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Genetic algorithms have become increasingly important for researchers in resolving difficult problems because they can provide
feasible solutions in limited time. Using genetic algorithms to solve a problem involves first defining a representation that describes
the problem states.Most previous studies have adopted one-dimensional representation. Some real problems are, however, naturally
suitable to two-dimensional representation. Therefore, a two-dimensional encoding representation is designed and the traditional
genetic algorithm ismodified to fit the representation. Particularly, appropriate two-dimensional crossover andmutation operations
are proposed to generate candidate chromosomes in the next generations. A two-dimensional repairing mechanism is also
developed to adjust infeasible chromosomes to feasible ones. Finally, the proposed approach is used to solve the scheduling problem
of assigning aircrafts to a time table in an airline company for demonstrating the effectiveness of the proposed genetic algorithm.

1. Introduction

Genetic algorithms (GAs) [1, 2] have recently been used to
solve optimization problems very commonly since they can
get nearly optimal solutions in reasonable time. They were
first proposed by Holland in 1975 [3] based on Darwin’s
principle of survival of the fittest. Each possible solution for
a problem may be regarded as an individual in a natural
population. The next candidate set of solutions are then gen-
erated by several operations including crossover, mutation,
and reproduction. GAs have been successfully applied to
many fields such as optimization [4–6], machine learning
[2, 7], neural networks [8, 9], and fuzzy logic controllers
[10–13]. The simple genetic algorithm uses a single crossover
operator and a single mutation operator throughout the
entire genetic process [3]. A representation that describes the
possible solutions for a problem must first be defined when
applying genetic algorithms to solve a problem. The simple
genetic algorithm is described as follows.

The Simple Genetic Algorithm

Step 1. Define a suitable representation of the problem to be
solved.

Step 2. Create an initial population of 𝑁 individuals for
evolution.

Step 3. Define a suitable fitness function for evaluating the
individuals.

Step 4. Perform genetic operations (crossover and mutation)
to generate possible offspring.

Step 5. Evaluate the fitness value of each individual.

Step 6. Select superior𝑁 individuals according to their fitness
values.

Step 7. If the termination criterion is not satisfied, go to Step
4; otherwise, stop the algorithm.
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In addition to the simple genetic algorithm, other variant
GAs can also be used. As mentioned above, a chromosome
representation must first be defined for GA to proceed. The
representation strongly affects the behavior and performance
of genetic algorithms. Several chromosome representations
have been proposed and commonly used, such as binary
strings, real-value vectors, permutations, finite-state repre-
sentation, and parse-tree representation. Binary strings [2,
3, 14–18] are the standard and the most commonly used
representation of solutions for genetic algorithms. They use
only the two symbols 0 and 1 to represent a chromosome.
Real-valued vectors [2, 14, 19–21] are another popular rep-
resentation used in GA. Each position in a chromosome
is a real value. Real-value vectors are especially useful for
solving real-value optimization problems. Permutations are a
popular representation for some combinatorial optimization
problems [6, 22, 23]. They encode the set of objects into
numbers and then arrange them into a chromosome. The
finite-state representation [4, 24] first constructs a state tran-
sition table according to the given problems and then evolves
according to the transitive table. It is used in environments
in which sequences of states have some implicit relations
and must be generated with the relation. Additionally, the
parse-tree representation [25, 26] is often adopted to evolve
executable structures, such as programs. Each chromosome
is represented by a parse tree.

Most previous representations, such as the bit string, were
linear or one-dimensional. However, some real problems are
naturally suitable for two-dimensional representation. For
example, in a scheduling problem for assigning aircrafts to
time slots in an airline company, a two-dimensional array or
table is often used to represent the schedule. If the problem
is solved by genetic algorithms, each possible solution can
be very conveniently and conceptually represented as a two-
dimensional table.

In this paper, we focus on the permutation representation.
Although a traditional one-dimensional encoding approach
can be easily implemented, it has an intrinsic drawback in
representing complex structures. That is, any solution to
a problem has to be represented by a linear string. This
probably causes the loss of some information contained in the
problem. A two-dimensional encoding approach can reflect
more geographical linkage of genes than one-dimensional
encoding approach. For example, Cohoon and Paris [27]
proposed a 2D crossover that chose a small rectangle
from one parent and copied the genes in the rectangle
into the offspring, with the rest of the genes copied from
the other parent. Anderson et al. [28] suggested a block-
uniform crossover, which tessellated a 2D chromosome into
𝑖 × 𝑗 blocks; the genes in each block were then copied
as a group from a uniformly selected parent. Wang and
Korfhage [29] used a matrix genome encoding approach
to schedule distributed tasks for minimizing the maximum
finishing time. They defined a schedulable matrix and an
allocation matrix to represent process constraints and to find
a complete process schedule. Bui and Moon then proposed
a geographic crossover to increase the diversity of offspring
[30]. It generalized the conventional block uniform crossover
and introduced natural lines. They showed that the entire

encoding space could always be divided into two separated
regions and that the offspring can be generated by alternately
copying the intervals of two parent strings.

Sadrzadeh [31] then presented a genetic algorithm to
solve the facility layout problem (FLP) in a manufacturing
system. The problem was to design a physical layout with
the minimization of the material handling cost as its main
objective, and a matrix encoding technique was adopted.The
crossover operation selected a rectangular area as the cutting
section and then exchanged the sections of a pair of parents
to generate new offspring. The mutation operation randomly
swapped two genes within a limited boundary. Aiello et al.
[14] also proposed a genetic algorithm to solve the facility
layout problem.They adapted two kinds of encodingmethods
in two segments at the same time. The first segment was
encoded by numerical values and the second one was by
binary variables. The first segment represented a sequence
of department placement, and the second showed a type of
cutting. The crossover operator, however, basically follows
the uniform crossover operation. Chou et al. [32] adopted
an inequality-basedmultiobjective genetic algorithm to solve
the aircraft routing problem. They used the concept of two-
dimensional encoding and proposed a method of inequality
to confine the search of a genetic algorithm for a Pareto
optimal set, thus speeding up the evaluation of the fitness
functions. However, in their research, the GA operation
actually translated the chromosomes to one-dimensional
strings in its execution and operated using the conventional
Partially Matched Crossover (PMX).

This study proposes a novel genetic algorithm based
on two-dimensional encoding. Appropriate two-dimensional
crossover and mutation operations are designed to generate
the next generations. The proposed crossover operator may
adopt either horizontal or vertical combination to generate
the offspring chromosomes. A repairing mechanism is also
adopted to adjust infeasible chromosomes into feasible ones.
Several two dimensional mutation operators, including two-
point swapping, string swapping, and substring swapping,
are presented. Finally, experiments on assigning aircrafts to
time slots in an airline company are performed with different
parameter settings to demonstrate the effectiveness of the
proposed approach.

The rest of the paper is organized as follows. Section 2
describes the adopted two-dimensional encoding scheme.
Several two-dimensional crossover operators and a two-
dimensional repair mechanism for matching the scheme are
proposed in Section 3. Several two-dimensional mutation
operators are proposed in Section 4. Section 5 summarizes
the experimental results on the performance of the proposed
algorithm for aircraft scheduling in an airline company.
Conclusions are finally drawn in Section 6, along with rec-
ommendations for future research.

2. The Two-Dimensional
Chromosome Representation

As mentioned above, an appropriate chromosome represen-
tation must be defined for a GA to work. Most previously
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adopted representations, such as the bit string, are linear or
one-dimensional. Some real problems are naturally suitable
for two-dimensional representation. If this kind of problems
is to be solved by genetic algorithms, then each possible
solution can very conveniently and naturally be concep-
tually represented as a two-dimensional table. Therefore,
this paper proposes a two-dimensional genetic algorithm
with appropriate operators designed on the two-dimensional
representation. The notation used in this work is defined
below.

Notation

𝑃: a population consisting of two-dimensional chro-
mosomes;

𝑛: the number of chromosomes in 𝑃;

𝑐
𝑖
: the 𝑖th chromosome in 𝑃, 1 ≤ 𝑖 ≤ 𝑛;

𝑐
𝑖
(𝑥, 𝑦): the gene located at position (𝑥, 𝑦) in the 𝑖th

chromosome 𝑐
𝑖
;

𝑆: the number of rows in the two-dimensional chro-
mosome representation;

𝑊: the number of columns in the two-dimensional
chromosome representation;

𝑃
𝑐
: the crossover probability;

𝑃
𝑚
: the mutation probability;

𝑅: a random number in the range 0 to +1;

𝑅
𝑐
: a random number indicating the column for

crossover, 1 ≤ 𝑖 ≤ 𝑊;

𝑅
𝑟
: a random number indicating the row for cross-

over, 1 ≤ 𝑖 ≤ 𝑆.

A chromosome 𝑐
𝑖
is thus encoded as an 𝑆 × 𝑊 matrix,

with each element 𝑐
𝑖
(𝑥, 𝑦) representing the gene value located

at (𝑥, 𝑦), 1 ≤ 𝑥 ≤ 𝑆 and 1 ≤ 𝑦 ≤ 𝑊. An example is
given below to show the use of the proposed two-dimensional
chromosome representation.

Example 1. Consider a scheduling problem with three
machines, four time intervals, and eight jobs. The jobs are
given as {Job

1
, Job
2
, Job
3
, Job
4
, Job
5
, Job
6
, Job
7
, Job
8
}.

The scheduling goal assigns the jobs to the machines and
to the time intervals, such that a job is executed by the
specified machine in the specified time. The solutions for the
scheduling problems must usually satisfy some constraints
or achieve some goals. Since the jobs are assigned to three
machines and to four time intervals, each possible scheduling
solution can thus be encoded as a 3 × 4matrix representation.
Table 1 shows an example of a possible schedule, in which the
first machine is assigned Job

1
, Job
6
, and Job

4
, respectively, in

the first, third, and fourth time intervals, the secondmachine
is assigned Job

5
in the second time interval, and the third

machine is assigned Job
2
, Job
8
, Job
3
, and Job

7
in the first to

the fourth time intervals, respectively.

Table 1: A possible schedule for the example.

Time slot 1 Time slot 2 Time slot 3 Time slot 4
Machine 1 Job1 Job6 Job4
Machine 2 Job5
Machine 3 Job2 Job8 Job3 Job7

The possible schedule in Table 1 can be represented as
a two-dimensional chromosome, as shown in the following
matrix:

[
[

[

1 0 6 4

0 5 0 0

2 8 3 7

]
]

]

. (1)

Genetic algorithms require initializing a population of
individuals, then gradually updating them by the evolution
process. Each individual within the population represents a
possible solution state. Not all solutions are feasible, since
some violate the problem constraints.Moreover, the offspring
generated by the genetic operation may also be infeasible
due to the violation of the chromosome representation. The
problem can be partially solved by using the fitness function.
A penalty value is added to the fitness value of a solution that
is infeasible due to some constraints. Repairing mechanisms
are then used to convert these infeasible solutions into
feasible ones if they are selected. The population initiation
process for the proposed two-dimensional encoding method
is described as follows.

The Population Initialization Process for
the Two-Dimensional Representation

Input. A number 𝑆 of rows, a number𝑊 of columns, and a set
of𝑚 objects are to be processed.

Output. The output is the 𝑖th two-dimensional initial chro-
mosome.

Step 1. Set 𝑘 = 1, where 𝑘 represents the number of the objects
currently being processed.

Step 2. Randomly generate two numbers 𝑥 and 𝑦, 1 ≤ 𝑥 ≤ 𝑆
and 1 ≤ 𝑦 ≤ 𝑊.

Step 3. If the location 𝑐
𝑖
(𝑥, 𝑦) of the 𝑖th chromosome 𝑐

𝑖

is empty, then assign the 𝑘th object at location 𝑐
𝑖
(𝑥, 𝑦);

otherwise, repeat Steps 2 and 3 until an empty location is
found.

Step 4. Set 𝑘 = 𝑘 + 1.

Step 5. If 𝑘 > 𝑚, then stop the algorithm; otherwise, go to Step
2.

A two-dimensional chromosome is randomly generated
after Step 5. For example, in Table 1, the eight jobs are the
objects with 𝑚 = 8. In the airline scheduling problem for
aircrafts, 𝑆 represents the number of aircrafts,𝑊 represents
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the number of time slots to depart, and the flights are the
objects. The above strategy is efficient when 𝑚 ≪ 𝑆 ∗ 𝑊. IF
𝑚 is nearly equal to 𝑆∗𝑊, then it is better to remove the cells
which have already been selected to increase the efficiency of
the random process. Other more complicated initialization
processes can also be used here.

The design of the genetic operators depends significantly
on the encoding method that is used and on the characteris-
tics of the problem to be solved. They are described below.

3. Two-Dimensional Crossover Operations

A crossover operator conventionally exchanges some bits
between two chromosomes with probability 𝑃

𝑐
. Common

crossover operators include multiple-point crossover [33],
uniform crossover [34], one-point crossover [7], and sub-
string crossover [7]. They are briefly described as follows.

(1) Multipoint Crossover. This method defines a mask to
determine the bits to be exchanged between two individuals.
Parents exchange bits corresponding to the positions with
values of 1 on the mask.

(2) Uniform Crossover Method. This method also defines a
mask to determine the bits that should be exchanged between
two individuals. However, the bit values of 1 and 0 alternate
with each other on the mask.

(3) One-Point Crossover.Themask has only one bit with value
1.That is, the operator randomly selects a single bit within two
parents to perform crossover.

(4) Substring Crossover. This method changes arbitrary sub-
strings between two individuals.The lengths and positions of
these substrings are chosen at random but are the same for
both individuals.

The adopted crossover operator must be appropriately
modified for the two-dimensional representation. A two-
dimensional substring crossover operator is designed and
described as follows.

The Two-Dimensional Substring Crossover

Input. The input is the two chromosomes 𝑐
𝑝1

and 𝑐
𝑝2
.

Output.The output is the two offspring chromosomes, 𝑐
𝑜1
and

𝑐
𝑜2
, which denote the crossover results by 𝑐

𝑝1
and 𝑐
𝑝2
.

Step 1. Generate two random integers 𝑅
𝑟
and 𝑅

𝑐
, which rep-

resent the two-dimensional crossover point.

Step 2. Generate a random real number 𝑅 between 0 and 1.
If 𝑅 > 0.5, then perform the two-dimensional horizontal
substring crossover (Step 3); otherwise, perform the two-
dimensional vertical substring crossover (Step 4).

Step 3 (horizontal crossover). Generate the two chromosomes
by performing the following substeps.

Substep 3.1. If row
𝑖
< 𝑅
𝑟
, then, for 1 ≤ col

𝑗
≤ 𝑊, copy

each gene 𝑐
𝑝1
(row
𝑖
, col
𝑗
) to 𝑐
𝑜1
(row
𝑖
, col
𝑗
) and 𝑐

𝑝2
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜2
(row
𝑖
, col
𝑗
), where𝑊 is the number of columns.

Substep 3.2. If row
𝑖
= 𝑅
𝑟
, then, for 1 ≤ col

𝑗
≤ 𝑅
𝑐
, copy

each gene 𝑐
𝑝1
(row
𝑖
, col
𝑗
) to 𝑐
𝑜1
(row
𝑖
, col
𝑗
) and 𝑐

𝑝2
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜2
(row
𝑖
, col
𝑗
). Additionally, copy each gene 𝑐

𝑝1
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜2
(row
𝑖
, col
𝑗
) and copy 𝑐

𝑝2
(row
𝑖
, col
𝑗
) to 𝑐
𝑜1
(row
𝑖
, col
𝑗
) for

𝑅
𝑐
< col
𝑗
≤ 𝑊.

Substep 3.3. If row
𝑖
> 𝑅
𝑟
, then, for 1 ≤ col

𝑗
≤ 𝑊, copy

each gene 𝑐
𝑝1
(row
𝑖
, col
𝑗
) to 𝑐
𝑜2
(row
𝑖
, col
𝑗
) and 𝑐

𝑝2
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜1
(row
𝑖
, col
𝑗
).

Step 4 (vertical crossover). Generate the two chromosomes by
the following substeps.

Substep 4.1. If col
𝑖
< 𝑅
𝑐
, then, for 1 ≤ row

𝑗
≤ 𝑆, copy each

gene 𝑐
𝑝1
(row
𝑖
, col
𝑗
) to 𝑐
𝑜1
(row
𝑖
, col
𝑗
) and copy 𝑐

𝑝2
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜2
(row
𝑖
, col
𝑗
), where 𝑆 is the number of rows.

Substep 4.2. If col
𝑖
= 𝑅
𝑐
, then, for 1 ≤ row

𝑗
≤ 𝑅
𝑟
, copy

each gene 𝑐
𝑝1
(row
𝑖
, col
𝑗
) to 𝑐
𝑜1
(row
𝑖
, col
𝑗
) and 𝑐

𝑝2
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜2
(row
𝑖
, col
𝑗
). Additionally, copy each gene 𝑐

𝑝1
(row
𝑖
, col
𝑗
)

to 𝑐
𝑜2
(row
𝑖
, col
𝑗
) and 𝑐

𝑝2
(row
𝑖
, col
𝑗
) to 𝑐
𝑜1
(row
𝑖
, col
𝑗
) for 𝑅

𝑟
<

row
𝑗
≤ 𝑆.

Substep 4.3. If col
𝑖
> 𝑅
𝑐
, then, for 1 ≤ row

𝑗
≤ 𝑆, copy each

gene 𝑐
𝑝1
(row
𝑖
, col
𝑗
) to 𝑐

𝑜2
(row
𝑖
, col
𝑗
) and 𝑐

𝑝2
(row
𝑖
, col
𝑗
) to

𝑐
𝑜1
(row
𝑖
, col
𝑗
).

The two offspring chromosomes 𝑐
𝑜1

and 𝑐
𝑜2

are thus
formed after the end of Step 4. An example is given below
to illustrate the proposed crossover operation.

Example 2. Consider a chromosome encoded as a 3 × 4
matrix, in which each gene value represents a unique index of
a job. Additionally, suppose that the two chromosomes at the
left side of Figure 1 are selected as the parents for crossover.
Assume that the crossover point is randomly generated as
𝑅
𝑟
= 2 and𝑅

𝑐
= 2. Figure 1 shows the results after performing

the horizontal substring crossover operator on the two parent
chromosomes.

Figure 2 shows the results of performing the vertical sub-
string crossover operator.

Note that the two-dimensional substring crossover gen-
erates two offspring chromosomes by choosing only one of
the two crossover strategies (horizontal or vertical). Alterna-
tively, the two-dimensional crossover operator can be easily
modified to generate four offspring chromosomes from a
pair of parents by executing the horizontal and the vertical
crossovers at the same time.

The new offspring chromosomes that result from exe-
cuting the crossover operation may become infeasible for
some application problems. For instance, the two offspring
chromosomes in Example 2 contain identical jobs allocated
at different cells, making it apparently unreasonable. This
situation typically occurs from permutation representation.
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Parent 1 Offspring 1

1 3 9 8 1 3 9 8

5 4 7 2 5 4 5 3
6 12 11 10 2 12 7 8

Parent 2 Offspring 2

4 6 11 9 4 6 11 9

10 1 5 3 10 1 7 2
2 12 7 8 6 12 11 10

Figure 1: Horizontal substring crossover for Example 2.

Parent 1 Offspring 1
1 3 9 8 1 3 11 9
5 4 7 2 5 4 5 3
6 12 11 10 6 12 6 8

Parent 2 Offspring 2
4 7 11 9 4 7 9 8

10 1 5 3 10 1 7 2
2 12 6 8 2 12 11 10

Figure 2: Vertical substring crossover for Example 2.

Therefore, appropriate two-dimensional repairing mecha-
nisms must be designed to convert infeasible chromosomes
into feasible ones.

A two-dimensional repairing algorithm for the permuta-
tion representation is proposed below.This algorithm is based
on the idea that if two locations have the same value, then the
content at one of them can be replaced with the value at the
same location of the parents, since genes at the same locations
may have similar characteristics. This assumption is quite
reasonable, especially for real problems (such as scheduling).

The Two-Dimensional Repairing Algorithm

Input. The input is the two parent chromosomes 𝑐
𝑝1
, 𝑐
𝑝2
,

the adopted crossover operation (horizontal or vertical),
crossover point (𝑅

𝑟
, 𝑅
𝑐
), and two infeasible offspring chro-

mosomes 𝑐
𝑜1
and 𝑐
𝑜2
.

Output. The output is the two repaired feasible chromosomes
𝑐
𝑟1
and 𝑐
𝑟2
from 𝑐

𝑜1
and 𝑐
𝑜1
.

Step 1. For 𝑐
𝑜𝑘
(𝑘 = 1 or 2), perform the following steps.

Step 2. Generate a random real number 𝑅 between 0 and 1.

Step 3. If the crossover is horizontal, then execute Steps 4 and
5; otherwise, execute Steps 6 and 7.

Step 4 (horizontal repair). If 0 ≤ 𝑅 < 0.5, then repair the genes
in the chromosome 𝑐

𝑜𝑘
from point (𝑅

𝑟
, 𝑅
𝑐
) forward to (𝑆,𝑊)

in a row-wise manner by performing the following substeps.

Substep 4.1. If a gene located at (row
𝑖1
, col
𝑗1
) of 𝑐
𝑜𝑘
also exists

at the previous location (row
𝑖2
, col
𝑗2
) (according to the search

direction), replace the gene at (row
𝑖1
, col
𝑗1
) of 𝑐
𝑜𝑘
with the one

at location (row
𝑖2
, col
𝑗2
) of 𝑐
𝑝(3−𝑘)

.

Substep 4.2. If the new replaced gene 𝑐
𝑜𝑘
(row
𝑖1
, col
𝑗1
)

(= 𝑐
𝑝(3−𝑘)
(row
𝑖2
, col
𝑗2
)) still exists at a certain previous loca-

tion (row
𝑖2
, col
𝑗2
), then repeat Substeps 4.1 and 4.2 until the

gene at 𝑐
𝑜𝑘
(row
𝑖1
, col
𝑗1
) no longer appears in the previous

locations.

Step 5. If 0.5 ≤ 𝑅 ≤ 1, then repair the genes in the chro-
mosome 𝑐

𝑜𝑘
from the point (𝑅

𝑟
, 𝑅
𝑐
) backward to (1, 1) in a

row-wise manner by executing the following substeps.

Substep 5.1. If a gene located at (row
𝑖1
, col
𝑗1
) of 𝑐
𝑜𝑘
also exists

at the previous location (row
𝑖2
, col
𝑗2
) (according to the search

direction), then replace the gene at (row
𝑖1
, col
𝑗1
) of 𝑐
𝑜𝑘

with
the one at location (row

𝑖2
, col
𝑗2
) of 𝑐
𝑝𝑘
.

Substep 5.2. If the new replaced gene 𝑐
𝑜𝑘
(row
𝑖1
, col
𝑗1
)

(= 𝑐
𝑝𝑘
(row
𝑖2
, col
𝑗2
)) still exists at a certain previous location

(row
𝑖2
, col
𝑗2
), then repeat Substeps 5.1 and 5.2 until the gene

at 𝑐
𝑜𝑘
(row
𝑖1
, col
𝑗1
)no longer appears in the previous locations.

Step 6 (vertical repair). If 0 ≤ 𝑅 < 0.5, repair the genes of
𝑐
𝑜𝑘

from point (𝑅
𝑟
, 𝑅
𝑐
) forward to (𝑆, 𝑊) in a column-wise

manner.

Step 7. If 0.5 ≤ 𝑅 ≤ 1, then repair the genes of 𝑐
𝑜𝑘
from point

(𝑅
𝑟
, 𝑅
𝑐
) backward to (1, 1) in a column-wise manner.

Below, an example is given to illustrate the above repair-
ing algorithm.
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Offspring 1:
Repair by moving backward in a row-wise way:Repair by moving forward in a row-wise way:

Repair by moving backward in a row-wise way:Repair by moving forward in a row-wise way:

1 3 9 8 1 9

5 4 4 5 3
2 12 7 2 12 7 8

Offspring 2:

4 6 11 9 4 9

10 1 7 2 1 7 2
12 6 12 11 10

5→10 3→6

8→9→11

11→9→8 10→5

3→2→6 8→10

6→3

5→7→11

6→2→3 11→7→5

10→8

Figure 3: The results of row-wise repair of Figure 1.

9 8

12 11

11 9

12 8

Offspring 1:

1 3 1 11 9

5 4 4 5 3
6 12 6 8

Offspring 2: 

4 7 4 9 8
10 1 1 7 2
2 12 11 10

Repair by moving backward in a column-wise way:Repair by moving forward in a column-wise way:

Repair by moving backward in a column-wise way:Repair by moving forward in a column-wise way:

5→10 3→7

6→2

7→3 2→6

10→5

3→2

5→7

6→11→9→8→10

7→5

2→3

10→8→9→11→6

Figure 4: The results of column-wise repair of Figure 2.

Example 3. Continuing Example 2, the resulting offspring
chromosomes in Figure 1 need to be repaired. In Offspring 1,
Job 5 is simultaneously assigned to locations (2, 1) and (2, 3),
violating the constraint of the chromosome representation.
Since the horizontal crossover is performed for the offspring
chromosome, the horizontal repairing steps (Steps 4 or 5) are
performed. Assuming that the random number generated is
below 0.5, Step 4 is then executed. The locations of Job 5 in
Offspring 1 are (2, 1) and (2, 3), and the value at (2, 3) needs to
be repaired according to Substep 4.1. Job 10 at location (2, 1) in
Parent 2 is then assigned to location (2, 3) ofOffspring 1. Since
Job 10 at location (2, 3) of Offspring 1 does not exist at the
previous locations, the repairing process for the location (2, 3)
inOffspring 1 is then finished. Similarly, Job 3 at location (2, 4)
of Offspring 1 is updated to Job 6. Job 8 at location (3, 4) is first
updated to Job 9 and then to Job 11. Figure 3 shows the repair
processes for the two possible row-wise repair mechanisms
(forward and backward).

Figure 4 shows the repair process for the two possible
column-wise repair mechanisms (forward and backward).

4. Two-Dimensional Mutation Operations

Mutation is a genetic operator that is used to maintain the
genetic diversity of a population of chromosomes between
generations. The conventional mutation operator usually

assigns a mutation probability with which an arbitrary bit
in a chromosome is changed. A common mutation operator
for permutation representation swaps the contents of two
arbitrary genes and is appropriately modified here for two-
dimensional representation. The proposed two-dimensional
mutation operation is described as follows.

The Two-Dimensional Two-Point Swapping
Mutation Operation

Input. The input is chromosome 𝑐
𝑖
and a mutation rate 𝑃

𝑚
.

Output. The output is the resulting chromosome 𝑐
𝑖
after it is

mutated.

Step 1. Generate a random number 𝑅 within 0 to 1.

Step 2. If𝑅 > 𝑃
𝑚
, then stop the algorithm; otherwise, perform

the next step.

Step 3. Generate two random integers, 𝑅
𝑟
and 𝑅

𝑐
, where 1 ≤

𝑅
𝑟
≤ 𝑆 and 1 ≤ 𝑅

𝑐
≤ 𝑊.

Step 4. Generate two random integers, 𝑅
𝑟
and 𝑅

𝑐
, where 1 ≤

𝑅


𝑟
≤ 𝑆 and 1 ≤ 𝑅

𝑐
≤ 𝑊; if 𝑅

𝑟
= 𝑅


𝑟
and 𝑅

𝑐
= 𝑅


𝑐
, then repeat

this step to generate another pair of 𝑅
𝑟
and 𝑅

𝑐
.

Step 5. Interchange 𝑐
𝑖
(𝑅
𝑟
, 𝑅
𝑐
) with 𝑐

𝑖
(𝑅


𝑟
, 𝑅


𝑐
).
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Original chromosome:

1 3 9 8

5 4 7 2

6 12 11 10

Four possible results after mutation:

1 3 9 8 4 3 9 8 1 3 9 8 1 3 9 8

5 11 7 2 5 1 7 2 5 2 7 4 4 5 7 2

6 12 4 10 6 12 11 10 6 12 11 10 6 12 11 10

Figure 5: An example for the two-point swapping mutation operator.

Original chromosome: Two possible mutation results:

1 3 9 8 6 12 11 10 9 3 1 8
5 4 7 2 5 4 7 2 7 4 5 2
6 12 11 10 1 3 9 8 11 12 6 10

Figure 6: Illustration of the string swapping mutation operator.

An example is given below to demonstrate the proposed
mutation operator.

Example 4. Consider the 3 × 4 two-dimensional chromo-
some shown at the top of Figure 5. Assume that the content
(Job 4) at location (2, 2) is chosen for mutation. It can be
swapped with any arbitrary location. The bottom of Figure 5
shows four possible swapping results.Themutation operation
can be performed in any direction.

In addition to the two-point swapping mutation, this
paper also presents another two-dimensional mutation to
exchange two entire rows or columns in a two-dimensional
chromosome. This mutation mechanism is described as
follows.

The Two-Dimensional String Swapping Mutation

Input. The input is chromosome 𝑐
𝑖
and a mutation rate 𝑃

𝑚
.

Output. The output is the resulting chromosome 𝑐
𝑖
after it is

mutated.

Step 1. Generate a random number 𝑅 between 0 and 1.
If 𝑅 > 0.5, then execute the two-dimensional horizontal
string mutation (Steps 2 and 3); otherwise, execute the two-
dimensional vertical string mutation (Steps 4 and 5).

Step 2 (horizontal string mutation). Generate two random
integers, 𝑅

𝑟1
and 𝑅

𝑟2
, where 1 ≤ 𝑅

𝑟1
, 𝑅
𝑟2
≤ 𝑆 and 𝑅

𝑟1
̸= 𝑅
𝑟2
.

Step 3. Swap 𝑐
𝑖
(𝑅
𝑟1
,Col
𝑗
) with 𝑐

𝑖
(𝑅
𝑟2
,Col
𝑗
) for 1 ≤ Col

𝑗
≤ 𝑊.

Step 4 (vertical string mutation). Generate two random
integers, 𝑅

𝑐1
and 𝑅

𝑐2
, where 1 ≤ 𝑅

𝑐1
, 𝑅
𝑐2
≤ 𝑊 and 𝑅

𝑐1
̸= 𝑅
𝑐2
.

Step 5. Swap 𝑐
𝑖
(Row
𝑖
, 𝑅
𝑐1
)with 𝑐

𝑖
(Row
𝑖
, 𝑅
𝑐2
) for 1 ≤ Row

𝑖
≤ 𝑆.

The following example demonstrates the proposed string
swapping mutation operator.

Example 5. Consider the original chromosome in Example 3.
Figure 6 shows the two possible results after the two-
dimensional string swappingmutation operator is performed
on the original chromosome. If two numbers, 1 and 3, are
randomly generated, the first one swaps rows 1 and 3, while
the second one swaps columns 1 and 3.

The string swapping mutation operator can also be
extended to swapping two substrings instead of two entire
rows or columns.

5. Experiments

This section describes experiments performed to show the
performance of the proposed two-dimensional genetic algo-
rithm. They were implemented by Borland C++ Builder on
an Intel Core-i7 PC. The proposed algorithm was run with
a scheduling problem of assigning aircrafts to a time table
in an airline company. The experiments were performed
on three data sets, namely, “data 07091,” “data 08181,” and
“data 07092,” for scheduling in different months. These data
sets contain 88, 78, and 85 jobs, respectively. The parameters
were set as 𝑆 (number of aircrafts) = 10 and 𝑊 (number of
time slots) = 10. Additionally, two basic constraints were set.
The first constraint was that an aircraft could only depart at a
time slot.The secondwas that a flight could not be performed
twice. In addition, some additional attributes were given for
the flights, such as flight locations, connections, and oper-
ations. According to the attributes, more constraints were
set, including the turnaround-time constraint, the location-
connecting constraint, and the operation-cost constraint
which considers dining cost and fuel cost.They are described
below.
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5.1. Turnaround-Time Constraint. The time gap between the
arrival and the departure of consecutive flight duties will not
be less than the legal turnaround time. This means that an
aircraft should be given enough preparation time between
two consecutive flights. If (landing time of the previous
flight + legal turnaround time − departure time of the next
flight) > 0, the penalty value for this constraint may be
proportional to the time gap; otherwise, no penalty is caused.

5.2. Connecting-Location Constraint. Since the genetic algo-
rithm is based on a random process (like crossover and
mutation operations), it is possible to generate the departure
location which mismatches with the previous landing loca-
tion. In the connection-location constraint, the arrival and
the departure locations for a consecutive flight duty should be
the same. If two locations are different, an unexecutable plan
would be caused, and severe penalty will be given. Otherwise,
if the landing location is the same as the departure one, no
penalty is caused.

5.3. Dining Cost and Fuel Cost. Dining cost and fuel cost are
calculated according to the conditions of airport facility. In
otherwords, the cost of dining cost or fuel cost should depend
on different airports and time periods. For example, if the
scheduling at ground time is set within the time period from
11:30 to 13:00 and 17:30 to 19:00 local time, the dining cost
for the airport should be added. Also, the fuel cost should be
charged according to each airport facility status.

5.4. Problem Objective. There are two types of constraints,
hard constraints and soft constraints. For any aircraft sched-
ule which violates the hard constraints, the schedule will
not be a feasible one. In our problem, turnaround-time and
connecting-location are set as hard constraints. Meanwhile,
constraints reflecting operation cost, dining cost, and fuel
cost are soft constraints, and the objective is to minimize the
summation of costs. Therefore, the problem goal is to find a
schedule with feasible and minimized cost.

In the first experiment, the population size was set at 100,
the crossover rate was 0.8, and the mutation rate was 0.05.
The standard roulette wheel selection method was adopted.
Figures 7 to 9 show the relationship between the fitness values
(the total costs) and the generations for the three data sets.
The total costs consisted of three items, the time cost, the
location cost, and the operations cost, which were also shown
in Figures 7 to 9.

From these figures, the populations converged along
with the increase of generations. Experiments were then
performed to show the effect of the population size on the
problem. Figure 10 plots the curves of the average perform-
ance of the three test data sets, for population sizes of 50,
100, and 200, respectively, with all the other parameters
unchanged.

From Figure 10, larger population size decreased the
number of generations needed for convergence but also
increased the computation time. Therefore, the appropriate
population size is a tradeoff between solution quality and exe-
cution time. From Figure 10, the solution with a population
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Figure 7: The relationship between fitness values and generations
for data set data 07091.
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Figure 10: Experimental results for different population sizes.

size of 50 was not good for this problem, since it did not
converge quickly in a reasonable period. The solutions with
population sizes of 100 and 200 converged around 600 and
500 generations, respectively. Overall, the population size of
100 was found to be most appropriate for this problem.

Many researchers have shown that choosing good genetic
parameter values such as crossover rate 𝑃

𝑐
and mutation

rate 𝑃
𝑚

is not easy [5, 35–37] and depends largely on the
characteristics of the problem to be solved [38]. The choice
of 𝑃
𝑐
and 𝑃

𝑚
is essentially a tradeoff between conservation

and exploration. Highmutation rates tend to cover the search
space well but disrupt partial solutions. On the contrary,
low mutation rates tend to keep possible good solutions but
do not sufficiently explore the search space. We thus made
experiments to show the sensitivity of different crossover
and mutation rates on the aircraft scheduling problem. The
crossover rate𝑃

𝑐
was set from0.5 to 0.9 in a step of 0.1, and the

mutation rate𝑃
𝑚
is set at 0.01, 0.05, 0.1, 0.2, and 0.3. Tables 2 to

4 show the effects of 𝑃
𝑐
and 𝑃
𝑚
for the three different test data

sets, respectively. It can be observed from the experimental
results that when the crossover rate 𝑃

𝑐
was 0.7, 0.6, or 0.5,

the performance was not very consistent for the three test
data sets. For crossover rate 0.9, it did not perform well for
the test data set data 07092. Therefore, 𝑃

𝑐
= 0.8 could be a

better choice for the testing problems. In the cases of 𝑃
𝑐
= 0.8,

it can be observed that𝑃
𝑚
= 0.05 can get feasible andminimal

cost for the problem. Hence, 𝑃
𝑐
= 0.8 and 𝑃

𝑚
= 0.05 are good

choices for the proposed algorithm in the experiments.
Airline scheduling problem is in general NP-hard prob-

lem [39], and thusmany researchers handle it by approaching
a near-optimal solution in reasonable time. In our problem,
the minimum value of the objective function is zero. It
happens when no soft constraints are violated. According
to Tables 2–4, when the generations reached 5000, the
proposed approach got the objective value of zero in most
cases. In some cases, the approach converged to zero even
much earlier. For 𝑃

𝑐
= 0.8 and 𝑃

𝑚
= 0.05, no or only

relatively low penalty is obtained in the three test data sets.
The proposed approach was thus suitable to applications of
aircraft scheduling.

Table 2: Effect of crossover and mutation rates for data set
data 07091.

GA parameters Objective function value in different
generations

𝑃
𝑐

𝑃
𝑚

1000 2000 3000 4000 5000

0.9

0.01 1340 400 280 200 200
0.05 0 0 0 0 0
0.1 90 0 0 0 0
0.2 0 0 0 0 0
0.3 110 0 0 0 0

0.8

0.01 770 200 200 150 0
0.05 200 0 0 0 0
0.1 30 0 0 0 0
0.2 0 0 0 0 0
0.3 0 0 0 0 0

0.7

0.01 900 500 500 230 230
0.05 0 0 0 0 0
0.1 0 0 0 0 0
0.2 600 600 600 600 600
0.3 0 0 0 0 0

0.6

0.01 800 290 30 0 0
0.05 400 400 200 200 200
0.1 270 200 200 200 200
0.2 270 0 0 0 0
0.3 210 200 200 200 200

0.5

0.01 1750 1220 780 330 330
0.05 250 250 200 200 0
0.1 0 0 0 0 0
0.2 0 0 0 0 0
0.3 110 0 0 0 0

Figure 11 shows the comparison between the Partially
Matched Crossover (PMX) approach [2] and the proposed
method. PMX is one-dimensional representation. Its two
crossover points are selected randomly from the parent’s
chromosomes to generate offspring.We thus transformed our
approach into one-dimensional representation in a row-wise
way for evaluating the performance of the PMX approach. In
this experiment, the crossover rate and themutation ratewere
set to 0.8 and 0.05, respectively. The lines labeled “PMX” and
“proposedmethod” represent the average fitness values (total
costs) obtained for the three data sets by the two methods.

PMX performed better than the proposed method at the
beginning, but the proposedmethod convergedmore quickly
and had better fitness values than PMX after 200 generations.
Thus, the proposed two-dimensional operations could cause
good effects.

6. Conclusion

Genetic algorithms have become increasingly important for
researchers in solving difficult problems since they can
provide nearly optimal solutions in a limited amount of
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Table 3: Effect of crossover and mutation rates for data set
data 08181.

GA parameters Objective function value in different
generations

𝑃
𝑐

𝑃
𝑚

1000 2000 3000 4000 5000

0.9

0.01 70 50 50 50 50
0.05 40 40 40 40 40
0.1 250 250 250 250 250
0.2 60 60 60 60 60
0.3 390 390 390 390 390

0.8

0.01 600 440 240 40 40
0.05 50 40 40 40 40
0.1 90 90 90 80 80
0.2 90 90 90 90 80
0.3 160 60 60 60 60

0.7

0.01 1070 570 50 50 50
0.05 260 260 260 260 60
0.1 60 50 50 50 50
0.2 290 280 260 250 250
0.3 60 60 60 60 60

0.6

0.01 1470 320 250 250 250
0.05 60 50 50 50 50
0.1 260 260 260 260 250
0.2 40 40 40 40 40
0.3 110 110 100 100 100

0.5

0.01 1320 790 690 690 690
0.05 50 50 40 40 40
0.1 50 50 50 50 50
0.2 340 260 260 260 260
0.3 330 80 80 50 50

time. Some real problems are in nature suitable for two-
dimensional representation. This paper has thus presented
a two-dimensional encoding schema and appropriate two-
dimensional crossover and mutation operators to solve this
kind of problems. The proposed two-dimensional crossover
operators have been designed to generate offspring chromo-
somes with either the horizontal or the vertical approach.
A repair mechanism is also proposed to adjust infeasible
chromosomes into feasible ones. Several two-dimensional
mutation operators, such as two-point swapping, string
swapping, and substring swapping, have also been presented.
Experiments on an aircraft scheduling problem in an air-
line company have also been performed to show the two-
dimensional effects of the proposed approach. The exper-
imental results show that the proposed two-dimensional
genetic algorithm is effective. In the future, we will attempt
to extend the proposed approach to solving other problems,
which have two-dimensional property in nature.
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Table 4: Effect of crossover and mutation rates for data set
data 07092.

GA parameters Objective function value in different
generations

𝑃
𝑐

𝑃
𝑚

1000 2000 3000 4000 5000

0.9

0.01 140 80 10 10 10
0.05 270 200 200 200 200
0.1 200 200 200 200 200
0.2 0 0 0 0 0
0.3 470 400 400 400 400

0.8

0.01 690 400 400 400 400
0.05 0 0 0 0 0
0.1 200 200 200 200 200
0.2 210 210 200 200 200
0.3 0 0 0 0 0

0.7

0.01 690 0 0 0 0
0.05 290 0 0 0 0
0.1 0 0 0 0 0
0.2 70 70 70 70 70
0.3 80 80 80 80 80

0.6

0.01 1260 610 300 200 200
0.05 200 200 200 200 200
0.1 120 0 0 0 0
0.2 0 0 0 0 0
0.3 270 200 0 0 0

0.5

0.01 920 30 0 0 0
0.05 210 200 200 200 200
0.1 200 200 200 200 200
0.2 140 70 0 0 0
0.3 280 210 210 210 210
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Figure 11: Comparison between PMX and the proposed method.
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