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The objective of the present study is to evaluate the time-dependent reliability for dynamic mechanics with insufficient time-
varying uncertainty information. In this paper, the nonprobabilistic convex process model, which contains autocorrelation and
cross-correlation, is firstly employed for the quantitative assessment of the time-variant uncertainty in structural performance
characteristics. By combination of the set-theorymethod and the regularization treatment, the time-varying properties of structural
limit state are determined and a standard convex processwith autocorrelation for describing the limit state is formulated. By virtue of
the classical first-passage method in random process theory, a new nonprobabilistic measure index of time-dependent reliability is
proposed and its solution strategy ismathematically conducted. Furthermore, theMonte-Carlo simulationmethod is also discussed
to illustrate the feasibility and accuracy of the developed approach. Three engineering cases clearly demonstrate that the proposed
method may provide a reasonable and more efficient way to estimate structural safety than Monte-Carlo simulations throughout a
product life-cycle.

1. Introduction

Structural reliability assessment aims at computing the prob-
ability/possibility of failure occurrence for a mechanical sys-
temwith reference to a specific failure criterion by accounting
for uncertainties arising in the model description or the envi-
ronment [1]. Essentially, the reliability measurement repre-
sents safety level in industry practice and hence the capability
to efficiently perform reliability analysis is of vital importance
in practical engineering applications [2, 3]. Currently, two
main categories of reliability analysis are, respectively, the
time-independent (static) reliability analysis and the time-
dependent reliability analysis [4]. Over the past few decades,
many efforts have been focused on static reliability research
methodologies including probabilistic [5, 6], nonprobabilistic
[7, 8], and hybrid [9, 10] models. Therefore, the time-
independent reliability theory has made great progress in
the reliability estimate of all kinds of industrial systems
and becomes the most universal theory when dealing with
uncertainties.

However, in view of the comprehensive reasons of mate-
rial property degeneration, varying environmental condi-
tions, and dynamic load processes, the uncertain structures

in practical engineering still exhibit a distinct time-varying
effect [11]. Although the approaches based on static reliability
theory have been widely used to estimate the structural safety
recently, how to ensure high reliability level during a product
life-cycle is still a big challenge in engineering applications.
To tackle the time-dependency issues, Lots of research results
have been published in time-dependent reliability analysis
in recent years. They include the extreme value distribu-
tion method [12, 13], the first-passage method [1, 14], the
Markov chain method [15], and the Monte-Carlo simulation
method [16]. Among them, the first-passage method based
on Rice’s formula [17] is recognized as the most popular
method in current literature of reliability analysis research. It
concentrates on the first timewhen the performance function
exceeds the upper bound or falls below the lower bound of the
given safety threshold, which is commonly by virtue of the
calculation of the “outcrossing rate” to quantitatively evaluate
the probability of failure. Since the development of Rice’s
formula, amounts of improvements have been made. For
example, Vanmarcke proposed a commonly used improved
formula, accounting for the dependence between the crossing
events and the time that the process spends above the barrier
in application to normal stationary random process model
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[18]; Madsen and Krenk developed an integral equation
method for solving the first-passage problems [19]; a time-
dependent reliability analysis method with joint upcrossing
rates, inspired by [19], was further developed by Hu and Du
[20] for more general cases of the limit-state functions that
involve time, random variables, and stochastic processes; by
combination of the ideas of outcrossing and system reliability,
Wang et al. [13] presented an improved subset simulation
with splitting approach by partitioning the original high
dimensional random process into a series of correlated,
short duration, low dimensional random processes; several
improved formulations for calculating the outcrossing rate
based on the Poisson assumptionwere, respectively, extended
by Schall et al. [21], Engelund et al. [22], Streicher and
Rackwitz [23], and so forth. Recently, additional correlational
researches have been also suggested by [24, 25].

Compared to static reliability analysis, the research on
time-dependent reliability is still in its preliminary stage, and
the following features contribute to the sources of difficulty:
(1) from the analytical point of view, very few models
or analysis methods have been presented in the past for
the evaluation of time-dependent reliability considering the
general case of non-Gaussianity, nonstationarity, and non-
linear dependency; (2) from the perspective of simulation,
extremely high computational cost is needed to guarantee
reasonable numerical results of time-dependent reliability,
which greatly restrict the application in complex structural
systems. In recent developments, the work of Sudret et al.
[1, 26], where an analytical outcrossing rate utilizing the PHI2
method is derived, may partly overcome the abovementioned
insufficiencies.

As the literature survey reveals, most of the existing
studies focus on the random process models when perform-
ing the time-dependent reliability analysis while ignoring
the existence of nonprobabilistic time-varying uncertainties.
Furthermore, the assessment of the time-dependent relia-
bility by random process theory must require knowledge of
probabilistic descriptions for all time-varying uncertainties,
which are typically determined by sufficient experimental
samples. Unfortunately, for practical engineering problems,
experimental samples are not always available or re some-
times very expensive to obtain so that one cannot directly
establish the precise analytical model. Giving subjective
assumptions for description of the uncertainty characteristics
is likely to bring about a serious error of the time-dependent
reliability results. In view of the above reasons, it is quite
necessary and urgent to carry out time-dependent reliability
research on nonprobabilistic modeling methods. Jiang et al.
[27] proposed a new theory for time-varying uncertainty,
namely, the “non-probabilistic convex process model” to
tackle the problems of safety estimate when lacking relevant
uncertainty information. However, the solution of the time-
dependent reliability must rely on the Monte-Carlo simu-
lations rather than constructing an analytical model/index.
Additionally, the work in [27] mainly concentrated on the
case of stationary convex process; the more common case of
non-stationary process was not discussed.

Generally speaking, compared with static reliability anal-
ysis, fewer studies on time-dependent reliability analysis are

performed at present and its theoretical foundation is still
relatively immature. In this paper, inspired by the work in
[26, 27], we develop a new time-dependent reliability anal-
ysis approach based on the nonprobabilistic convex process
model, in which a new measure index of time-dependent
reliability is established and its solution procedure is deduced
mathematically. The presented approach can effectively deal
with the more general case containing nonstationarity and
nonlinear dependency that is of particular importance in
solving practical engineering problems.

The paper is organized as follows. Section 2 provides
a brief review of general concept of nonprobabilistic con-
vex process model and its relevant mathematical basis. In
Section 3, combinedwith the foregoing convex processmodel
and the set-theory method, the time-varying uncertainty
of structural limit state is quantified. Section 4 details the
presented time-dependent reliability method, and then we
introduce the Monte-Carlo simulations in Section 5. The
proposed methodology is demonstrated with three case
studies in Section 6 and then followed by conclusions in
Section 7.

2. Notation and Classification of
Nonprobabilistic Convex Process Model

Enlightened by [27], the nonprobabilistic convex process
model is introduced in this section to quantify the time-
varying uncertain parameters in dynamic mechanics when
facing the case of limited sample information. Here, the
uncertainty of structural parameters at any time is depicted
with a bounded closed interval, and the correlation between
variables in different instant time points is reflected by defin-
ing a corresponding correlation function. If we discretize the
contiguous convex process into a time series, the feasible
domain of all interval variables belongs to a convex set. For
details, see the following definitions.

Definition 1. Consider a convex process 𝑋(𝑡); 𝑋(𝑡) and 𝑋(𝑡)
describe the upper and lower bound functions of 𝑋(𝑡), and
hence the mean value function𝑋𝑐

(𝑡) and the radius function
𝑋

𝑟

(𝑡) are, respectively, given by

𝑋
𝑐

(𝑡) =

𝑋 (𝑡) + 𝑋 (𝑡)

2
,

𝑋
𝑟

(𝑡) =

𝑋 (𝑡) − 𝑋 (𝑡)

2
.

(1)

For convenience, we also define the variance function
𝐷

𝑋
(𝑡) as

𝐷
𝑋
(𝑡) = (𝑋

𝑟

(𝑡))
2
= (

𝑋 (𝑡) − 𝑋 (𝑡)

2
)

2

. (2)

It is apparently indicated that the properties of uncertain
variables at any time can be quantified mathematically from
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Figure 1: Quantitative models between interval variables at any two times in the convex process: (a) the original model; (b) the normalized
model.

the above equations. The correlation between any two vari-
ables in different time points is determined by the autoco-
variance function or the correlation coefficient function as
the following statements.

Suppose that 𝑋(𝑡1) and 𝑋(𝑡2) are two interval variables
originating from the convex process𝑋(𝑡) at times 𝑡1 and 𝑡2. In
view of the existence of the correlation, a rotary ellipse model
is constructed to restrict the value range of 𝑋(𝑡1) and 𝑋(𝑡2),
as shown in Figure 1(a). By regularization treatment (from
𝑥 space to 𝑢 space), the standard model is then formed, as
illustrated in Figure 1(b).

Definition 2. If 𝑋(𝑡) is a convex process, for any times 𝑡1 and
𝑡2, the autocovariance function of interval variables𝑋(𝑡1) and
𝑋(𝑡2) is defined as

Cov
𝑋
(𝑡1, 𝑡2) = Cov (𝑈1, 𝑈2) ⋅ 𝑋

𝑟

(𝑡1) ⋅ 𝑋
𝑟

(𝑡2)

= (𝑟
2
𝑚
− 1) ⋅ 𝑋𝑟

(𝑡1) ⋅ 𝑋
𝑟

(𝑡2) ,

0 ≤ 𝑟
𝑚
≤ √2,

(3)

where 𝑟
𝑚
either stands for the major axis 𝑟1 of the ellipse in

𝑢 space if the slope of the major axis is positive or represents
the minor axis 𝑟2 if the slope of the major axis is negative. For
details, see Figure 2.

Definition 3. With regard to the convex process 𝑋(𝑡), the
autocorrelation coefficient function of 𝑋(𝑡1) and 𝑋(𝑡2) is
expressed as

𝜌
𝑋
(𝑡1, 𝑡2) =

Cov
𝑋
(𝑡1, 𝑡2)

√𝐷
𝑋
(𝑡1) ⋅ √𝐷𝑋

(𝑡2)
=

Cov (𝑈1, 𝑈2)

√𝐷
𝑈1
⋅ √𝐷

𝑈2

= 𝜌
𝑈1𝑈2

= 𝑟
2
𝑚
− 1,

(4)

where 𝐷
𝑈1

and 𝐷
𝑈2

denote the variance functions of the
standard interval variables 𝑈1 and 𝑈2 (𝐷

𝑈1
= 𝐷

𝑈2
=

1). 𝜌
𝑋
(𝑡1, 𝑡2) is a dimensionless quantity and its magnitude

represents the linear correlation of 𝑋(𝑡1) and 𝑋(𝑡2). It is
obvious that |𝜌

𝑋
(𝑡1, 𝑡2)| ≤ 1 and 𝜌

𝑋
(𝑡, 𝑡) = 1.

Several specific ellipse models with different values of
𝜌
𝑋
(𝑡1, 𝑡2) are clearly illustrated in Figure 3. Among all the

ellipses, the one with 𝜌
𝑋
(𝑡1, 𝑡2) = 0 has amaximal area, which

implies the largest scattering degree and hence a minimum
correlativity of variables 𝑋(𝑡1) and 𝑋(𝑡2). Moreover, a larger
|𝜌

𝑋
(𝑡1, 𝑡2)|means a stronger linear correlation between𝑋(𝑡1)

and 𝑋(𝑡2). Once |𝜌𝑋(𝑡1, 𝑡2)| = 1, the ellipse model will be
replaced by a straight line that indicates a complete linearity.

As mentioned above, the characteristics of one time-
varying uncertain parameter can be commendably embod-
ied. However, with respect to complicated structures, more
common case is that we must solve the problem of multi-
dimensional time-varying uncertainty. The cross-correlation
between two convex processes should be considered as well.

Definition 4. Suppose two convex processes 𝑋(𝑡) and 𝑌(𝑡),
for any times 𝑡1 and 𝑡2; the cross-correlation coefficient
function of𝑋(𝑡1) and 𝑌(𝑡2) is established as

𝜌
𝑋𝑌
(𝑡1, 𝑡2) =

Cov
𝑋𝑌
(𝑡1, 𝑡2)

√𝐷
𝑋
(𝑡1) ⋅ √𝐷𝑌

(𝑡2)
= 𝑟

2
𝑚
∗ − 1,

0 ≤ 𝑟
𝑚
∗ ≤ √2,

(5)

where Cov
𝑋𝑌
(𝑡1, 𝑡2)means the cross-covariance function and

𝑟
𝑚
∗ represents the major/minor axis of the ellipse in 𝑢 space

derived from 𝑋(𝑡1) and 𝑌(𝑡2) (similarly to the definition in
(3)).

According to the above definitions, the characteristic
parameters of nonprobabilistic convex process model are
available. In the next section, associated with the set-theory
method, the convex process model utilized to describe the
time-varying uncertainty of structural limit state is estab-
lished.
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Figure 2: Definitions of autocovariance function between interval variables at any two times in the convex process: (a) the positive
autocorrelation; (b) the negative autocorrelation.
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Figure 3: Typical geometric shapes of ellipses for different correlation coefficients.

3. Time-Varying Uncertainty Quantification
Analysis Corresponding to the Limit State

With regard to any engineering problems, it is extremely
significant to determine the performance of structural limit
state. Once time-varying uncertainties originating from
inherent properties or external environmental conditions
are considered, the limit state should have time-variant
uncertainty as well. In fact, if we define the time-varying
structural parameters as convex processes, the limit-state
function can also be enclosed by a model of convex process.
The detailed procedure of construction of the convex process
model for structural limit state ismathematically discussed in
the following statements.

A linear case of the limit-state function of the time-
varying structure is expressed as

𝑔 (𝑡) = 𝑔 (𝑡, a (𝑡) ,X (𝑡)) = 𝑎0 (𝑡) +
𝑛

∑

𝑖=1
(𝑎

𝑖
(𝑡) ⋅ 𝑋

𝑖
(𝑡)) , (6)

where X(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), . . . , 𝑋𝑛
(𝑡))

𝑇 denotes a basic
vector of convex processes, and a(𝑡) = (𝑎0(𝑡), 𝑎1(𝑡), 𝑎2(𝑡),
. . . , 𝑎

𝑛
(𝑡))means a time-variant coefficient vector.

By virtue of the set-theory method, the mean value
function and the radius function of limit-state function 𝑔(𝑡)
are given by
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𝑔
𝑐

(𝑡) = 𝑔
𝑐

(𝑡, a (𝑡) ,X (𝑡)) = 𝑎0 (𝑡) +
𝑛

∑

𝑖=1
(𝑎

𝑖
(𝑡) ⋅ 𝑋

𝑐

𝑖
(𝑡)) ,

𝑔
𝑟

(𝑡) = √𝐷
𝑔
(𝑡) = 𝑔

𝑟

(𝑡, a (𝑡) ,X (𝑡)) =
√

𝑛

∑

𝑖=1
(𝑎

𝑖
(𝑡) ⋅ 𝑋

𝑟

𝑖
(𝑡))

2
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

𝜌
𝑋
𝑖
𝑋
𝑗

(𝑡, 𝑡) ⋅ 𝑎
𝑖
(𝑡) ⋅ 𝑎

𝑗
(𝑡) ⋅ 𝑋

𝑟

𝑖
(𝑡) ⋅ 𝑋

𝑟

𝑗
(𝑡),

(7)

where Xc
(𝑡) = (𝑋

𝑐

1(𝑡), 𝑋
𝑐

2(𝑡), . . . , 𝑋
𝑐

𝑛
(𝑡))

𝑇 and Xr
(𝑡) = (𝑋

𝑟

1(𝑡),

𝑋
𝑟

2(𝑡), . . . , 𝑋
𝑟

𝑛
(𝑡))

𝑇 are, respectively, the vectors of mean value
function and the radius function for X(𝑡), 𝜌

𝑋
𝑖
𝑋
𝑗

(𝑡, 𝑡) stands
for the cross-covariance function of variables𝑋

𝑖
(𝑡) and𝑋

𝑗
(𝑡),

and𝐷
𝑔
(𝑡) is the variance function.

In addition, taking into account the comprehensive effect
of the autocorrelation between𝑋

𝑖
(𝑡1) and𝑋𝑖

(𝑡2) as well as the
cross-correlation between 𝑋

𝑖
(𝑡1) and 𝑋𝑗

(𝑡2), the autocovari-
ance function corresponding to 𝑔(𝑡1) and 𝑔(𝑡2) is found to be

Cov
𝑔
(𝑡1, 𝑡2) =

𝑛

∑

𝑖=1
𝜌
𝑋
𝑖

(𝑡1, 𝑡2) ⋅ 𝑎𝑖 (𝑡1) ⋅ 𝑎𝑖 (𝑡2) ⋅ 𝑋
𝑟

𝑖
(𝑡1)

⋅ 𝑋
𝑟

𝑖
(𝑡2) +

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

𝜌
𝑋
𝑖
𝑋
𝑗

(𝑡1, 𝑡2) ⋅ 𝑎𝑖 (𝑡1) ⋅ 𝑎𝑗 (𝑡2)

⋅ 𝑋
𝑟

𝑖
(𝑡1) ⋅ 𝑋

𝑟

𝑗
(𝑡2) ,

(8)

where 𝜌
𝑋
(𝑡1, 𝑡2) is the autocorrelation coefficient function

of 𝑋
𝑖
(𝑡1) and 𝑋𝑖

(𝑡2) and 𝜌𝑋
𝑖
𝑋
𝑗

(𝑡1, 𝑡2) is the cross-covariance
function of𝑋

𝑖
(𝑡1) and𝑋𝑗

(𝑡2).
In terms of the definitions in (5), we arrive at

𝜌
𝑔
(𝑡1, 𝑡2) =

Cov
𝑔
(𝑡1, 𝑡2)

√𝐷
𝑔
(𝑡1) ⋅ √𝐷𝑔

(𝑡2)
. (9)

It is instructive to discuss the case of 𝑔(𝑅(𝑡), 𝑆(𝑡)) = 𝑅(𝑡)−
𝑆(𝑡), in which the strength 𝑅(𝑡) and the stress 𝑆(𝑡) are both
enclosed by convex processes; we get

𝜌
𝑔
(𝑡1, 𝑡2) = [𝑅

𝑟

(𝑡1) ⋅ 𝑅
𝑟

(𝑡2) ⋅ 𝜌𝑅 (𝑡1, 𝑡2) + 𝑆
𝑟

(𝑡1) ⋅ 𝑆
𝑟

(𝑡2)

⋅ 𝜌
𝑆
(𝑡1, 𝑡2) − 𝑅

𝑟

(𝑡1) ⋅ 𝑆
𝑟

(𝑡2) ⋅ 𝜌𝑅𝑆 (𝑡1, 𝑡2) − 𝑅
𝑟

(𝑡2) ⋅ 𝑆
𝑟

(𝑡1)

⋅ 𝜌
𝑅𝑆
(𝑡2, 𝑡1)]

⋅
1

√[(𝑅𝑟 (𝑡1))
2
+ (𝑆𝑟 (𝑡1))

2
− 2𝑅𝑟 (𝑡1) ⋅ 𝑆

𝑟 (𝑡1) ⋅ 𝜌𝑅𝑆 (𝑡1, 𝑡1)]

⋅
1

√[(𝑅𝑟 (𝑡2))
2
+ (𝑆𝑟 (𝑡2))

2
− 2𝑅𝑟 (𝑡2) ⋅ 𝑆

𝑟 (𝑡2) ⋅ 𝜌𝑅𝑆 (𝑡2, 𝑡2)]
.

(10)

In accordance with the above equations, the time-varying
uncertainty of limit-state 𝑔(𝑡) is explicitly embodied by a
nonprobabilistic convex process model.That is to say, for any
times 𝑡1 and 𝑡2, once the time-variant uncertainties existing
in structural parameters are known, the ellipse utilized to

restrict the feasible domain between 𝑔(𝑡1) and 𝑔(𝑡2) can be
affirmed exclusively.

Apparently, it should be indicated that if the limit-
state function is nonlinear, several linearization techniques,
such as Taylor’s series expansion and interval perturbation
approach, may make effective contributions to help us con-
struct its convex process model.

4. Time-Dependent Reliability Measure Index
and Its Solving Process

4.1. The Classical First-Passage Method in Random Pro-
cess Theory. For engineering problems, we are sometimes
more interested in the calculation of time-varying probabil-
ity/possibility of reliability because it provides us with the
likelihood of a product performing its intended function over
its service time. From the perspective of randomness, the
time-dependent probability of failure/safety during a time
interval [0, 𝑇] is computed by

𝑃
𝑓
(𝑇) = Pr {∃𝑡 ∈ [0, 𝑇] : 𝑔 (𝑡,X (𝑡)) ≤ 0} (11)

or

𝑅
𝑠
(𝑇) = 1−𝑃

𝑓
(𝑇)

= Pr {∀𝑡 ∈ [0, 𝑇] : 𝑔 (𝑡,X (𝑡)) > 0} ,
(12)

where X(𝑡) is a vector of random processes and Pr{𝑒} stands
for the probability of event 𝑒.

Generally, it is extremely difficult to obtain the exact
solution of 𝑃

𝑓
(𝑇) or 𝑅

𝑠
(𝑇). At present, the most common

approach to approximately solve time-dependent reliability
problems in a rigorous way is the so-called first-passage
approach (represented schematically in Figure 4).

The basic idea in first-passage approach is that crossing
from the nonfailure into the failure domain at each instant
timemay be considered as being independent of one another.
Denote by𝑁+

(0, 𝑇) the number of upcrossings of zero-value
by the compound process 𝑔(𝑡,X(𝑡)) from safe domain to the
failure domain within [0, 𝑇], and hence the probability of
failure also reads

𝑃
𝑓
(𝑇) = Pr {(𝑔 (0,X (0)) < 0) ∪ (𝑁+

(0, 𝑇) > 0)} . (13)

Then, the following upper bound on 𝑃
𝑓
(𝑇) is available;

that is,

𝑃
𝑓
(𝑇) ≤ 𝑃

𝑓
(0) +∫

𝑇

0
] (𝑡) 𝑑𝑡, (14)
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T

0

g(t)

First-passage outcrossing

g(t) = g(X(t))

Figure 4: Schematic diagram for the first-passage approach.

where 𝑃
𝑓
(0) is the probability of failure when time is fixed as

zero and ](𝑡) is the instantaneous outcrossing rate at time 𝑡.
The specific expression of ](𝑡) is evaluated as

] (𝑡)

= lim
Δ𝑡→ 0

Pr {(𝑔 (𝑡,X (𝑡)) > 0) ∩ (𝑔 (𝑡 + Δ𝑡,X (𝑡 + Δ𝑡)) < 0)}
Δ𝑡

.

(15)

Introducing the finite-difference concept, rewrite (15) in
the form

] (𝑡)

≈
Pr {(𝑔 (𝑡,X (𝑡)) > 0) ∩ (𝑔 (𝑡 + Δ𝑡,X (𝑡 + Δ𝑡)) < 0)}

Δ𝑡
,

(16)

where Δ𝑡 has to be selected properly (under the sufficiently
small level).

4.2. Time-Dependent Reliability Measurement Based on Non-
probabilistic Convex Process Model. Although the first-
passage approach tends to provide a rigorous mathematical
derivation of the time-dependent reliability, it is actually dif-
ficult to evaluate the outcrossing rate for the general random
processes. Only in few cases, an analytical outcrossing rate is
available. Furthermore, under the case of limited sample data
of time-varying uncertainty, the analysis based on random
process theory is inapplicable. Therefore, in this section, we
apply the idea of the first-passage method into nonproba-
bilistic convex process model and further establish a new
measure index for evaluating time-dependent reliability with
insufficient information of uncertainty. The details are as
follows:

(i) Acquire convex process corresponding to the limit-
state 𝑔(𝑡) (by reference to the corresponding Sections
2 and 3).

(ii) Discretize 𝑔(𝑡) into a time sequence; that is,

𝑔 (0) , 𝑔 (Δ𝑡) , 𝑔 (2Δ𝑡) , . . . , 𝑔 (𝑁Δ𝑡) ,

𝑁 =
𝑇

Δ𝑡
is sufficiently large.

(17)

(iii) Construct each ellipse model with respect to 𝑔(𝑖Δ𝑡)
and 𝑔((𝑖 + 1)Δ𝑡), and further investigate the interfer-
ence conditions between elliptic domain and event𝐸

𝑖
:

{𝑔(𝑖Δ𝑡) > 0 ∩ 𝑔((𝑖 + 1)Δ𝑡) < 0}.

(iv) Redefine the outcrossing rate ](𝑖Δ𝑡) as

] (𝑖Δ𝑡) ≈
Pos {𝐸

𝑖
}

Δ𝑡

=
Pos {(𝑔 (𝑖Δ𝑡) > 0) ∩ (𝑔 ((𝑖 + 1) Δ𝑡) < 0)}

Δ𝑡
,

(18)

where Pos{𝐸
𝑖
} stands for the possibility of event 𝐸

𝑖
,

which is regarded as the ratio of the interference area
to the whole elliptic area (𝑖 = 1, 2, . . . , 𝑁); that is,

Pos {𝐸
𝑖
} = Pos {(𝑔 (𝑖Δ𝑡) > 0) ∩ (𝑔 ((𝑖 + 1) Δ𝑡) < 0)}

=
𝐴
𝑖

interference
𝐴
𝑖

total
.

(19)

(v) Determine the time-dependent reliability measure
index; namely,

𝑅
𝑠
(𝑇) = 1−𝑃

𝑓
(𝑇)

≥ 1−(Pos (0) +
𝑁

∑

𝑖=1
(] (𝑖Δ𝑡) ⋅ Δ𝑡))

= 1−(Pos (0) +
𝑁

∑

𝑖=1
(Pos {𝐸

𝑖
}))

= 1−(Pos (0) +
𝑁

∑

𝑖=1
(
𝐴

i
interference
𝐴
𝑖

total
)) .

(20)

4.3. Solution Strategy of Time-Dependent Reliability Measure
Index. Obviously, the key point for determining the
proposed time-dependent reliability measure index is
just the calculation of Pos{𝐸

𝑖
} (for practical problems of

(𝑟2/√2)𝑔
𝑟

(𝑡) < 𝑔
𝑐

(𝑡) < 𝑔
𝑟

(𝑡), as shown in Figure 5(a)).
As mentioned above, the regularization methodology is
firstly applied (as shown in Figure 5(b)), and the event 𝐸

𝑖
is

equivalent to

𝐸
𝑖
: {𝑔 (𝑖Δ𝑡) > 0∩𝑔 ((𝑖 + 1) Δ𝑡) < 0} 󳨐⇒ {𝑔

𝑐

(𝑖Δ𝑡)

+ 𝑔
𝑟

(𝑖Δ𝑡) ⋅ 𝑈1 > 0∩𝑔
𝑐

((𝑖 + 1) Δ𝑡)

+ 𝑔
𝑟

((𝑖 + 1) Δ𝑡) ⋅ 𝑈2 < 0} 󳨐⇒ {𝑈1 >−
𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)

∩𝑈2 <−
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

} .

(21)

For the sake of convenience, one more coordinate trans-
formation is then carried out, and a unit circular domain
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g((i + 1)Δt)

g((i + 1)Δt)

gc((i + 1)Δt)

g((i + 1)Δt)
g(iΔt)0

gc(iΔt)

gr(iΔt)

g(iΔt) g(iΔt)

gr((i + 1)Δt)

U2 = −
gc((i + 1)Δt)

gr((i + 1)Δt)

U2

r1

0

r2

U1

U1 = −
gc(iΔt)

gr(iΔt)

(a) (b)

Figure 5: Uncertainty domains with regard to the limit-state function: (a) the original domain; (b) the regularized domain.

is eventually obtained (as shown in Figure 6). Equation (21)
leads to

𝐸
𝑖
󳨐⇒ {𝑈1 >−

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
∩𝑈2 <−

𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

}

󳨐⇒ {𝑟1𝜁1 cos 𝜃 − 𝑟2𝜁2 sin 𝜃 >−
𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)

∩ 𝑟1𝜁1 sin 𝜃 + 𝑟2𝜁2 cos 𝜃 <−
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

}

󳨐⇒ {𝜁2 <
𝑟1
𝑟2
𝜁1 +

√2
𝑟2

⋅
𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
∩ 𝜁2 <−

𝑟1
𝑟2
𝜁1

−
√2
𝑟2

⋅
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

} .

(22)

From Figure 6, it becomes apparent that the shaded area
𝑆
𝐵𝐷𝐸

indicates the interference area 𝐴𝑖

interference, and the total
area𝐴𝑖

total always equals𝜋. Hence, the analytical expression of
𝑆
𝐵𝐷𝐸

is of paramount importance, and several following steps
should be executed.

Step 1 (solution of the coordinates of points 𝐴 and 𝐵). Let us
consider the simultaneous equations as

𝑙1: 𝑟2𝜁2 − 𝑟1𝜁1 −√2
𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
= 0

𝜁1 = −√1 − 𝜁22 .

(23)

By elimination method, a quadratic equation is further
deduced; that is,

(𝑟
2
1 + 𝑟

2
2) ⋅ 𝜁

2
2 − 2√2𝑟2 ⋅

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
⋅ 𝜁2 + 2(

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
)

2

− 𝑟
2
1 = 0.

(24)

1ζ

2ζ

O

A

D

C

B

E

R = 1d

Figure 6: Schematic diagram for the solution of time-dependent
reliability measure index.

Thus, the coordinates of points 𝐴 and 𝐵 on 𝜁2-axis are,
respectively,

𝜁2 𝐴
=
√2
2
(𝑟2 ⋅

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)

+√(𝑟
2
2 − 2) ⋅ (

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
)

2
+ 𝑟

2
1) ,

(25)

𝜁2 𝐵
=
√2
2
(𝑟2 ⋅

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)

−√(𝑟
2
2 − 2) ⋅ (

𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
)

2
+ 𝑟

2
1) .

(26)
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Substituting (25) and (26) into (23), the coordinates of
points𝐴 and 𝐵 on 𝜁1-axis, namely, 𝜁1 𝐴

and 𝜁1 𝐵
, can be easily

obtained.

Step 2 (solution of the coordinates of points𝐶 and𝐷). Taking
into account the simultaneous equations

𝑙2: 𝑟2𝜁2 + 𝑟1𝜁1 +√2
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

= 0

𝜁1 = −√1 − 𝜁22 ,

(27)

we arrive at

(𝑟
2
1 + 𝑟

2
2) ⋅ 𝜁

2
2 + 2√2𝑟2 ⋅

𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

⋅ 𝜁2

+ 2(
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

)

2
− 𝑟

2
1 = 0.

(28)

Therefore, the coordinates of points 𝐶 and 𝐷 on 𝜁2-axis are
evaluated as

𝜁2 𝐶
=
−√2
2

(𝑟2 ⋅
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

+√(𝑟
2
2 − 2) ⋅ (

𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

)

2
+ 𝑟

2
1) ,

(29)

𝜁2 𝐷
=
−√2
2

(𝑟2 ⋅
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

−√(𝑟
2
2 − 2) ⋅ (

𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

)

2
+ 𝑟

2
1) .

(30)

Substituting (29) and (30) into (27), the coordinates of
points𝐶 and𝐷 on 𝜁1-axis, namely, 𝜁1 𝐶

and 𝜁1 𝐷
, can be easily

determined.

Step 3 (solution of the coordinates of point 𝐸). Since 𝐸

is actually the point of intersection between 𝑙1 and 𝑙2, the
coordinate calculation is satisfied:

𝑙1: 𝑟2𝜁2 − 𝑟1𝜁1 −√2
𝑔
𝑐

(𝑖Δ𝑡)

𝑔𝑟 (𝑖Δ𝑡)
= 0,

𝑙2: 𝑟2𝜁2 + 𝑟1𝜁1 +√2
𝑔
𝑐

((𝑖 + 1) Δ𝑡)
𝑔𝑟 ((𝑖 + 1) Δ𝑡)

= 0.
(31)

Then we have
𝜁1 𝐸

=
−√2 (𝑔𝑐 (𝑖Δ𝑡) /𝑔𝑟 (𝑖Δ𝑡) + 𝑔𝑐 ((𝑖 + 1) Δ𝑡) /𝑔𝑟 ((𝑖 + 1) Δ𝑡))

2𝑟1
,

𝜁2 𝐸

=

√2 (𝑔𝑐 (𝑖Δ𝑡) /𝑔𝑟 (𝑖Δ𝑡) − 𝑔𝑐 ((𝑖 + 1) Δ𝑡) /𝑔𝑟 ((𝑖 + 1) Δ𝑡))
2𝑟2

.

(32)

By virtue of the above three steps, the geometric informa-
tion of the characteristic points (from𝐴 to𝐸) can be obtained
mathematically, and the coordinates of these points are then
used to deduce the analytical expression of𝐴𝑖

interference (𝑆𝐵𝐷𝐸).
In fact, the physical mean for definitions of the characteristic
points lies in that the possibility of the cross failure during a
small time interval can be eventually embodied by a form of
geometric domain, which is determined by the points.

Step 4 (solution of the fan-shaped area 𝑆
󵱰0 𝐴𝐶𝐵𝐷

). The central
angel ∠𝐴𝑂𝐷 is firstly computed by

∠𝐴𝑂𝐷 = tan−1 (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜁2 𝐴

𝜁1 𝐴

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + tan−1 (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜁2 𝐷

𝜁1 𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) . (33)

The area 𝑆
󵱰0 𝐴𝐶𝐵𝐷

equals

𝑆
󵱰0 𝐴𝐶𝐵𝐷

=
1
2
∠𝐴𝑂𝐷 ⋅ 𝑅

2
=
1
2
∠𝐴𝑂𝐷 ⋅ 12

=
1
2
(tan−1 (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜁2 𝐴

𝜁1 𝐴

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + tan−1 (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜁2 𝐷

𝜁1 𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)) ,

(34)

where 𝑅 represents the radius of the unit circular domain.

Step 5 (solution of the triangular areas 𝑆
Δ𝐴𝑂𝐸

and 𝑆
Δ𝐷𝑂𝐸

). As
previously noted, the coordinates of points 𝐴, 𝐷, and 𝐸 have
been available.Thus, the triangular area 𝑆

Δ𝐴𝑂𝐸
is derived from

𝑆
Δ𝐴𝑂𝐸

=
1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 1 1
0 𝜁1 𝐴

𝜁1 𝐸

0 𝜁2 𝐴
𝜁2 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1
2
(𝜁1 𝐴

⋅ 𝜁2 𝐸
− 𝜁1 𝐸

⋅ 𝜁2 𝐴
) .

(35)

Similarly, 𝑆
Δ𝐷𝑂𝐸

is

𝑆
Δ𝐴𝑂𝐸

=
1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 1 1
0 𝜁1 𝐸

𝜁1 𝐷

0 𝜁2 𝐸
𝜁2 𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1
2
(𝜁1 𝐸

⋅ 𝜁2 𝐷
− 𝜁1 𝐷

⋅ 𝜁2 𝐸
) .

(36)

Step 6 (solution of the bow-shaped area 𝑆∙
𝐴𝐶𝐵

). It can be found
that the bow-shaped area 𝑆∙

𝐴𝐶𝐵
is denoted by the difference

with the fan-shaped area 𝑆
󵱰0 𝐴𝐶𝐵

and the triangular area 𝑆
Δ𝐴𝑂𝐵

;
namely,

𝑆
∙

𝐴𝐶𝐵
= 𝑆

󵱰0 𝐴𝐶𝐵
− 𝑆

Δ𝐴𝑂𝐵

𝑆
󵱰0 𝐴𝐶𝐵

=
1
2
∠𝐴𝑂𝐵 ⋅ 𝑅

2
=
1
2
∠𝐴𝑂𝐵 ⋅ 12

=
1
2
⋅ 2 cos−1𝑑 ⋅ 12 = cos−1𝑑,

𝑆
Δ𝐴𝑂𝐵

=
1
2
𝐴𝐵 ⋅ 𝑑 =

1
2
⋅ 2√1 − 𝑑2 ⋅ 𝑑 = 𝑑√1 − 𝑑2,

(37)

where 𝐴𝐵 is the chord length and 𝑑, as the distance from
origin to line 𝑙1, equals 𝑔

𝑐

(𝑖Δ𝑡)/𝑔
𝑟

(𝑖Δ𝑡).
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Time discretization
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Solution of

+

Begin

End
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Ellipse model forFigure 5
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cross failure
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7 steps forEqs. 
(23)~(38)
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i < N

g(iΔt) and g((i + 1)Δt)

i = i + 1

solving Pos{Ei}

Posf(0)

Pf(T) and Rs(T)

N

∑
i=1

(Pos{Ei})

Figure 7: Flowchart of the time-dependent reliability analysis based on nonprobabilistic convex process model.

Pf(T) =
Nfailed
Ntotal

, Rs(T) =
Ntotal − Nfailed

Ntotal

(i)

(ii)
(iii)

(iv)

(v)

Initialization of Ntotal, Δt, T, n,
= 0, Nfailed = 0, i = 1, j = 0

Discretization treatment:

No

No

No

Yes

Yes

Yes

Yes

No

Yes Yes
Xi: {Xi(0), Xi(Δt), , Xi(NΔt),

N = T/Δt}

No

No

i = i + 1

j = 0

j = 0

i = i + 1

i = 1

i > n

i > n
Establishment of Ωi defined by (39)

Sample generation:
x i: {xi(0), xi(Δt),

xi(NΔt)}

xi ∈ Ωi

Calculation of g(jΔt) by
x(jΔt): {x1(jΔt), x2(jΔt), , xn(jΔt)}

g(jΔt) > 0

j < N

j = j + 1

Nfailed = Nfailed + 1

Ngenerated ≤ Ntotal

Ngenerated

Ngenerated = Ngenerated + 1

. . .

. . . ,

. . .

Figure 8: Flowchart of the time-dependent reliability analysis based on the Monte-Carlo simulation method.

Step 7 (solution of Pos{𝐸
𝑖
}). Consider

Pos {𝐸
𝑖
} =

𝐴
𝑖

interference
𝐴
𝑖

total
=
𝑆
𝐵𝐷𝐸

𝜋

=
𝑆

󵱰0 𝐴𝐶𝐵𝐷
− 𝑆

Δ𝐴𝑂𝐸
− 𝑆

Δ𝐷𝑂𝐸
− 𝑆

∙

𝐴𝐶𝐵

𝜋
.

(38)

We should calculate Pos{𝐸
𝑖
} successively (𝑖 = 1, 2, . . . , 𝑁)

based on the above steps. By combination with the analysis
stated in Section 4.2, an integral procedure for construction
of the time-dependent reliability measure index can be
eventually achieved. For ease of understanding, one flowchart
is further added (see Figure 7 for details).

5. Monte-Carlo Simulation Method

For comparison’s purpose, this paper also provides a Monte-
Carlo simulation method to compute structural time-
dependent reliability. The detailed analysis procedure is
expounded below (as is seen in Figure 8):

(i) Initialize the numbers of generated samples and failed
samples as 𝑁generated = 0, 𝑁failed = 0; define the total
number of samples as𝑁total; the cyclic counting index
𝑗 is set to zero.

(ii) Assume a small time increment Δ𝑡, and discretize
each convex process 𝑋

𝑖
(𝑡) as a time series X

𝑖
:

{𝑋
𝑖
(0), 𝑋

𝑖
(Δ𝑡), . . . , 𝑋

𝑖
(𝑁Δ𝑡),𝑁 = 𝑇/Δ𝑡} in sequence

(𝑖 = 1, 2, . . . , 𝑛); based on the characteristic properties
of time-variant uncertainty, included by 𝑋𝑐

𝑖
(𝑡), 𝑋𝑟

𝑖
(𝑡),

and 𝜌
𝑋
𝑖

(𝑡1, 𝑡2), construct a (𝑁 + 1)-dimensional
ellipsoidal domainΩi; that is,
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Ωi:

{{{{{{{

{{{{{{{

{

(Xi −X
c
i )

𝑇

⋅(

𝐶1,1 𝐶1,2 . . . 𝐶1,𝑁+1

𝐶2,1 𝐶2,2 . . . 𝐶2,𝑁+1

.

.

.
.
.
.

.

.

.
.
.
.

𝐶
𝑁+1,1 𝐶

𝑁+1,2 . . . 𝐶
𝑁+1,𝑁+1

)

−1

(Xi −X
c
i )

≤ 1

}}}}}}}

}}}}}}}

}

, 𝑖 = 1, 2, . . . 𝑛,

(39)

where 𝐶
𝑙,𝑠
= Cov

𝑋
𝑖

((𝑙 − 1)Δ𝑡, (𝑠 − 1)Δ𝑡).
(iii) According to the “3𝜎 rule,” generate one group of

normal distributed samples xi : {𝑥
𝑖
(0), 𝑥

𝑖
(Δ𝑡), . . . ,

𝑥
𝑖
(𝑁Δ𝑡)} subjected to each time series Xi (𝑖 =

1, 2, . . . , 𝑛); if xi could not meet the requirements
of inequation from (39), restart (iii); otherwise,
𝑁generated = 𝑁generated + 1, and then

(1) if𝑁generated ≤ 𝑁total, go to (iv);
(2) if not, go to (v).

(iv) Input the samples x(𝑗Δ𝑡) : {𝑥1(𝑗Δ𝑡), 𝑥2(𝑗Δ𝑡), . . . ,
𝑥
𝑛
(𝑗Δ𝑡)} into the limit-state function 𝑔(𝑗Δ𝑡) to esti-

mate the structural safety at time 𝑗Δ𝑡; if 𝑔(𝑗Δ𝑡) > 0
and 𝑗 < 𝑁, 𝑗 = 𝑗 + 1, and restart (iv); else,

(1) if 𝑗 < 𝑁,𝑁failed = 𝑁failed + 1, reset 𝑗 to zero and
go back to (iii);

(2) if not, reset 𝑗 to zero and go back to (iii).

(v) The structural failure possibility is approximately
computed as 𝑃

𝑓
(𝑇) = 𝑁failed/𝑁total; furthermore,

the time-dependent reliability is obviously depicted as
𝑅
𝑠
(𝑇) = (𝑁total − 𝑁failed)/𝑁total.

By means of the proposed methodology of Monte-Carlo
simulations, the numerical results of time-dependent relia-
bility can be obtained in principle. However, some important
issues remain unsolved in practical applications: (1) there
is high complexity in sample generation for all convex
processes, which is mainly embodied by the construction of
multidimensional ellipsoidal convexmodels (Ω1,Ω2, . . . ,Ω𝑛)
under the case of small time increment Δ𝑡. (2) The above
analysis is not able to demonstrate the cross-correlation
between two convex processes. (3) The given assumption of
“3𝜎 rule”may result in an extremely large errorwhen encoun-
tering the case of the combination of various uncertainty
characteristics. (4) Enormous computational costs have to

d1

d2

F1(t)
F2(t)

F3(t)
l

Figure 9: A cantilever beam structure.

be confronted when solving complex engineering problems.
Therefore, compared with the Monte-Carlo simulations, the
presented method based on nonprobabilistic convex process
model may show superiority to some extent when dealing
with the problems of time-dependent reliability evaluation.

6. Numerical Examples

In this section, three engineering examples are investigated.
Among them, the first two examples of a cantilever beam
structure and a ten-bar truss structure are further analyzed
byMonte-Carlo simulations, and hence the numerical results
can be regarded as a reference to effectively demonstrate the
validity and feasibility of the presented methodology. That is
to say, the accuracy of the proposed method is verified by
the simulation techniques, and the deviation of the reliability
results may quantify a specific precision level.

Additionally, the safety estimation of a complicated pro-
peller structure in the last example can better illustrate the
advantage and capability of the developed time-dependent
reliability method when tackling reliability issues of large
complex structures.

6.1. ACantilever BeamStructure. Acantilever beam structure
modified from thenumerical example in [28] is considered, as
shown in Figure 9. Three time-varying external forces 𝐹1(𝑡),
𝐹2(𝑡), and 𝐹3(𝑡) are applied to the beam, and the maximum
moment on the constraint surface at the origin should be less
than an allowable value𝑀criteria(𝑡). Thus, the following limit-
state function can be created by

𝑔 (𝑡) = 𝑔 (𝐹1 (𝑡) , 𝐹2 (𝑡) , 𝐹3 (𝑡) ,𝑀criteria (𝑡))

= 𝑀criteria (𝑡) − 𝑑1 ⋅ 𝐹1 (𝑡) − 𝑑2 ⋅ 𝐹2 (𝑡) − 𝑙

⋅ 𝐹3 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

(40)

where 𝑑1 = 1m, 𝑑2 = 2m, and 𝑙 = 5m and 𝑇 in this problem
is defined as 10 years.

Here, 𝐹1(𝑡), 𝐹2(𝑡), 𝐹3(𝑡), and𝑀criteria(𝑡) are treated as con-
vex processes containing autocorrelation but without consid-
eration of cross-correlation. All the uncertainty properties
are summarized in Table 1 where 𝛼 = 1, 1.2, 1.4, 1.6, 1.8, 2
and 𝑘 = 1, 2, 3, 4, 5. Various combinations of 𝛼 and 𝑘

embody different spans and autocorrelation effects of convex
processes.

The time-dependent reliability results 𝑅
𝑠
(𝑇) obtained

by the nonprobabilistic convex process model are given in
Table 2 and Figure 10 (Δ𝑡 = 0.05 years). It can be found
that values of 𝑅

𝑠
(𝑇) decrease remarkably when either 𝛼 or 𝑘
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Table 1: Time-varying uncertainty characteristics of the cantilever beam structure.

Mean value functions and radius functions of convex processes: 𝐹
1
(𝑡), 𝐹

2
(𝑡), 𝐹

3
(𝑡),𝑀criteria(𝑡)

𝐹
𝑐

1
(𝑡) =

1

2
sin(4𝜋𝑡 + 𝜋

4
) +

5

2

𝐹
𝑟

1
(𝑡) = 𝐹

𝑐

1
(𝑡) × 6𝛼%

(unit: N)

𝐹
𝑐

2
(𝑡) = − cos(8𝜋𝑡 − 𝜋

3
) + 5

𝐹
𝑟

2
(𝑡) = 𝐹

𝑐

2
(𝑡) × 5𝛼%

(unit: N)

𝐹
𝑐

3
(𝑡) = −

3

4
cos(6𝜋𝑡 + 2𝜋

5
) +

3

2

𝐹
𝑟

3
(𝑡) = 𝐹

𝑐

3
(𝑡) × 3𝛼%

(unit: N)

𝑀
𝑐

criteria (𝑡) = 28 −
1

5
𝑡

𝑀
𝑟

criteria (𝑡) =
𝛼𝑡

2

100

(unit: N⋅m)
Correlation coefficient functions of convex processes: 𝐹

1
(𝑡), 𝐹

2
(𝑡), 𝐹

3
(𝑡),𝑀criteria(𝑡)

𝜌
𝐹
1

(𝑡
1
, 𝑡

2
) = 𝑒

−(4𝑘⋅|t1−t2 |) 𝜌
𝐹
2

(𝑡
1
, 𝑡

2
) = 𝑒

−(5𝑘⋅|t1−t2 |) ⋅ cos (𝑘 ⋅ 󵄨󵄨󵄨󵄨t1 − t2
󵄨󵄨󵄨󵄨) No consideration of

cross-correlation𝜌
𝐹
3

(𝑡
1
, 𝑡

2
) = 𝑒

−((5/2)𝑘⋅|t1−t2 |)2 𝜌
𝑀criteria

(𝑡
1
, 𝑡

2
) =

1

2
(1 + cos (6𝑘 ⋅ 󵄨󵄨󵄨󵄨t1 − t2

󵄨󵄨󵄨󵄨))

Table 2: Reliability results based on the nonprobabilistic convex
process model.

𝑘/𝛼 𝛼 = 1.0 𝛼 = 1.2 𝛼 = 1.4 𝛼 = 1.6 𝛼 = 1.8 𝛼 = 2.0
𝑘 = 1 1 0.986 0.9426 0.8931 0.8259 0.7595
𝑘 = 2 1 0.9857 0.9424 0.8881 0.8155 0.7425
𝑘 = 3 1 0.9854 0.9423 0.8821 0.8027 0.7249
𝑘 = 4 1 0.9853 0.9419 0.8741 0.7915 0.7085
𝑘 = 5 1 0.9852 0.9406 0.8696 0.7844 0.6972
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Figure 10: Time-dependent reliability results versus 𝛼 and 𝑘.

increases, as expected. This indicates that higher dispersion
or weaker correlation leads to lower structural safety. For
example, the cantilever beam is absolutely safe when 𝛼 and
𝑘 are both equal to 1, while 𝑅

𝑠
(𝑇) only reaches 0.6972 under

the case of 𝛼 = 2 and 𝑘 = 5.
To better analyze the accuracy of the time-dependent

reliability results, the Monte-Carlo simulation method is also
used to deal with a severe case of 𝛼 = 2 (100000 samples).The
comparative results are illustrated in Figure 11. As shown in
Figure 11, 𝑅

𝑠
(𝑇) calculated by our method is coincident with

the results derived from the numerical simulations. However,
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Different values of k (𝛼 = 2)

Figure 11: Comparisons of the reliability results obtained by the
convex process model and the Monte-Carlo based model.

there are three points that should be noted: (1) The results
based on convex process model are more conservative due
to the fact that less information on time-varying uncertainty
is needed. (2) Associated with the increasing values of 𝑘,
the deviation of the reliability results 𝑅

𝑠
(𝑇) is widening

(from 2.90% to 5.92%). (3) The accuracy of the reliability
from Monte-Carlo simulations mainly relies on the number
of samples which implies that the situation of intensive
computation and consuming timemay have to be confronted.

6.2. A Ten-Bar Truss Structure. A well-known ten-bar truss
structure modified from the numerical example in [15] is
investigated, as depicted in Figure 12. Young’s modulus 𝐸 =

68948MPa, and the density 𝜌 = 7.85 × 10−9 𝑡/mm3. The
length 𝑙 of the horizontal and vertical bars is 9144mm, and
the area of each bar equals 4000mm2. Subjected to two time-
varying vertical forces, 𝐹1(𝑡) and 𝐹2(𝑡), and one time-varying
horizontal force, 𝐹3(𝑡), the structure is defined as failure if
𝑆
𝑇,max(𝑡) ≥ 𝑅

𝑇,criteria(𝑡) or |𝑆𝐶,max(𝑡)| ≥ |𝑅
𝐶,criteria(𝑡)| occurs,

where 𝑆
𝑇,max(𝑡) and 𝑆𝐶,max(𝑡) stand for the maximal values of

tensile stress and compressive stress among all the members;



12 Mathematical Problems in Engineering

Table 3: Time-varying uncertainty characteristics of the ten-bar truss structure.

Mean value functions and radius functions of convex processes: 𝐹
1
(𝑡), 𝐹

2
(𝑡), 𝐹

3
(𝑡), 𝑅

𝑇,criteria(𝑡), 𝑅𝐶,criteria(𝑡)

𝐹
𝑐

1
(𝑡) = 𝐹

𝑐

2
(𝑡) = 2 sin(3𝜋𝑡 + 𝜋

3
) + 44.48

𝐹
𝑟

1
(𝑡) = 𝐹

𝑟

2
(𝑡) = 𝐹

𝑐

1
(𝑡) × 3𝛼%

(unit: KN)

𝐹
𝑐

3
(𝑡) = 7 cos (4𝜋𝑡 − 𝜋

5
) + 177.92

𝐹
𝑟

3
(𝑡) = 𝐹

𝑐

3
(𝑡) × 2𝛼%

(unit: KN)

𝑅
𝑐

𝑇,criteria(𝑡) = 375 −
15𝑡

8
𝑅
𝑟

𝑇,criteria(𝑡) =
𝛼𝑡

2

36

𝑅
𝑐

𝐶,criteria(𝑡) = −100 +
3𝑡

4
𝑅
𝑟

𝐶,criteria(𝑡) =
𝛼𝑡

2

32

(unit: MPa)
Correlation coefficient functions of convex processes: 𝐹

1
(𝑡), 𝐹

2
(𝑡), 𝐹

3
(𝑡), 𝑅

𝑇,criteria(𝑡), 𝑅𝐶,criteria(𝑡)

𝜌
𝐹
1

(𝑡
1
, 𝑡

2
) = 𝑒

−(5|t1−t2 |) 𝜌
𝐹
2

(𝑡
1
, 𝑡

2
) = 𝑒

−(5|t1−t2 |) ⋅ cos (4 󵄨󵄨󵄨󵄨t1 − t2
󵄨󵄨󵄨󵄨) Taking into account the cross-correlation between

𝐹
1
(𝑡) and 𝐹

2
(𝑡)𝜌

𝐹
3

(𝑡
1
, 𝑡

2
) = 𝑒

−(6|t1−t2 |)2 𝜌
𝑅
𝑇,criteria

(𝑡
1
, 𝑡

2
) = 𝜌

𝑅
𝐶,criteria

(𝑡
1
, 𝑡

2
) = 0

1

246

35

l l

X

Y

43

108

65

97
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l
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Figure 12: A ten-bar truss structure.

𝑅
𝑇,criteria(𝑡) and 𝑅

𝐶,criteria(𝑡) are, respectively, the allowable
values at time 𝑡 under the state of tension and compression.
Hence, the following two limit-state functions are expressed
as
𝑔1 (𝑡) = 𝑔 (𝑆𝑇,max (𝑡) , 𝑅𝑇,criteria (𝑡))

= 𝑅
𝑇,criteria (𝑡) − 𝑆𝑇,max (𝐹1 (𝑡) , 𝐹2 (𝑡) , 𝐹3 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

(41)

𝑔2 (𝑡) = 𝑔 (𝑆𝐶,max (𝑡) , 𝑅𝐶,criteria (𝑡))

=
󵄨󵄨󵄨󵄨𝑅𝐶,criteria (𝑡)

󵄨󵄨󵄨󵄨

−
󵄨󵄨󵄨󵄨𝑆𝐶,max (𝐹1 (𝑡) , 𝐹2 (𝑡) , 𝐹3 (𝑡))

󵄨󵄨󵄨󵄨 ,

𝑡 ∈ [0, 𝑇] ,

(42)

where 𝑇 = 10 years.
In this problem, 𝐹1(𝑡), 𝐹2(𝑡), 𝐹3(𝑡), 𝑅𝑇,criteria(𝑡), and

𝑅
𝐶,criteria(𝑡) are defined as convex processes, where the auto-

correlation and the cross-correlation between 𝐹1(𝑡) and 𝐹2(𝑡)
are simultaneously considered. The uncertainty properties of
the above convex processes are given in Table 3 where 𝛼 =

1.5, 1.6, 1.7, 1.8, 1.9, 2 and the cross-correlation coefficient
𝜌
𝐹1𝐹2

= −0.2, 0.1, 0, 0.1, 0.2.
It is not difficult to understand that member 4 and

member 8 are most dangerous, respectively, under the ten-
sile situation and compressive situation. According to the
definitions in (41) and (42), the time-dependent reliability
results𝑅

𝑠
(𝑇) obtained by the nonprobabilistic convex process

Table 4: Reliability results based on the nonprobabilistic convex
process model (member 4).

𝜌
𝐹
1
𝐹
2

/𝛼 𝛼 = 1.5 𝛼 = 1.6 𝛼 = 1.7 𝛼 = 1.8 𝛼 = 1.9 𝛼 = 2.0

𝜌
𝐹
1
𝐹
2

= −0.2 0.9096 0.873 0.8329 0.7904 0.7369 0.6714
𝜌
𝐹
1
𝐹
2

= −0.1 0.9085 0.8704 0.8319 0.7873 0.7327 0.6647
𝜌
𝐹
1
𝐹
2

= 0 0.906 0.8684 0.8302 0.7842 0.7284 0.6635
𝜌
𝐹
1
𝐹
2

= 0.1 0.9053 0.8675 0.8296 0.7821 0.7272 0.659
𝜌
𝐹
1
𝐹
2

= 0.2 0.9047 0.8669 0.8276 0.7805 0.7238 0.6579

Table 5: Reliability results based on the nonprobabilistic convex
process model (member 8).

𝜌
𝐹
1
𝐹
2

/𝛼 𝛼 = 1.5 𝛼 = 1.6 𝛼 = 1.7 𝛼 = 1.8 𝛼 = 1.9 𝛼 = 2.0

𝜌
𝐹
1
𝐹
2

= −0.2 1 0.9947 0.9581 0.8928 0.7899 0.6521
𝜌
𝐹
1
𝐹
2

= −0.1 0.99941 0.9817 0.929 0.8385 0.7075 0.5658
𝜌
𝐹
1
𝐹
2

= 0 0.9954 0.9603 0.8888 0.7762 0.633 0.482
𝜌
𝐹
1
𝐹
2

= 0.1 0.9859 0.935 0.8405 0.7057 0.5589 0.4028
𝜌
𝐹
1
𝐹
2

= 0.2 0.9706 0.9003 0.7858 0.6381 0.4884 0.3216

model are given in Tables 4 and 5 and Figures 13 and 14
(Δ𝑡 = 0.05 years). It is remarkable that (1) the results of
𝑅
𝑠
(𝑇) continue to decline as the increase of 𝑎. (2) If 𝜌

𝐹1𝐹2
is

negative, stronger cross-correlationmay lead to a higher level
of structural safety; if 𝜌

𝐹1𝐹2
is positive, however, the truss will

be more dangerous with an increasing 𝜌
𝐹1𝐹2

. (3) 𝜌
𝐹1𝐹2

has a
minor effect on reliability results for member 4, while it plays
an important role in safety estimation for member 8.

For the purpose of verification and comparison, the
Monte-Carlo simulation method is utilized again to analyze
the case of 𝜌

𝐹1𝐹2
= 0 (in disregard of cross-correlation). The

time-dependent reliability results are illustrated in Figures 15
and 16. Similarly to conditions on the first example, the time-
dependent reliability results calculated by convex process
model are consistent with the results computed by theMonte-
Carlo simulation method in qualitative analysis but lower
to some extent from quantitative perspective. Specifically,
when 𝑎 = 2, the maximal deviations of reliability results are,
respectively, 13.06% for member 4 and 26.17% for member 8.

6.3. A Marine Propeller Structure. The high-speed rotating
propeller structure, as a vital component of power plant,
must reach high standard of safety during its whole lifetime
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Figure 14: Time-dependent reliability results versus 𝛼 and 𝜌
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(member 8).

to guarantee normal operations of marine system. In actual
working conditions, affected by changeable environment of
water flow, the forces experienced on propeller are always
complicated and are uncertain at different times. Therefore,
the time-dependent reliability analysis of this structure is of
great significance. Figure 17 shows a specific type of propeller,
which is composed of four blades and one support block, and
its material parameters are listed in Table 6. Three types of
time-varying forces are applied to the surface of each blade,
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Figure 15: Comparisons of the reliability results obtained by the
convex process model and the Monte-Carlo based model (member
4).
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Figure 16: Comparisons of the reliability results obtained by the
convex process model and the Monte-Carlo based model (member
8).

namely, the propulsive force 𝐹1(𝑡), the centrifugal force 𝐹2(𝑡),
and the shear force 𝐹3(𝑡). Hence, the limit-state function is
expressed as

𝑔 (𝑡) = 𝑔 (𝜎max (𝑡) , 𝜎criteria (𝑡))

= 𝜎criteria (𝑡) − 𝜎max (𝐹1 (𝑡) , 𝐹2 (𝑡) , 𝐹3 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

(43)



14 Mathematical Problems in Engineering

X

Z

Y

Z

Y

Clamped supported

Propulsive force F1(t)

Centrifugal force F2(t)

Shear force F3(t)

Figure 17: A marine propeller structure.

Table 6: Material parameters of the marine propeller structure.

Young’s modulus 𝐸 Poisson’s ratio ] Density 𝜌
2 × 10

5 MPa 0.3 7.8 × 10
3 Kg/m3

where 𝜎max(𝑡) denotes the maximum von Mises stress of
the propeller structure, 𝜎criteria(𝑡) is allowable strength, and
𝑇 = 10 years. Considering that the propeller belongs to a
complicated three-dimensional structure, the dynamic finite
element model, containing 44888 elements and 31085 nodes,
is set up to estimate the structural safety.

Assume that dynamic forces 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹3(𝑡) as
well as allowable strength 𝜎criteria(𝑡) are all convex processes,
where autocorrelation and cross-correlation are both con-
sidered. The detailed information of time-varying uncer-
tainty is summarized in Table 7 where 𝛼 can be valued by
0.1, 0.2, . . . , 1.

The present method is applied to the above engineering
problem, and all the analysis results are given in Table 8 and
Figure 18 (Δ𝑡 = 0.05 years). It can be seen that (1) there is no
need to worry about failure when 𝛼 = 0.1 or 0.2 (𝑅

𝑠
(𝑇) = 1).

(2) As 𝛼 increases, the time-dependent reliability may show
a decreasing trend (the minimum 𝑅

𝑠
(𝑇) = 0.7538 under the
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Figure 18: Time-dependent reliability results versus 𝛼.

case of 𝛼 = 1), and its variation is essentially linear at the
beginning and then becomes nonlinear to a certain degree.
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Table 7: Time-varying uncertainty characteristics of the marine propeller structure.

Mean value functions and radius functions of convex processes: 𝐹
1
(𝑡), 𝐹

2
(𝑡), 𝐹

3
(𝑡), 𝜎criteria(𝑡)

𝐹
𝑐

1
(𝑡) = 15 sin(4𝜋𝑡 + 3𝜋

4
) + 60 𝐹

𝑐

2
(𝑡) = 50 cos(3𝜋𝑡 + 𝜋

2
) + 150 𝐹

𝑐

3
(𝑡) = 10 sin(2𝜋𝑡 − 3𝜋

5
) + 50 (Unit: KN)

𝐹
𝑟

1
(𝑡) = 𝐹

𝑐

1
(𝑡) × 3% 𝐹

𝑟

2
(𝑡) = 𝐹

𝑐

2
(𝑡) × 4% 𝐹

𝑟

3
(𝑡) = 𝐹

𝑐

3
(𝑡) × 50%

𝜎
𝑐

criteria(𝑡) = 110𝑒
−(𝛼𝑡)

+ 290 𝜎
𝑟

criteria(𝑡) = (𝑡 + 1) ⋅ 𝑒
(t/10) (Unit: MPa)

Correlation coefficient functions of convex processes: 𝐹
1
(𝑡), 𝐹

2
(𝑡), 𝐹

3
(𝑡), 𝜎criteria(𝑡)

𝜌
𝐹
1

(𝑡
1
, 𝑡

2
) = 𝑒

−(3|t1−t2 |) 𝜌
𝐹
2

(𝑡
1
, 𝑡

2
) = 𝑒

−(2|t1−t2 |) ⋅ cos (6 󵄨󵄨󵄨󵄨t1 − t2
󵄨󵄨󵄨󵄨) 𝜌

𝐹
3

(𝑡
1
, 𝑡

2
) = 𝑒

−(5|t1−t2 |)2 𝜌
𝜎criteria

(𝑡
1
, 𝑡

2
) = 0.5

𝜌
𝐹
1
𝐹
2

(𝑡
1
, 𝑡

2
) =

1

4
(2 + cos (2 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨)) 𝜌
𝐹
1
𝐹
3

(𝑡
1
, 𝑡

2
) =

1

6
(4𝑒

−|t1−t2 | ⋅ cos (𝜋𝑡) + cos (3𝜋𝑡)) 𝜌
𝐹
2
𝐹
3

(𝑡
1
, 𝑡

2
) =

8 − 𝑡

20

Table 8: Reliability results based on the nonprobabilistic convex process model.

𝛼 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9 𝛼 = 1.0

𝑘 = 1 1 1 0.9387 0.88 0.8211 0.7869 0.769 0.7602 0.7556 0.7538

6.4. Discussions on the Computational Results. Synthesizing
the computational results of the above three numerical
examples, the following points can be inherited:

(1) The characteristics of the time-varying uncertain
parameters generally exert a great influence on struc-
tural safety. On the one hand, the increasing disper-
sion and decreasing autocorrelation may result in a
severe situation of reduced time-dependent reliability
(mainly consulted by Section 6.1); on the other hand,
the role of cross-correlation between time-varying
uncertain parameters makes analysis more compli-
cated (referred by Section 6.2).

(2) Because less assumptions of uncertainty are needed,
more conservative reliability results given by present
method appear than those from numerical simula-
tions. However, it should be emphasized that the
structural reliability is closely related to the uncertain
parameters, and hence subjective assumptions may
yield unreliable results, especially when dealing with
the engineering cases of limited samples.

(3) Directed at simple problems of dynamics, the Monte-
Carlo simulation method, as an optional way, can
evaluate structural reliability by means of sufficient
samples and cumulative operations (such as Sec-
tions 6.1 and 6.2) but is powerless when tack-
ling mechanical problems, which contain multi-
dimensional uncertainties, cross-correlation, large-
scale configurations, or complex boundary conditions
(as stated in Section 6.3 in this study).

In summary, the numerical examples demonstrate that
the time-dependent reliability analysis based on nonproba-
bilistic convex process model has high efficiency and simul-
taneously an acceptable analysis precision.More importantly,
we can provide a feasible and reasonable way to mathemati-
cally evaluate the dynamical safety for complex engineering
problems.

7. Conclusions

With the rapid technological advance, the reliability analysis
considering time-varying effect has attracted more and more

concerns and discussions. Currently, most of the approaches
for performing time-dependent reliability assessment are
always based upon the random process model, where the
distributions of time-varying uncertain parameters should
be determined by a substantial number of samples, which,
however, are not always available or sometimes very costly
for practical problems. Thus some assumptions on distri-
bution characteristics have to be made in many dynami-
cal cases when using the probability model. Nevertheless,
unjustified assumptions may give rise to misleading results
unexpectedly.

In view of the abovementioned facts, this paper describes
the time-varying uncertainty with the model of nonprob-
abilistic convex process. In this convex process model, the
uncertain variables at any time are expressed as intervals
and the corresponding autocovariance function and auto-
correlation coefficient function are established to charac-
terize the relationship between variables at different times.
Referred by the definitions in random process theory, the
cross-correlation between different two convex processes is
also considered. Then, by using the set-theory method and
the regularization technique, the time-varying limit-state
function is transformed and quantified by a standard convex
process model with autocorrelation. Enlightened by the ideas
of first-passage method and static reliability analysis, a new
nonprobabilistic measurement of time-dependent reliability
is proposed, and its analytical expression in linear case is
conducted mathematically. Additionally, as a means of verifi-
cation and comparison, the Monte-Carlo simulation method
is also presented and applied into the solution of numer-
ical examples. Analytical results indicate that the present
method can be ensured to be more applicable and efficient
when estimating structural safety of complex engineering
problems.

Indeed, the present time-dependent reliability analysis
technique based on the nonprobabilistic convex process
model can be regarded as a beneficial supplement to the
current reliability theory of random processes. On the basis
of the reliability analysis, the proposed safety measurement
index can be also applied to the fields of time-varying
structural design optimization.



16 Mathematical Problems in Engineering

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the National Nature Science
Foundation ofChina (no. 11372025) for the financial supports.
Besides, the authors wish to express their many thanks to the
reviewers for their useful and constructive comments.

References

[1] C. Andrieu-Renaud, B. Sudret, and M. Lemaire, “The PHI2
method: a way to compute time-variant reliability,” Reliability
Engineering and System Safety, vol. 84, no. 1, pp. 75–86, 2004.

[2] H. O. Madsen, S. Krenk, and N. C. Lind,Methods of Structural
Safety, Dover, New York, NY, USA, 2006.

[3] M. Lemaire, Structural Reliability, ISTE-Wiley, New York, NY,
USA, 2009.

[4] Z. Wang and P. Wang, “A new approach for reliability analysis
with time-variant performance characteristics,”Reliability Engi-
neering & System Safety, vol. 115, pp. 70–81, 2013.

[5] A. M. Haofer, “An exact and invariant first-order reliability
format,” Journal of Engineering Mechanics, vol. 100, pp. 111–121,
1974.

[6] J. F. Zhang and X. P. Du, “A second-order reliability method
with first-order efficiency,” Journal of Mechanical Design, Trans-
actions of the ASME, vol. 132, no. 10, Article ID 101006, 2010.

[7] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,”
Fuzzy Sets and Systems, vol. 1, no. 1, pp. 3–28, 1978.

[8] Y. Ben-Haim, “A non-probabilistic concept of reliability,” Struc-
tural Safety, vol. 14, no. 4, pp. 227–245, 1994.

[9] Y. J. Luo, Z. Kang, and A. Li, “Structural reliability assessment
based on probability and convex set mixed model,” Computers
& Structures, vol. 87, no. 21-22, pp. 1408–1415, 2009.

[10] C. Jiang, G. Y. Lu, X. Han, and L. X. Liu, “A new reliability anal-
ysis method for uncertain structures with random and interval
variables,” International Journal of Mechanics and Materials in
Design, vol. 8, no. 2, pp. 169–182, 2012.

[11] G. Barone and D. M. Frangopol, “Reliability, risk and lifetime
distributions as performance indicators for life-cycle mainte-
nance of deteriorating structures,” Reliability Engineering and
System Safety, vol. 123, pp. 21–37, 2014.

[12] J. Li, J.-B. Chen, and W.-L. Fan, “The equivalent extreme-
value event and evaluation of the structural system reliability,”
Structural Safety, vol. 29, no. 2, pp. 112–131, 2007.

[13] Z.Wang, Z. P. Mourelatos, J. Li, I. Baseski, and A. Singh, “Time-
dependent reliability of dynamic systems using subset simula-
tion with splitting over a series of correlated time intervals,”
Journal of Mechanical Design, vol. 136, Article ID 061008, 2014.

[14] M. Mejri, M. Cazuguel, and J. Y. Cognard, “A time-variant
reliability approach for ageing marine structures with non-
linear behaviour,”Computers & Structures, vol. 89, no. 19-20, pp.
1743–1753, 2011.

[15] G. Tont, L. Vladareanu, M. S. Munteanu, and D. G. Tont,
“Markov approach of adaptive task assignment for robotic
system in non-stationary environments,”Wseas Transactions on
Systems, vol. 9, no. 3, pp. 273–282, 2010.

[16] V. Bayer and C. Bucher, “Importance sampling for first passage
problems of nonlinear structures,” Probabilistic Engineering
Mechanics, vol. 14, no. 1-2, pp. 27–32, 1999.

[17] S. O. Rice, “Mathematical analysis of random noise,” The Bell
System Technical Journal, vol. 23, pp. 282–332, 1944.

[18] E. H. Vanmarcke, “On the distribution of the first-passage time
for normal stationary random processes,” Journal of Applied
Mechanics, Transactions ASME, vol. 42, no. 1, pp. 215–220, 1975.

[19] P. H. Madsen and S. Krenk, “An integral equation method
for the first-passage problem in random vibration,” Journal of
Applied Mechanics, vol. 51, no. 3, pp. 674–679, 1984.

[20] Z. Hu and X. Du, “Time-dependent reliability analysis with
joint upcrossing rates,” Structural and Multidisciplinary Opti-
mization, vol. 48, no. 5, pp. 893–907, 2013.

[21] G. Schall, M. H. Faber, and R. Rackwitz, “The ergodicity
assumption for sea states in the reliability estimation of offshore
structures,” Journal of Offshore Mechanics and Arctic Engineer-
ing, vol. 113, no. 3, pp. 241–246, 1991.

[22] S. Engelund, R. Rackwitz, and C. Lange, “Approximations of
first-passage times for differentiable processes based on higher-
order threshold crossings,” Probabilistic Engineering Mechanics,
vol. 10, no. 1, pp. 53–60, 1995.

[23] H. Streicher and R. Rackwitz, “Time-variant reliability-oriented
structural optimization and a renewal model for life-cycle
costing,” Probabilistic Engineering Mechanics, vol. 19, no. 1, pp.
171–183, 2004.

[24] Q. Li, C. Wang, and B. R. Ellingwood, “Time-dependent
reliability of aging structures in the presence of non-stationary
loads and degradation,” Structural Safety, vol. 52, pp. 132–141,
2015.

[25] Z. P. Mourelatos, M. Majcher, V. Pandey, and I. Baseski,
“Time-dependent reliability analysis using the total probability
theorem,” Journal of Mechanical Design, vol. 137, no. 3, Article
ID 031405, 2015.

[26] B. Sudret, “Analytical derivation of the outcrossing rate in
time-variant reliability problems,” Structure and Infrastructure
Engineering, vol. 4, no. 5, pp. 353–362, 2008.

[27] C. Jiang, B. Y. Ni, X. Han, and Y. R. Tao, “Non-probabilistic
convex model process: a new method of time-variant uncer-
tainty analysis and its application to structural dynamic relia-
bility problems,” Computer Methods in Applied Mechanics and
Engineering, vol. 268, pp. 656–676, 2014.

[28] X. Wang, L. Wang, I. Elishakoff, and Z. Qiu, “Probability and
convexity concepts are not antagonistic,” Acta Mechanica, vol.
219, no. 1-2, pp. 45–64, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


