04 1.05𝐸 − 08

The proposed KLPP 2.03𝐸 − 05 1.17𝐸 − 04 1.04𝐸 − 08
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Figure 10: Results of Sunspot time series: (a) and (b) are one-step prediction value and error, respectively; (c) and (d) aremultistep prediction
value and error, respectively.

Table 2: The comparative results of different models of Mackey-
Glass time series.

Prediction model RMSE MAE NMSE
RBF-OLS (2006) [34] 1.02𝐸 − 03

ERNN (2007) [9] 4.20𝐸 − 05 3.15𝐸 − 08

PSO-LSSVM (2009) [25] 2.80𝐸 − 03

FBMNN (2009) [10] 3.02𝐸 − 04

HE-NARXNN (2010) [11] 3.72𝐸 − 05 2.70𝐸 − 08

IEOP (2010) [33] 1.94𝐸 − 05

ODCF-SVM (2012) [22] 1.60𝐸 − 02

LNF (2013) [21] 7.90𝐸 − 04

LSSVR (2013) [27] 5.70𝐸 − 03

IEC-LSSVM (2014) [20] 2.82𝐸 − 06 8.32𝐸 − 06

The proposed LPP 2.71𝐸 − 05 2.45𝐸 − 04 1.27𝐸 − 08

The proposed KLPP 2.46𝐸 − 05 2.06𝐸 − 04 1.04𝐸 − 08

prediction performance for Sunspot time series. And for the
multistep prediction of Sunspot time series, the KLPP model
has more accuracy prediction than LPP model.

3.5. Results and Discussion. We compare the proposed mod-
els with some of the models reported in the literature

Table 3:The comparative results of different models of Henon time
series.

Prediction model RMSE MAE NMSE
LSSVM (2005) [10] 4.40𝐸 − 03

RBF-OLS (2009) [10] 4.13𝐸 − 02

FBMNN (2009) [10] 2.70𝐸 − 05

Incremental Algorithm
(2012) [36] 7.85𝐸 − 02

K2 Algorithm (2012)
[36] 1.14𝐸 − 02

The proposed LPP 1.20𝐸 − 06 1.46𝐸 − 05 2.70𝐸 − 12

The proposed KLPP 8.44𝐸 − 07 6.14𝐸 − 06 1.33𝐸 − 12

and the results are shown in Tables 1–4. In Table 1, we can see
that the proposed models in this paper are better than some
of the existing methods. But the best results are of ERNN
[9], ARMA-RESN [8], and IEC-LSSVM [20]. This is because
these methods have optimized the values for the embedding
dimensions for the phase space reconstruction. They also
have the advantage of the architectural properties of differ-
ent models in residual analysis or some models combined
with different models which further improve the results.
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Figure 11: Results of Sunspot time series one-step prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the number
of nearest neighbor points; (d) is the radius of the neighbors.

Table 4:The comparative results of differentmodels of Sunspot time
series.

Prediction model RMSE MAE NMSE
ERNN (2007) [9] 1.29𝐸 − 02 2.80𝐸 − 03

RBF-OLS (2009) [10] 4.60𝐸 − 02

HE-NARXNN (2010) [11] 1.19𝐸 − 02 5.90𝐸 − 04

ARMA-RESN (2013) [8] 15.7937

The proposed LPP 2.70𝐸 − 02(3.93) 0.48 6.40𝐸 − 03

The proposed KLPP 3.30𝐸 − 02(4.80) 0.52 9.50𝐸 − 03

These are also seen for the rest of time series in Tables 2–
4. And the data cannot be selected in the same conditions
reported in the literature; thus, the conclusions from Tables
1–4 have a few mistakes.

Table 2 presents that the proposed models are better than
most of the existingmethods except for the IEC-LSSVM [20].
In Table 3, the proposed models have the best results. For the
real-world time series in Table 4, we can see that the proposed
models are better than some of the existing methods, which
is similar to the best results reported in the literature.

4. Conclusions

In this paper, we apply the polynomial function to approx-
imate the functional coefficients of the state-dependent
autoregressive model. Based on the phase space reconstruc-
tion, we present a novel local nonlinear model called LPP
model for chaotic time series prediction. The LPP model can
effectively fit nonlinear characteristics of chaotic time series
with simple structure and have better one-step forecasting
performance. But, we find out that the LPP model have
bad multistep forecasting performance. Then, we propose a
kernel LPPmodel, which applies the kernel technique for the
LPP model, so that it may have better multistep forecasting
performance than LPP model.

The LPP and KLPP models are simple and are not
affected by personal experience. Simulated and real data
examples illustrate that the proposed models are flexible
to analyze complex and multivariate nonlinear structures.
The numerical experiments show the KLPP model has more
accuracy prediction than LPPmodel formultistep prediction.
We compare LPP andKLPPmodelswith differentmodels and
the results show that our models are feasible.
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Figure 12: Results of Sunspot time series multistep prediction: (a) is the polynomial order; (b) is the delay of the lag variable; (c) is the number
of nearest neighbor points; (d) is the radius of the neighbors.
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