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The problem of synchronization of chaotic State Controlled Cellular Neural Network (SC-CNN) with uncertain state template
is investigated. In detail, the following three cases are solved: firstly, synchronization of two identical chaotic SC-CNNs with
uncertain state template, secondly, synchronization of two nonidentical chaotic SC-CNNs with all uncertain state templates, and,
thirdly, synchronization between chaotic SC-CNNwith uncertain state template and different uncertain parameter chaotic systems.
The controllers and update laws proposed in each case are proved closely based on Lyapunov stability theory. In addition, some
illustrative corresponding examples are presented to demonstrate the effectiveness and usefulness of the proposed control laws.

1. Introduction

State Controlled Cellular Neural Network (SC-CNN) [1, 2] is
a simple model of Cellular Neural Networks (CNNs) [3]. It is
able to generate the dynamics of nonlinear chaotic circuits
[4–6]. Chaotic systems in general and chaotic CNN in partic-
ular are very complex nonlinear dynamical systems. They
have several special characteristics such as sensitivity to ini-
tial conditions, topologicalmixture, and dense periodic orbits.
Based on these characteristics, chaotic CNN has some useful
applications in fields such as encryption, secure communi-
cations, and information processing.Therefore, the problems
of chaos generator, chaos control, and chaotic CNN synchro-
nization are interesting to solve.

In the previous studies, the authors have solved some
cases with special, certain state template chaotic SC-CNN
such as synchronization of an uncertain unified chaotic
system and a CNN [7, 8], synchronization of Lorenz system
and third-order CNN with uncertain parameters [9], syn-
chronization of CNN with delays based on OPNCL control
[10], and synchronization of CNN based on Rossler cells [11].
In more general works, some classes of chaotic CNNs with

uncertain parameters were reported [12–16]. However, the
uncertainty state template of chaotic SC-CNN has not been
mentioned.

From the above discussion, the main contribution of this
paper is to solve the problem of synchronization of chaotic
SC-CNN with uncertain state template. The cases studied
include synchronization of two identical chaotic SC-CNNs
with uncertain state template, synchronization of two non-
identical chaotic SC-CNNs with all uncertain state templates,
and synchronization of uncertain state template of chaotic
SC-CNN with different uncertain parameter chaotic system.

The paper is organized as follows. After the introduc-
tion, the problem formulation and preliminaries are given
in Section 2. In Section 3, the main results of the paper
are presented. Some numerical simulations are included
in Section 4. Finally, concluding remarks are provided in
Section 5.

2. Problem Formulation and Preliminaries

First, system description and problem formulation are shown
as follows.
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SC-CNN was introduced by Arena et al. in 1996 [2]. The
generalized SC-CNN equations describing system dynamics
can be written for each of the cells as
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are called feedback, control, and state template, respectively.
General chaotic system can be expressed as follows [17]:
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𝑇 is the state vector of chaotic
system, 𝑔

𝑖
(𝑦), 𝑖 = 1, 2, . . . , 𝑛, is a continuous nonlinear

function, 𝐺
𝑖
(𝑦), 𝑖 = 1, 2, . . . , 𝑛, is 𝑖th row of the 𝑛 × 𝑝 matrix

(G(𝑦)) whose elements are continuous nonlinear functions,
and 𝜃 is a 𝑝 × 1 parameter vector of the chaotic system.

Definition 1 (see [18]). The problem of drive-response chaotic
synchronization is to determine control law for the response
system to guarantee the convergence of the trajectories of the
response system to the trajectories of the drive system.

In this paper, three problems in terms of Definition 1 are
investigated. From here, the superscripts 𝑑 and 𝑟 denote drive
and response systems, respectively.

Problem 2. Synchronization of two identical chaotic SC-
CNNs with uncertain state template is as follows.
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Response System. Consider the following:
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Problem 3. Synchronization of two nonidentical chaotic SC-
CNNs with all uncertain state templates is as follows.

Drive System. Consider the following:

𝑥̇

𝑑

𝑖
(𝑡) = −𝑥

𝑑

𝑖
+ ∑

𝐶𝑘∈𝑁
𝑑
(𝑖)

𝑎

𝑑

𝑖𝑘
𝑓 (𝑥

𝑑

𝑘
) + ∑

𝐶𝑘∈𝑁
𝑑
(𝑖)

𝑏

𝑑

𝑖𝑘
V𝑑
𝑘

+ ∑

𝐶𝑘∈𝑁
𝑑
(𝑖)

𝑠

𝑑

𝑖𝑘
𝑥

𝑘

𝑑
+ 𝐼

𝑑

𝑖
.

(6)

Response System. Consider the following:

𝑥̇

𝑟

𝑖
(𝑡) = −𝑥

𝑟

𝑖
+ ∑

𝐶𝑘∈𝑁
𝑟
(𝑖)

𝑎

𝑟

𝑖𝑘
𝑓 (𝑥

𝑟

𝑘
) + ∑

𝐶𝑘∈𝑁
𝑟
(𝑖)

𝑏

𝑟

𝑖𝑘
V𝑟
𝑘

+ ∑

𝐶𝑘∈𝑁
𝑟
(𝑖)

𝑠

𝑟

𝑖𝑘
𝑥

𝑘

𝑟
+ 𝐼

𝑟

𝑖
+ 𝑢

𝑖 (
𝑡) .

(7)

Problem 4. Synchronization of chaotic SC-CNN (1) with
uncertain state template and different chaotic systems (3)
with uncertain parameter.

Some assumptions and necessary lemmas are presented
as follows.

Assumption 5. For convenience of presentation, we assume
that all cells in chaotic SC-CNN have fully connected. It
means that the cardinality of all neighborhood set equals 𝑛.
Consider the following:
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Assumption 6. It is assumed that the uncertain state template
𝑆 and feedback matrix 𝐴 of chaotic SC-CNN are operator
norms bounded as follows:
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Hence, the proof is complete.

Lemma 8 (Barbalat Lemma). If the differentiable function
𝑓(𝑡) has a finite limit as 𝑡 → ∞ and if ̇

𝑓 is uniformly continu-
ous, then ̇
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3. Main Results

3.1. Synchronization of Two Identical Chaotic SC-CNNs with
Uncertain State Template. Subtracting (4) from (5), we have
the error dynamics as follows:
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From the definition of 𝑉(𝑡) in (19), we have e(𝑡) ∈ 𝐿

∞
.

Inequality (26) implies that the square of e(𝑡) is integrable;
that is, e(𝑡) ∈ 𝐿

2
. Since the trajectories of chaotic systems are

always bounded then (21) leads to ė(𝑡) ∈ 𝐿

∞
. According to

Lemma 8, e(𝑡) ∈ 𝐿

∞
∩ 𝐿

2
and ė(𝑡) ∈ 𝐿

∞
; then e(𝑡) → 0

as 𝑡 → ∞. It can be concluded that the error system (21)
achieves global and asymptotical stability. In other words, the
controller (16) and state-template estimation update laws (18)
guarantee global and asymptotical synchronization of two
identical SC-CNN systems (4) and (5).

3.2. Synchronization of Two Nonidentical Chaotic SC-CNNs
with Uncertain State Template. Consider the problem of
synchronization of two nonidentical chaotic SC-CNNs with
uncertain state templates, described by (6) and (7). The error
dynamic system in this case is

̇𝑒

𝑖
= −𝑒

𝑖
+ ℎ

𝑟

𝑖
− ℎ

𝑑

𝑖
+

𝑛

∑

𝑖=1

𝑠

𝑟

𝑖𝑘
𝑥

𝑟

𝑘
−

𝑛

∑

𝑖=1

𝑠

𝑑

𝑖𝑘
𝑥

𝑑

𝑘
+ 𝑢

𝑖 (
𝑡) , (27)

where

ℎ

𝑟

𝑖
=

𝑛

∑

𝑘=1

𝑎

𝑟

𝑖𝑘
𝑓 (𝑥

𝑟

𝑘
) +

𝑛

∑

𝑘=1

𝑏

𝑟

𝑖𝑘
V𝑟
𝑘
+ 𝐼

𝑟

𝑖
;

ℎ

𝑑

𝑖
=

𝑛

∑

𝑘=1

𝑎

𝑑

𝑖𝑘
𝑓 (𝑥

𝑑

𝑘
) +

𝑛

∑

𝑘=1

𝑏

𝑑

𝑖𝑘
V𝑑
𝑘
+ 𝐼

𝑑

𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(28)

Theorem 10. The problem of synchronization of two noniden-
tical chaotic SC-CNNs with all uncertain state templates (6)
and (7) is solved by controller and state-template update laws
are proposed as follows:

𝑢

𝑖 (
𝑡) = ℎ

𝑑

𝑖
− ℎ

𝑟

𝑖
+

𝑛

∑

𝑘=1

𝑠

𝑑

𝑖𝑘
𝑥

𝑑

𝑘
−

𝑛

∑

𝑘=1

𝑠

𝑟

𝑖𝑘
𝑥

𝑟

𝑘
, (29)

̇

𝑠̂

𝑑

𝑖𝑘
= −𝑒

𝑖
𝑥

𝑑

𝑘
;

̇

𝑠̂

𝑟

𝑖𝑘
= 𝑒

𝑖
𝑥

𝑟

𝑘
;

𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝑛.

(30)

Proof. With control law (30), the error dynamic (27) can be
rewritten as follows:

̇𝑒

𝑖
= −𝑒

𝑖
−

𝑛

∑

𝑖=1

(𝑠

𝑟

𝑖𝑘
− 𝑠

𝑟

𝑖𝑘
) 𝑥

𝑟

𝑘
+

𝑛

∑

𝑖=1

(𝑠

𝑑

𝑖𝑘
− 𝑠

𝑑

𝑖𝑘
) 𝑥

𝑑

𝑘
. (31)

The Lyapunov function is chosen as follows:

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

𝑒

𝑖

2
+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑑

𝑖𝑘
− 𝑠

𝑑

𝑖𝑘
)

2

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑟

𝑖𝑘
− 𝑠

𝑟

𝑖𝑘
)

2
.

(32)

The time derivative of 𝑉(𝑡) is

̇

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝑒

𝑖
̇𝑒

𝑖
+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑑

𝑖𝑘
− 𝑠

𝑑

𝑖𝑘
)

̇

𝑠̂

𝑑

𝑖𝑘

+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑟

𝑖𝑘
− 𝑠

𝑟

𝑖𝑘
)

̇

𝑠̂

𝑟

𝑖𝑘
.

(33)

Inserting ̇𝑒

𝑖
from (31) and update laws from (30) into the

above equation, one obtains

̇

𝑉 (𝑡) = −

𝑛

∑

𝑖=1

𝑒

𝑖

2
−

𝑛

∑

𝑖

𝑒

𝑖

𝑛

∑

𝑘=1

(𝑠

𝑟

𝑖𝑘
− 𝑠

𝑟

𝑖𝑘
) 𝑥

𝑟

𝑘

+

𝑛

∑

𝑖

𝑒

𝑖

𝑛

∑

𝑖=1

(𝑠

𝑑

𝑖𝑘
− 𝑠

𝑑

𝑖𝑘
) 𝑥

𝑑

𝑘

+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑑

𝑖𝑘
− 𝑠

𝑑

𝑖𝑘
) (−𝑒

𝑖
𝑥

𝑑

𝑘
) +

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑟

𝑖𝑘
− 𝑠

𝑟

𝑖𝑘
) 𝑒

𝑖
𝑥

𝑟

𝑘
.

(34)

After removing the opposite terms, one has

̇

𝑉 (𝑡) = −

𝑛

∑

𝑖=1

𝑒

𝑖

2
≤ 0. (35)

From (35), 𝑉(𝑡) is a decreasing monotonic and lower
bounded function. So𝑉(𝑡) has a finite limit as 𝑡 → ∞. From
the definition of 𝑉(𝑡) in (32) and afore-mentioned property,
one has e, S𝑑 −

̂S𝑑 and S𝑟 − ̂S𝑟 being bounded. Since the
trajectories of chaotic systems are always bounded and from
(29), u(𝑡) is bounded, so that ẋ𝑟 = x𝑟 + u is bounded. Finally,
ė = ẋ𝑟 − ẋ𝑑 is bounded too.

Consider ̈

𝑉(𝑡) = −2∑

𝑛

𝑖=1
𝑒

𝑖
̇𝑒

𝑖
, in which the above

results infer that ̈

𝑉(𝑡) is bounded. Then ̇

𝑉(𝑡) is a uniformly
continuous function. Applying Lemma 8, one obtains

lim
𝑡→∞

̇

𝑉 (𝑡) = lim
𝑡→∞

(−

𝑛

∑

𝑖=1

𝑒

𝑖

2
) = 0 (36)

or e(𝑡) → 0 as 𝑡 → ∞. Thus, the proof is achieved com-
pletely.

Remark 11. We can also use the following controller for syn-
chronization Problem 3. Consider the following:

𝑢

𝑖 (
𝑡) = − sign (𝑒

𝑖
) (𝛾

𝑑
+ 𝛾

𝑟
) +

𝑛

∑

𝑘=1

𝑠

𝑑

𝑖𝑘
𝑥

𝑑

𝑘
−

𝑛

∑

𝑘=1

𝑠

𝑟

𝑖𝑘
𝑥

𝑟

𝑘
, (37)

where 𝛾𝑑, 𝛾𝑟 are the bounded operator norms of feedbackA𝑑
and A𝑟, respectively; sign(⋅) is sign function and update laws
in (30).
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Proof. With Lyapunov function (32), we have

̇

𝑉 (𝑡) = −

𝑛

∑

𝑖=1

𝑒

𝑖

2
+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

𝑒

𝑖
(𝑎

𝑟

𝑖𝑘
𝑓 (𝑥

𝑟

𝑘
) − 𝑎

𝑑

𝑖𝑘
𝑓 (𝑥

𝑑

𝑘
))

−

𝑛

∑

𝑖=1

𝑒

𝑖
sign (𝑒

𝑖
) (𝛾

𝑟
+ 𝛾

𝑑
)

≤ −

𝑛

∑

𝑖=1

𝑒

𝑖

2
+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

(

󵄨

󵄨

󵄨

󵄨

𝑎

𝑟

𝑖𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥

𝑟

𝑘
)

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑑

𝑖𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥

𝑑

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

)

−

𝑛

∑

𝑖=1

𝑒

𝑖
sign (𝑒

𝑖
) (𝛾

𝑟
+ 𝛾

𝑑
) .

(38)

Using Assumption 6, we have

𝑛

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

𝑎

𝑟

𝑖𝑘

󵄨

󵄨

󵄨

󵄨

≤ 𝛾

𝑟
,

𝑛

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝑑

𝑖𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝛾

𝑑
. (39)

Note that function (2) satisfies |𝑓(⋅)| ≤ 1 and the sign function
satisfying 𝑧 sign(𝑧) = |𝑧|; it can be concluded that ̇

𝑉(𝑡) ≤

−∑

𝑛

𝑖=1
𝑒

𝑖

2
≤ 0.

Remark 12. Theorem 10 is also valid for Problem 2.

3.3. Synchronization of Chaotic SC-CNN with Uncertain State
Template and Different Uncertain Parameter Chaotic Sys-
tem. Consider the problem synchronization of two different
chaotic systems.

Drive System. General chaotic system:

̇𝑦

𝑖
= 𝑔

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) + 𝐺

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) 𝜃, (40)

with uncertain parameter vector 𝜃 = (𝜃

1
, 𝜃

2
, . . . , 𝜃

𝑝
)

𝑇.

Response System. Chaotic SC-CNN:

𝑥̇

𝑖
= −𝑥

𝑖
+

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
𝑓 (𝑥

𝑘
) +

𝑛

∑

𝑘=1

𝑏

𝑖𝑘
V
𝑘

+

𝑛

∑

𝑘=1

𝑠

𝑖𝑘
𝑥

𝑘
+ 𝐼

𝑖
+ 𝑢

𝑖 (
𝑡) ,

(41)

with uncertain state template matrix S = (𝑠

𝑖𝑘
)

𝑛×𝑛
. 𝐺
𝑖
(𝑦) is 𝑖th

row of an 𝑛 × 𝑝 matrix G(𝑦). When needed, we can rewrite
them as the following details:

𝐺

𝑖
(𝑦) = (𝐺

𝑖1
(𝑦) , 𝐺

𝑖2
(𝑦) , . . . , 𝐺

𝑖𝑝
(𝑦)) ,

G (𝑦) = (𝐺

𝑖𝑗
(𝑦)) ,

𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑝.

(42)

Subtracting (40) from (41), we have error dynamic system as
follows:

̇𝑒

𝑖
= (−𝑥

𝑖
+

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
𝑓 (𝑥

𝑘
) +

𝑛

∑

𝑘=1

𝑏

𝑖𝑘
V
𝑘
+ 𝐼

𝑖
)

− 𝑔

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) +

𝑛

∑

𝑘=1

𝑠

𝑖𝑘
𝑥

𝑘

− 𝐺

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) 𝜃 + 𝑢

𝑖 (
𝑡)

= ℎ

𝑟

𝑖
(𝑥) − ℎ

𝑑

𝑖
(𝑦) +

𝑛

∑

𝑘=1

𝑠

𝑖𝑘
𝑥

𝑘

− 𝐺

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) 𝜃 + 𝑢

𝑖 (
𝑡) ,

(43)

where

ℎ

𝑟

𝑖
(𝑥) = −𝑥

𝑖
+

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
𝑓 (𝑥

𝑘
) +

𝑛

∑

𝑘=1

𝑏

𝑖𝑘
V
𝑘
+ 𝐼

𝑖
,

ℎ

𝑑

𝑖
(𝑦) = 𝑔

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) .

(44)

In order to guarantee the stability of the synchronization error
system (43), a suitable control law is proposed as follows:

𝑢

𝑖 (
𝑡) = −𝑒

𝑖
− ℎ

𝑟

𝑖
(𝑥) + ℎ

𝑑

𝑖
(𝑦) + 𝐺

𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
)

̂

𝜃

−

𝑛

∑

𝑘=1

𝑠

𝑖𝑘
𝑥

𝑘
,

(45)

where ̂

𝜃 and ̂S = (𝑠

𝑖𝑘
) are an estimation for 𝜃 and S =

(𝑠

𝑖𝑘
), respectively. The update laws for them are introduced

as follows:

̇

̂

𝜃

𝑗
= −

𝑛

∑

𝑖=1

𝐺

𝑖𝑗
(𝑦) 𝑒

𝑖
, 𝑗 = 1, 2, . . . , 𝑝,

̇

𝑠̂

𝑖𝑘
= 𝑒

𝑖
𝑥

𝑘
, 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝑛.

(46)

Theorem 13. The error system (43) is controlled by the con-
troller (45) and update laws in (46). Then the trajectories of
error system (43) converge to zero; hence the drive system (40)
and response system (41) are synchronized.

Proof. The Lyapunov function is selected as follows:

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

𝑒

𝑖

2
+

1

2

𝑝

∑

𝑗=1

(

̂

𝜃

𝑗
− 𝜃

𝑗
)

2

+

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑖𝑘
− 𝑠

𝑖𝑘
)

2
.

(47)

The time derivative of 𝑉(𝑡) is

̇

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝑒

𝑖
̇𝑒

𝑖
+

𝑝

∑

𝑗=1

(

̂

𝜃

𝑗
− 𝜃

𝑗
)

̇

̂

𝜃

𝑗

+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑖𝑘
− 𝑠

𝑖𝑘
)

̇

𝑠̂

𝑖𝑘
.

(48)
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Inserting control laws 𝑢(𝑡) in (45) into right-hand side of (43),
one has

̇𝑒

𝑖
= −𝑒

𝑖
+ 𝐺

𝑖
(𝑦) (

̂

𝜃 − 𝜃) −

𝑛

∑

𝑘=1

(𝑠

𝑖𝑘
− 𝑠

𝑖𝑘
) 𝑥

𝑘
. (49)

Inserting 𝑒

𝑖
(𝑡) in (49) and update laws in (46) into the right-

hand side of (48), one obtains

̇

𝑉 (𝑡) = −

𝑛

∑

𝑖=1

𝑒

𝑖

2
+

𝑛

∑

𝑖=1

𝑒

𝑖
𝐺

𝑖
(𝑦) (

̂

𝜃 − 𝜃)

−

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

𝑒

𝑖
(𝑠

𝑖𝑘
− 𝑠

𝑖𝑘
) 𝑥

𝑘
−

𝑝

∑

𝑗=1

(

̂

𝜃

𝑗
− 𝜃

𝑗
)

𝑛

∑

𝑖=1

𝐺

𝑖𝑗
(𝑦) 𝑒

𝑖

+

𝑛

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑠

𝑖𝑘
− 𝑠

𝑖𝑘
) 𝑒

𝑖
𝑥

𝑘
.

(50)

It is apparent that
𝑝

∑

𝑗=1

(

̂

𝜃

𝑗
− 𝜃

𝑗
)

𝑛

∑

𝑖=1

𝐺

𝑖𝑗
(𝑦) 𝑒

𝑖
=

𝑝

∑

𝑗=1

𝑛

∑

𝑖=1

𝑒

𝑖
𝐺

𝑖𝑗
(𝑦) (

̂

𝜃

𝑗
− 𝜃

𝑗
)

=

𝑛

∑

𝑖=1

𝑒

𝑖

𝑝

∑

𝑗=1

𝐺

𝑖𝑗
(𝑦) (

̂

𝜃

𝑗
− 𝜃

𝑗
)

=

𝑛

∑

𝑖=1

𝑒

𝑖
𝐺

𝑖
(𝑦) (

̂

𝜃 − 𝜃) .

(51)

Therefore, we have

̇

𝑉 (𝑡) = −

𝑛

∑

𝑖=1

𝑒

𝑖

2
≤ 0. (52)

From inequality (52), with similar arguments above, it can be
concluded that the trajectories of error system (43) converge
to zero.

4. Illustrative Examples

In this section, some illustrative examples for the above
problems are given.We usedMatlab tool for simulating these
examples.

Example 1. Synchronization of two identical chaotic SC-
CNNs with uncertain state template is as follows.

In this example, the synchronization problem of two
following chaotic SC-CNNs in [5] is considered. Therefore,

𝑥̇

1
= − 𝑥

1
+ 𝑎

11
𝑓 (𝑥

1
) + 𝑠

12
𝑥

1
+ 𝑠

13
𝑥

3
,

𝑥̇

2
= − 𝑥

2
+ 𝑠

22
𝑥

2
+ 𝑠

23
𝑥

3
,

𝑥̇

3
= − 𝑥

3
+ −0.3143𝑥

1
+ 𝑠

32
𝑥

2
+ 𝑠

33
𝑥

3
,

(53)

with uncertain state template

̂S = (

𝑠

11
0 𝑠

13

0 𝑠

22
𝑠

23

−0.3143 𝑠

32
𝑠

33

). (54)
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Figure 1: Synchronization errors in Example 1.

Exact state template of chaotic SC-CNN (53) is

S = (

−1.2418 0 0.3050

0 1.4725 −1

−0.3143 0.3143 0.6857

) (55)

and 𝑎

11
= 2.2754. The initial value of update matrix ̂S is

̂S (0) = (

1 0 2

0 2 2

−0.3143 2 1

) . (56)

The initial values of drive and response systems are chosen as

x𝑑 (0) = (1, 2, 3)

𝑇
,

x𝑟 (0) = (−1, −2, −3)

𝑇
.

(57)

Figure 1 shows the synchronization errors of two identical
chaotic SC-CNNs (53). The time response of adaptive state
template ̂S is illustrated in Figures 2 and 3. It can be seen that
the synchronization errors converge to zero and estimated
state template converges to the exact state template.

Example 2. Synchronization of two nonidentical chaotic SC-
CNNs with uncertain state template is as follows.

In this example, the drive system is selected as chaotic SC-
CNN in [5] and the response system is chosen as chaotic SC-
CNN in [19] as follows:

𝑥̇
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1
= − 𝑥
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1
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11
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11
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𝑟

12
𝑥

𝑟

2
,

𝑥̇

𝑟

2
= − 𝑥

𝑟

2
+ 𝑥

𝑟

1
+ 𝑥

𝑟

3
,

𝑥̇

𝑟

3
= − 𝑥

𝑟

3
+ 𝑠

𝑟

32
𝑥

𝑟

2
+ 𝑥

𝑟

3
.

(58)



Mathematical Problems in Engineering 7

0 10 20 30 40 50 60

−1

0

0.5

1

1.5

2

2.5

Es
tim

at
e p

ar
am

et
er

s

−1.5

−0.5

Time (s)

s22

s13

s11

Figure 2: Time responses of the adaptive state template ̂S in
Example 1.
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Figure 3: Time responses of the adaptive state template ̂S in
Example 1.

With drive system, we assume that state template has five
uncertain elements as follows:

̂S𝑑 = (

𝑠

𝑑

11
0 0.3050

0 𝑠

21
𝑠

23

−0.3143 𝑠

32
𝑠

33

). (59)

The uncertain state template of response system is

̂S𝑟 = (

𝑠

𝑟

11
𝑠

𝑟

12
0

1 0 1

0 𝑠

𝑟

32
1

) . (60)
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Figure 4: Synchronization errors in Example 2.

𝑎

𝑑

11
and exact state template of drive system have similar

values as Example 1. 𝑎𝑟
11

= 3.86 and exact state template of
response system is given as follows:

S𝑟 = (

−1.55 8.98 0

1 0 1

0 −14.26 1

) . (61)

The initial values of update matrixes ̂S𝑑 and ̂S𝑟 are selected as
follows:

̂S𝑑 (0) = (

1 0 0.3050

0 2 2

−0.3143 2 1

) ,

̂S𝑟 (0) = (

1 1 0

1 0 1

0 1 1

) .

(62)

Vectors x𝑑(0) = (1, 2, 3)

𝑇, x𝑟(0) = (−1, −2, −3)

𝑇 are chosen as
the initial values of drive and response systems, respectively.

The synchronization errors of two nonidentical chaotic
SC-CNNs (53) and (58) are shown in Figure 4. It is obvi-
ous that the synchronization errors converge to zero. The
time response of adaptive state template ̂S𝑑 is illustrated
in Figure 5. Figure 6 shows the time response of adaptive
state template ̂S𝑟. It is clear that the adaptive state templates
converge to some constants.

Example 3. Synchronization of chaotic SC-CNN with uncer-
tain state template and different uncertain parameter chaotic
systems is as follows.

In this example, the Lorenz system is selected as drive
system and response system is the chaotic SC-CNN.
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Figure 5: Time responses of the adaptive state template ̂S𝑑 in
Example 2.

Lorenz System. Consider the following:

̇𝑦

1
= 10 (𝑦

2
− 𝑦

1
) ,

̇𝑦

2
= 28𝑦

1
− 𝑦

2
− 𝑦

1
𝑦

3
,

̇𝑦

3
= 𝑦

1
𝑦

2
−

8

3

𝑦

3
,

(63)

or in the form of (3) as

̇𝑦

1
= 0 + (𝑦

2
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1
, 0, 0) (10, 28,

8

3

)

𝑇

,
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, 0) (10, 28,
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3
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1
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2
+ (0, 0, −𝑦

3
) (10, 28,

8

3

)

𝑇

,

(64)

with parameter vector 𝜃 = (10, 28, 8/3)

𝑇. Therefore,

g = (0, −𝑦

2
− 𝑦

1
𝑦

3
, 𝑦

1
𝑦

2
) ,

G = (

𝑦

2
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1
0 0
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1
0

0 0 −𝑦

3

).

(65)

Response chaotic SC-CNN [19]:
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(66)
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Figure 6: Time responses of the adaptive state template ̂S𝑟 in
Example 2.

The uncertain state template of response system is

̂S = (

𝑠

11
𝑠

12
0

1 0 1

0 𝑠

32
1

) . (67)

𝑎

11
= −7.717 and exact state template of response system is

given as follows:

S = (

1.3443 −4.925 0

1 0 1

0 3.649 1

) . (68)

The initial values of update parameters ̂𝜃 and ̂S are selected as
follows:

𝜃 (0) = (1, 2, 2)

𝑇
,

̂S = (

2 2 0

1 0 1

0 2 1

) .

(69)

The initial values of drive and response systems are chosen as
y(0) = (1, 2, 3), x(0) = (−1, −2, −3), respectively.

The synchronization errors of Lorenz system (63) and
chaotic SC-CNN (66) are revealed in Figure 7. It is seen
that the synchronization errors converge to zero. The time
response of adaptive parameter ̂

𝜃 is shown in Figure 8. The
adaptive parameters are clearly bounded. The time response
of adaptive state template ̂S is illustrated in Figure 9. It can
be seen that the adaptive state template converges to some
constants.

The simulation results indicate that the proposed con-
trollers can do synchronization of corresponding problems.
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Figure 7: Synchronization errors in Example 3.
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𝜃 in Example 3.

5. Conclusion

In this paper, three problems of synchronization of chaotic
SC-CNN with uncertain state template are investigated. The
adaptive controllers and suitable update laws are proposed
to guarantee synchronization.These results can be applied to
construct the image encryption scheme or secure communi-
cation based on chaos. However, the determination of finite
time to achieve synchronization is still unsolved. In the future
works, the finite time of synchronizationwill be interesting to
solve as well as to construct specific applications.
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Figure 9: Time responses of the adaptive state template ̂S in
Example 3.
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