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We study a detection method for continuous mechanical deformations of coaxial cylindrical waveguide boundaries, using
perturbation theory. The inner boundary of the waveguide is described as a continuous PEC structure with deformations modeled
by suitable continuous functions. In the present approach, the computation complexity is significantly reduced compared to discrete
conductor models studied in our previous work. If the mechanically deformed metallic structure is irradiated by the microwave
fields of appropriate frequencies, then, by means of measurements of the scattered fields at both ends, we can reconstruct the
continuous deformation function. We apply the first-order perturbation method to the inverse problem of reconstruction of
boundary deformations, using the dominant TEM-mode of the microwave radiation. Different orders of Tikhonov regularization,
using the L-curve criterion, are investigated. Using reflection data, we obtain reconstruction results that indicate an agreement
between the reconstructed and true continuous deformations of waveguide boundaries.

1. Introduction

Power transformers are fundamental components of an elec-
tric power grid that require careful monitoring and fault
assessment. Mechanical deformations of power transformer
windings, mainly due to the heavy mechanical forces from
short-circuit currents, increase the risks of serious electrical
power outages in the grid. In order to reduce the risks, it is of
interest to investigate suitable online early detectionmethods
for local mechanical winding deformations. One available
method to diagnose various degradation phenomena in
power transformers is the frequency response analysis (FRA)
method. It is, however, only applicable when a transformer
is disconnected from the power grid. FRA has been pro-
posed for detection of winding deformations [1], but in
order to reduce the risks of power outages, it is desirable
to develop online methods that are applicable when the
transformer is connected to the power grid. The present
authors studied an onlinemethod, usingmicrowave antennas
inside the transformer, to reconstruct the radial positions of
individual winding segments in [2, 3]. In these papers, the
reconstruction of the locations of the individual conductors

from synthetic measurement data was performed by means
of an optimization method, using only up to ten winding
segments or turns, in order to reduce the computational
complexity. In [4], elliptic, and more importantly, wave-
shaped mechanical deformations were studied. It was found
that the wave-shaped deformations (to the first order of
approximation) can be reduced to radial displacements such
as those described in [2, 3], showing that essentially the same
mathematical tools can be used to cover a broad range of
deformations of individual conductors. It should however
be noted that, unlike the approach in the present paper, the
analysis in [2–4] uses a discrete conductor model with a
number of individual conductors being treated as obstacles
in the waveguide and where the mode matching technique is
used to handle a limited number of such discrete obstacles. A
more realistic number of winding segments, however, make
a full-scale numerical model in the optimization procedure
prohibitively complex. As the primary interest of our study is
the detection of small winding deformations, it is of interest to
study whether inversion methods, based on weak scattering,
can be used for reconstruction of transformer winding
deformations. A step towards such amethodwas taken in [5],
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where the transformer winding was not considered in detail
but instead modeled as equivalent outer boundary surfaces,
whose shape was to be reconstructed. In [5] a parallel-
plate waveguide model was assumed, with a piecewise linear
shape of the continuous winding deformation. This study
was extended in [6], which is similar to the approach
pursued here. In the present paper we use the same basic
mathematical formalism as in [6], but unlike the treatment in
[6] where we used the approximate parallel-plate waveguide
model, here we employ the more realistic coaxial waveg-
uide model together with improved numerical techniques,
both of which contribute to more accurate reconstruction
results in the present paper. Although the present paper
can be seen as an extended and improved version of the
approximate treatment employed in [6], the abovementioned
model change and numerical improvements provide an
essentially novel approach to the problem of reconstruction
of deformations in the lower coaxial waveguide boundary.
Thus we pursue the investigations reported in [5, 6] further
by considering a continuous axially symmetric deformation
in a coaxial waveguide model of the power transformer
winding structure. The inverse problem of reconstructing
deformations in the lower coaxial waveguide boundary is
solved using a simple and computationally efficient first-
order perturbation method. We use synthetic measurement
data from the commercial FEM program HFSS to test the
model.

2. Problem Formulation and
Scattering Analysis

Weassume an axially symmetric coaxial waveguide scattering
configuration, oriented along the 𝑧-axis, as shown in Figure 1.
The inner boundary cylinder is located at 𝑟 = 𝑟0 while the
outer boundary cylinder is located at 𝑟 = 𝑟0 + 𝑎 giving
the radial width of the unperturbed cavity equal to 𝑎. In
the context of a power transformer, the outer boundary
represents the transformer tank wall while the lower bound-
ary represents the outermost layer of the winding structure.
The winding structure is thus described as an equivalent
PEC surface. Using anisotropic boundary conditions [7], it
is possible to formulate a more realistic approach to model
the winding. Although a realistic transformer is filled with oil
and uses also paper and pressboard insulation, in the present
paper we assume that the medium inside the waveguide is
air (or vacuum). At the inner boundary cylinder along the
section 𝑧1 < 𝑧 < 𝑧2 there is a local deformation described by

𝑟 = 𝑟0 + 𝑎𝑔 (𝑧) with max 

𝑔 (𝑧)





≪ 1,

𝑔 (𝑧1) = 𝑔 (𝑧2) = 0.
(1)

The inverse problem here is to reconstruct 𝑔(𝑧) in the estima-
tion region 𝑧1 < 𝑧 < 𝑧2 using scattering data obtained when
the waveguide is excited from both ends. In order to focus
the present study on the primary scattering mechanism, due
to the local deformation of the lower boundary, we assume
that there are no reflections from the ends of the waveguide.
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Figure 1: Geometry of the coaxial waveguide model.

2.1. The Direct Scattering Problem. We restrict our analysis
to the TM-modes only and to mechanical deformations that
possess cylindrical symmetry (i.e., are independent on the
azimuthal angle 𝜑). For the sake of convenience, we consider
only the TM

𝑚
-modes and in particular the lowest TEM-

mode with𝑚 = 0. It is also possible to study the TE
𝑚
-modes

in the coaxial structure in a fully analogous way, whichwill be
the subject of our continued efforts. In this case, we can use
the analytic solutions for the dominant zeroth-order TEM-
mode (𝑚 = 0) in the coaxial waveguide, which propagates at
all frequencies,

E0 = 𝐸0𝑟 (𝑟0)
𝑟0
𝑟

r̂ ∝ 𝜓0 (𝑟) ,

H0 = 𝐻0𝜑 (𝑟0)
𝑟0
𝑟

�̂� ∝ 𝜓0 (𝑟) ,

(2)

as well as the Bessel function solutions [8] for higher-order
TM-modes (𝑚 ≥ 1),

E
𝑚
= 𝐸
𝑚𝑟
r̂ ∝ 𝜓

𝑚
(𝑟) ,

H
𝑚
= 𝐻
𝑚𝜑
�̂� ∝ 𝜓

𝑚
(𝑟) ,

𝜓
𝑚
(𝑟) = 𝐴

𝑚
[𝐽1 (𝑘𝑇𝑚𝑟) −

𝐽0 (𝑘𝑇𝑚𝑎)

𝑁0 (𝑘𝑇𝑚𝑎)
𝑁1 (𝑘𝑇𝑚𝑟)] ,

(3)

with asymptotic expansion formula for the𝑚th wave number
𝑘
𝑇𝑚

given by [8]

𝑘
𝑇𝑚
𝑎 =

𝑚𝜋

𝛼 − 1
−

1
8𝛼

⋅

𝛼 − 1
𝑚𝜋

+[

25 (𝛼3 − 1)
6 (4𝛼)3 (𝛼 − 1)

−

1
(8𝛼)

]

⋅

(𝛼 − 1)3

𝑚
3
𝜋
3

−[

1073 (𝛼5 − 1)
5 (4𝛼)5 (𝛼 − 1)

−

25 (𝛼3 − 1)
12𝛼 (4𝛼)3 (𝛼 − 1)

+

2
(8𝛼)3

]

⋅

(𝛼 − 1)5

𝑚
5
𝜋
5 + ⋅ ⋅ ⋅ , 𝑚 = 1, 2, 3, . . . ,

(4)

where 𝛼 = 1 + 𝑎/𝑟0 > 1. Here, we note that the longitudinal
component of the electric field 𝐸

𝑧
is nonzero only for𝑚 ≥ 1.
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2.1.1. Perturbation Method. The inversion scheme
(Section 2.2) is based on the solution of the direct scattering
problem using a boundary perturbation method for wave-
guides, similar to the one used in [9]. We first rewrite (1) as
follows:

𝑟 − 𝑟0 − 𝑎𝛿𝑔 (𝑧) = 0. (5)

Here, 𝛿 is just a book-keeping parameter to be set equal to
unity (𝛿 = 1) after the perturbation analysis. The outwardly
directed surface unit normal then becomes

n̂ = −
∇ [𝑟 − 𝑎𝛿𝑔 (𝑧)]





∇ [𝑟 − 𝑎𝛿𝑔 (𝑧)]






=

−r̂ + 𝑎𝛿 (𝑑𝑔/𝑑𝑧) ẑ

√1 + 𝑎2𝛿2 (𝑑𝑔/𝑑𝑧)2
. (6)

The boundary condition at the perturbed metallic boundary
is

n̂×E = 1
j𝜔𝜖

n̂× (∇×H) = 0. (7)

Substituting (6) in (7) and assuming TM-fields (H = 𝐻(𝑟,

𝑧)�̂� = 𝐻�̂�), we obtain

𝜕𝐻

𝜕𝑟

− 𝑎𝛿

𝑑𝑔

𝑑𝑧

𝑑𝐻

𝑑𝑧

= 0. (8)

If we now Taylor expand 𝐻(𝑟, 𝑧) in the 𝑟-variable about 𝑟 =
𝑟0, we obtain

𝐻(𝑟, 𝑧) =

∞

∑

𝑝=0

𝜕
𝑝

𝐻

𝜕𝑟
𝑝
(𝑟0, 𝑧)

(𝑟 − 𝑟0)
𝑝

𝑝!

. (9)

Substituting (9) into (8) and using (5), we obtain up to the
first order in 𝛿 as follows:

𝜕𝐻

𝜕𝑟

(𝑟0, 𝑧) + 𝑎𝛿 [𝑔 (𝑧)
𝜕
2
𝐻

𝜕𝑟
2 (𝑟0, 𝑧) −

𝑑𝑔

𝑑𝑧

𝜕𝐻

𝜕𝑧

(𝑟0, 𝑧)]

= 0.

(10)

Next, we develop𝐻(𝑟, 𝑧) into a perturbation series as follows:

𝐻(𝑟, 𝑧) =

∞

∑

𝑚=0
𝐻
𝑚
(𝑟, 𝑧) 𝛿

𝑚

. (11)

Substituting (11) into (10) and neglecting terms of order 𝛿2
and higher, we obtain

∞

∑

𝑚=0
𝛿
𝑚

{

𝜕𝐻
𝑚

𝜕𝑟

(𝑟0, 𝑧)

+ 𝑎𝛿 [𝑔 (𝑧)

𝜕
2
𝐻
𝑚

𝜕𝑟
2 (𝑟0, 𝑧) −

𝑑𝑔

𝑑𝑧

𝜕𝐻
𝑚

𝜕𝑧

(𝑟0, 𝑧)]}

=

𝜕𝐻0
𝜕𝑟

(𝑟0, 𝑧) + 𝛿{
𝜕𝐻1
𝜕𝑟

(𝑟0, 𝑧)

+ 𝑎 [𝑔 (𝑧)

𝜕
2
𝐻0
𝜕𝑟

2 (𝑟0, 𝑧) −
𝑑𝑔

𝑑𝑧

𝜕𝐻0
𝜕𝑧

(𝑟0, 𝑧)]} .

(12)

Here, the terms of each order in𝛿must be equal to zero,which
gives

𝜕𝐻0
𝜕𝑟

(𝑟0, 𝑧) = 0, (13)

𝜕𝐻1
𝜕𝑟

(𝑟0, 𝑧)

+ 𝑎 [𝑔 (𝑧)

𝜕
2
𝐻0
𝜕𝑟

2 (𝑟0, 𝑧) −
𝑑𝑔

𝑑𝑧

𝜕𝐻0
𝜕𝑧

(𝑟0, 𝑧)] = 0.
(14)

As can be seen from (14), the boundary perturbation results
are evaluated at the unperturbed boundary (𝑔(𝑧) = 0) with
𝑟 = 𝑟0. For the first-order perturbed fields, we can use the
Maxwell equation∇×H1 = j𝜔𝜖E1 together with (14) to obtain

n̂0 ×E1 (𝑟0, 𝑧)

=

𝑎

j𝜔𝜖
[

𝑑𝑔

𝑑𝑧

𝜕𝐻0
𝜕𝑧

(𝑟0, 𝑧) − 𝑔 (𝑧)
𝜕
2
𝐻0
𝜕𝑟

2 (𝑟0, 𝑧)] �̂�.
(15)

Assuming now orthonormal TM-modes of the form

H
𝑡𝑚
(𝑟) = 𝜓

𝑚
(𝑟) �̂�,

E
𝑡𝑚
(𝑟) =

𝑘
𝑧𝑚

𝜔𝜖

𝜓
𝑚
(𝑟) r̂,

(16)

we obtain

∫

𝑟0+𝑎

𝑟0

(E
𝑡𝑚
×H
𝑡𝑚
) ⋅ ẑ2𝜋𝑟 𝑑𝑟 = 𝑘

𝑧𝑚

𝜔𝜖

= 𝑍
𝑚

(17)

which is valid for all modes. For the zeroth-order field with
𝑚 = 0, we have

𝐻0 (𝑟, 𝑧) = ± 𝑐
±

0 𝜓0 (𝑟) e
∓j𝑘𝑧

= ± 𝑐
±

0 𝜓0 (𝑟, 𝑧) , (18)

where we note that

𝑘
𝑧0 = 𝑘,

𝜓0 (𝑟) =
1

√2𝜋 ln𝛼
⋅

1
𝑟

.

(19)

Substituting (18) into (15), we obtain

n̂0 ×E1 (𝑟0, 𝑧) = −
𝑎

𝜔𝜖

𝑐
±

[𝑘

𝑑𝑔

𝑑𝑧

±

2j
𝑟
2
0
𝑔]𝜓0 (𝑟0) e

∓j𝑘𝑧
�̂�. (20)

The results (17) and (20) are input to the excitation theorem,
described in [10].With no free currents (J = 0), the excitation
theorem becomes as follows:

𝑑
±

𝑚
=

1
2𝑍
𝑚

∫

aperture
[E×H∓

𝑚
e±j𝑘𝑧𝑚𝑧] ⋅ n̂

𝐴
𝑑𝐴, (21)

where E is the exact tangential electric field in the “aperture”
at 𝑟 = 𝑟0 between 𝑧1 and 𝑧2 and n̂

𝐴
is the (unperturbed)

outward normal of the aperture surface (n̂
𝐴

= n̂0). The
“aperture” between 𝑧1 and 𝑧2 in the inner wall of the
waveguide (𝑟 = 𝑟0) serves as a source of the perturbation



4 Mathematical Problems in Engineering

fields. Using now 𝑑𝐴 = 2𝜋𝑟0𝑑𝑧, n̂𝐴 = −r̂, and the fact that
H∓
𝑡𝑚
(𝑟0) is not 𝑧-dependent, we can rewrite (21) as follows,

for𝑚 = 0 and TM-modes:

𝑑
±

0 =
𝜔𝜖

2𝑘
𝑧𝑚

2𝜋𝑟0 [H
∓

𝑡0 (𝑟0)]

⋅ ∫

𝑧2

𝑧1

n̂0 ×E1 (𝑟0, 𝑧) e
±j𝑘𝑧

𝑑𝑧.

(22)

Using further

H
𝑡0 (𝑟0) = 𝜓0 (𝑟0) �̂� (23)

and substituting (20) into (22), we obtain

𝑑
+

0 = 2𝜋𝑟0 (
𝑎

2𝑘
) 𝑐
±

0 [𝜓0 (𝑟0)]
2

⋅ ∫

𝑧2

𝑧1

[𝑘

𝑑𝑔

𝑑𝑧

±

2j
𝑟
2
0
𝑔] ej𝑘𝑧(1∓1)𝑑𝑧,

𝑑
−

0 = − 2𝜋𝑟0 (
𝑎

2𝑘
) 𝑐
±

0 [𝜓0 (𝑟0)]
2

⋅ ∫

𝑧2

𝑧1

[𝑘

𝑑𝑔

𝑑𝑧

±

2j
𝑟
2
0
𝑔] e−j𝑘𝑧(1±1)𝑑𝑧.

(24)

Using here [5]

[

[

𝑑
+

0

𝑑
−

0

]

]

= [

[

𝑀
pp
00 𝑀

pm
00

𝑀
mp
00 𝑀

mm
00

]

]

[

[

𝑐
+

0

𝑐
−

0

]

]

, (25)

we obtain

𝑀
pm
00 =

2𝜋𝑎𝑟0
2𝑘

[𝜓0 (𝑟0)]
2
∫

𝑧2

𝑧1

[𝑘

𝑑𝑔

𝑑𝑧

−

2j
𝑟
2
0
𝑔] ej2𝑘𝑧𝑑𝑧,

𝑀
mp
00

= −

2𝜋𝑎𝑟0
2𝑘

[𝜓0 (𝑟0)]
2
∫

𝑧2

𝑧1

[𝑘

𝑑𝑔

𝑑𝑧

+

2j
𝑟
2
0
𝑔] e−j2𝑘𝑧𝑑𝑧.

(26)

Using here 𝑔(𝑧1) = 𝑔(𝑧2) = 0 and integrating by parts, we
further obtain

𝑀
pm
00

= − j𝑎 1
𝑟
2
0 ln 𝜆

(𝑘𝑟0 +
1
𝑘𝑟0

)

1
𝑧1 − 𝑧2

∫

𝑧2

𝑧1

𝑔 (𝑧) ej2𝑘𝑧𝑑𝑧,

𝑀
mp
00

= − j𝑎 1
𝑟
2
0 ln 𝜆

(𝑘𝑟0 +
1
𝑘𝑟0

)

1
𝑧1 − 𝑧2

∫

𝑧2

𝑧1

𝑔 (𝑧) e−j2𝑘𝑧𝑑𝑧

(27)

or finally

𝑆11 (𝑘) ≈ 𝑀
mp
00 = − j𝛽 (𝑘) ej2𝑘𝑧1𝐺∗ (𝑘) ,

𝑆22 (𝑘) ≈ 𝑀
pm
00 = − j𝛽 (𝑘) e−j2𝑘𝑧2𝐺 (𝑘)

(28)

being the first-order approximation for the reflection param-
eters 𝑆11 and 𝑆22. Here 𝑘 = 𝜔√𝜖0𝜇0 is the vacuum wavenum-
ber and we introduce this notation

𝛽 (𝑘) =

𝑎

𝑟
2
0 ln𝛼

(𝑘𝑟0 +
1
𝑘𝑟0

)

1
𝑧2 − 𝑧1

. (29)

In (28) we also define a “𝑘-transform” 𝐺(𝑘) of 𝑔(𝑧) and its
complex conjugate as follows:

𝐺 (𝑘) = ∫

𝑧2

𝑧1

𝑔 (𝑧) ej2𝑘𝑧𝑑𝑧,

𝐺
∗

(𝑘) = ∫

𝑧2

𝑧1

𝑔 (𝑧) e−j2𝑘𝑧𝑑𝑧.

(30)

Corrections to the transmission parameters, for the dominant
mode, are of the second order in the perturbation 𝑔(𝑧).
Consider

𝑆12 = 1+O (max 

𝑔
2



) ,

𝑆21 = 1+O (max 

𝑔
2



) .

(31)

The transmission data are therefore assumed to be too
sensitive for measurement errors and consequently will not
be included in the present analysis.

2.1.2. HFSS Model. In the present study, a full-wave FEM
model, implemented in the commercial program HFSS, is
used to generate synthetic measurement data. For simplicity,
the unperturbed waveguide cavity radial size was chosen as
𝑎= 1m. Furthermore,we chose a geometrywith𝛼−1 = 𝑎/𝑟0 =
1. As synthetic measurement data, we computed the complex
reflection parameters in the frequency range from 20MHz to
150MHz with a step size of 5MHz in HFSS.

2.2. The Inverse Scattering Problem. Let us now consider the
perturbation function 𝑔(𝑧) with the properties given in (1).
Since we require that 𝑔(𝑧1) = 𝑔(𝑧2) = 0, any such function
can be expanded into the Fourier Sine series of the form

𝑔 (𝑧) =

∞

∑

𝑛=1
𝑝
𝑛
𝜙
𝑛
(𝑧) ,

𝜙
𝑛
(𝑧) = sin(𝑛𝜋 𝑧 − 𝑧1

𝑧2 − 𝑧1
) ,

(32)

where we use the infinite set of mutually orthogonal sine
functions 𝜙

𝑛
(𝑧) satisfying the required conditions 𝜙

𝑛
(𝑧1) =

𝜙
𝑛
(𝑧2) = 0. The coefficients 𝑝

𝑛
in (32) are real numbers and

they are not functions of 𝑧. If we then apply the “𝑘-transform”,
as defined in (30), to both sides of (32), we obtain

𝐺 (𝑘) =

∞

∑

𝑛=1
𝑝
𝑛
Φ
𝑛
(𝑘) ,

𝐺
∗

(𝑘) =

∞

∑

𝑛=1
𝑝
𝑛
Φ
∗

𝑛
(𝑘) ,

(33)
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where

Φ
𝑛
(𝑘) = ∫

𝑧2

𝑧1

𝜙
𝑛
(𝑧) ej2𝑘𝑧𝑑𝑧

=

𝑛𝜋 (𝑧2 − 𝑧1) (e
j2𝑘𝑧1

− (−1)𝑛 ej2𝑘𝑧2)

𝑛
2
𝜋
2
− 4𝑘2 (𝑧2 − 𝑧1)

2

(34)

and 𝐺(𝑘) is given by (30). In order to be able to perform
the inversion numerically, we approximate the continuous
inverse problem with a discrete inverse problem, where the
deformation 𝑔(𝑧) is expanded into a finite set of functions,
whereby we truncate the infinite series in (33) to a finite
number of terms denoted by𝑁 as follows:

𝐺 (𝑘) =

𝑁

∑

𝑛=1
𝑝
𝑛
Φ
𝑛
(𝑘) ,

𝐺
∗

(𝑘) =

𝑁

∑

𝑛=1
𝑝
𝑛
Φ
∗

𝑛
(𝑘) .

(35)

Since {𝑝
𝑛
}
𝑁

𝑛=1 are real-valued, it is convenient to treat the real
and imaginary parts of (35) as separate equations

𝐺
𝑅
(𝑘) =

𝑁

∑

𝑛=1
𝑝
𝑛
Φ
𝑛𝑅
(𝑘) ,

𝐺
𝐼
(𝑘) =

𝑁

∑

𝑛=1
𝑝
𝑛
Φ
𝑛𝐼
(𝑘) ,

(36)

where 𝐺(𝑘) = 𝐺
𝑅
(𝑘) + j𝐺

𝐼
(𝑘) and Φ

𝑛
(𝑘) = Φ

𝑛𝑅
(𝑘) +

jΦ
𝑛𝐼
(𝑘), with 𝐺

𝑅
(𝑘), 𝐺

𝐼
(𝑘), Φ

𝑛𝑅
(𝑘), and Φ

𝑛𝐼
(𝑘) being real-

valued functions of 𝑘. If we substitute 𝐺(𝑘) and 𝐺∗(𝑘) from
(28) into (35), we obtain

𝛽 (𝑘)

𝑁

∑

𝑛=1
𝑝
𝑛
Φ
∗

𝑛
(𝑘) = j𝑆11 (𝑘) e

−j2𝑘𝑧1
,

𝛽 (𝑘)

𝑁

∑

𝑛=1
𝑝
𝑛
Φ
𝑛
(𝑘) = j𝑆22 (𝑘) e

j2𝑘𝑧2
,

(37)

where we see that

𝐺
∗

(𝑘) =

j𝑆11 (𝑘)
𝛽 (𝑘)

e−j2𝑘𝑧1 ⇒ 𝐺 (𝑘) =

−j𝑆∗11 (𝑘)
𝛽 (𝑘)

ej2𝑘𝑧1 ,

𝐺 (𝑘) =

j𝑆22 (𝑘)
𝛽 (𝑘)

ej2𝑘𝑧2 .
(38)

From the two results for 𝐺(𝑘), given in (38), we see that in
theory measurements of 𝑆11 and 𝑆22 give the same 𝐺(𝑘) and
consequently the same equation (35). Thus it is in principle
possible to perform the reconstruction of the expansion
coefficients {𝑝

𝑛
}
𝑁

𝑛=1, using the measurements of either 𝑆11 or
𝑆22 (one-sided reflection data) or both 𝑆11 and 𝑆22 (two-sided
reflection data).

In practice however, the measurements of 𝑆11 and 𝑆22
may provide different values of 𝐺(𝑘) due to the contributions

of higher-order modes, potential measurement errors, the
truncation of the infinite series, and other approximations
used in the present model. Thus if we use the measured 𝑆11
and 𝑆22, bymeans of (38), we obtain the “measured” functions
𝐺1𝑀(𝑘) and 𝐺2𝑀(𝑘) as follows:

𝐺1𝑀 (𝑘) =
−j𝑆∗11 (𝑘)
𝛽 (𝑘)

ej2𝑘𝑧1 ,

𝐺2𝑀 (𝑘) =
j𝑆22 (𝑘)
𝛽 (𝑘)

ej2𝑘𝑧2 .
(39)

In the present paper we perform the reconstructions using
contributions from both 𝑆11 and 𝑆22.

The coefficients {𝑝
𝑛
}
𝑁

𝑛=1 are collected into the vector p.
From measurements of 𝐺(𝑘) at several values of 𝑘 (frequen-
cies), the right hand side of (33) is collected into the vector
G = [GR GI]

T, while the evaluations of Φ
𝑛
(𝑘) are collected

into the matrix with elementsΦ
𝑛𝑘
= Φ
𝑛
(𝑘) such that

Φ = [ΦR ΦI]
T
,

G = [GR GI]
T
.

(40)

The vector p is a solution of the least square equation
min ‖Φp − G‖2

2
. The inverse problem in the present paper

is ill-posed, and in order to handle this illposedness, we
use the Tikhonov regularization method, since it is the
most commonly used method of regularization for ill-posed
problems of the present type [11, 12]. We invoke Tikhonov
regularization by adding a penalty term to the above least
square equation. For the 𝑟th order derivative of the deforma-
tion 𝑔(𝑧), (33) implies










d𝑟𝑔
d𝑧𝑟










2

2
= ∫

𝑧2

𝑧1

(

d𝑟𝑔
d𝑧𝑟

)

2
d𝑧 ∝

𝑁

∑

𝑛=1
𝑛
2𝑟
𝑝
2
𝑛
= ‖Lp‖22 , (41)

where the matrix L = [diag{1, 2, . . . , 𝑁}]𝑟. We define 𝑟 as the
order of the regularization, in the regularized problem

min {‖Φp−G‖22 +𝜆
2
‖Lp‖22} , (42)

where𝜆 is the regularization parameter.The coefficient vector
p that solves (41) is obtained from

(Φ
T
Φ+𝜆

2LTL) p = ΦTG. (43)

To find appropriate values of the regularization parameter 𝜆,
we use the L-curve method [11], in which log10‖Φp−G‖2 and
log10‖Lp‖2 are plotted against each other, when solving (43)
parameterized by 𝜆. The optimal 𝜆 is estimated by using the
MATLAB function corner [13] which finds the corner of a
discrete L-curve using an adaptive pruning algorithm.

3. Reconstruction Results

In this section we present the reconstruction results for
five different perturbation shape functions: (a) continuous
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Figure 2: Reconstruction results for 𝑟 = 0 and (a) 20% intrusion, (b) 20% extrusion, and (c) 20% intrusion and extrusion. In all three graphs,
the true shape is represented by the black line and the reconstructed shapes are represented by the red (𝑟 = 0), blue (𝑟 = 1), and green (𝑟 = 2)
lines.
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Figure 3: Reconstruction results for 𝑟 = 0 and (a) 20% square intrusion and (b) 20% square. In both graphs, the true shape is represented by
the black line and the reconstructed shapes are represented by the red (𝑟 = 0), blue (𝑟 = 1), and green (𝑟 = 2) lines.

intrusion, (b) continuous extrusion, (c) continuous intru-
sion/extrusion, (d) discontinuous intrusion, and (e) discon-
tinuous extrusion. In all the reconstruction examples, we use
𝑁 = 27, 𝑟0 = 1m, and 𝑎 = 1m for the undistorted part
of the waveguide. The lengths of the extrusion/intrusions in
the examples below are 3m and 1.5m, while the estimation
region is chosen larger, 4.4m long in all cases. In Figure 2,
we present the reconstruction results for cases (a)–(c) for the
zeroth order of regularization (𝑟 = 0) and two higher orders
of regularization (𝑟 = 1, 2). For the continuous perturbations,
we have used the function

𝑔 (𝑧) = 𝐷 sin(𝑛𝜋𝑧
𝑏

) , (44)

where 𝑛 = 1, 𝐷 = 0.2, and 𝑏 = 3m for the intrusion having
a maximum of 20% of the undistorted waveguide width, as
described in Figure 2(a), and 𝑛 = 1,𝐷 = −0.2, and 𝑏 = 3m for
the extrusion having a maximum of 20% of the undistorted
waveguide width, as described in Figure 2(b), as well as 𝑛 =
2, 𝐷 = 0.2, and 𝑏 = 3m for the intrusion/extrusion, as
described in Figure 2(c). In Figure 2, the true shapes are
represented by black lines while the reconstructed shapes are
represented by red (𝑟 = 0), blue (𝑟 = 1), and green (𝑟 = 2)
lines.

In Figure 3, the reconstruction results for cases (d)-(e)
are presented.Thediscontinuous perturbation is described by
the usual rectangular function, with 𝐷 = 0.2 and 𝑏 = 3m for
the intrusion in Figure 3(a) and𝐷 = −0.2 and 𝑏 = 3m for the
extrusion in Figure 3(b). Also in this figure, the true shapes

are represented by black lines while the reconstructed shapes
are represented by red (𝑟 = 0), blue (𝑟 = 1), and green (𝑟 = 2)
lines.

From Figures 2 and 3 we see that the results obtained
using the zeroth-order regularization display relatively large
deviations between the reconstructed and true shapes. The
corresponding reconstruction results, obtained using the first
and especially second order of regularization, are better and
can be considered accurate enough for potential diagnostic
purposes. The present investigation indicates that higher
orders of regularization 𝑟 > 2 do not considerably improve
the accuracy, which indicates that the optimal regularization
order is likely to be of the order 𝑟 = {1, 2}. The recon-
struction method works robustly for different heights of the
perturbation. Figure 4 shows the reconstruction results for
three different heights of continuous intrusions (30%, 40%,
and 50%). The true shapes are represented by the black lines
and the reconstructed shapes by the blue (𝑟 = 1) lines.
It turns out that the reconstruction results using 𝑟 = 1
regularization accurately reflect the different magnitudes of
the the deformation function. It is also interesting to point
out here that the perturbation method works well even for
deformations that extend to half of the waveguide width.
Figure 5 illustrates the same principle, but this time for three
different heights of discontinuous extrusions (10%, 20%, and
30%).

Finally, in Figures 6 and 7 the method is illustrated for
20% intrusions and extrusions but with shorter deformation
lengths than in the previous examples. In Figures 6 and 7
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Figure 4: Reconstruction results for different heights of sinusoidal intrusions (30%, 40%, and 50%). The true shapes are represented by the
black lines and the reconstructed shapes by the blue (𝑟 = 1) lines.
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Figure 5: Reconstruction results for different heights of square extrusions (10%, 20%, and 30%).The true shapes are represented by the black
lines and the reconstructed shapes by the green (𝑟 = 2) lines.
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Figure 6: Reconstruction results for deformation length 1.5m and (a) 20% intrusion, (b) 20% extrusion, and (c) 20% intrusion and extrusion.
In all three graphs, the true shape is represented by the black line and the reconstructed shapes are represented by the blue (𝑟 = 1) lines.
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Figure 7: Reconstruction results for deformation length 1.5m and (a) 20% intrusion and (b) 20% extrusion. In both graphs, the true shape
is represented by the black line and the reconstructed shapes are represented by the blue (𝑟 = 1) lines.
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the deformations span a length of 1.5m in the 𝑧-direction,
instead of 3mas in the previous examples.The reconstruction
method performs well also for this case of shorter deforma-
tions.

It should be noted here that the high accuracy of the
reconstructions in cases of continuous intrusions (see e.g.,
Figure 2(a)) and extrusions (Figure 2(b)) is encouraging,
since, from the practical point of view, these perturbation
functions are more likely to be used to model the realistic
effects of heavy short-circuit forces on power transformer
windings. The other studied perturbation functions are less
likely to describe the realistic effects of heavy short-circuit
forces, and the occurrence of such deformations would
probably lead to a total failure of a power transformer.

4. Conclusions

A simple and computationally efficient first-order pertur-
bation approach to the inverse problem of reconstructing
deformations in a lower coaxial waveguide boundary, based
on the contributions from the dominant mode only, has been
investigated. Using a full-wave FEM model implemented in
the commercial program HFSS, as the generator of syn-
thetic measured reflection data, we obtained reconstruction
results indicating an agreement between the reconstructed
and true continuous deformations of waveguide boundaries.
The cases presented in the paper, as well as other results
omitted for sake of brevity, show that the method works
well for continuous and discontinuous deformations and is
able to distinguish between these two types of shapes. The
method is also stable under different deformation heights
and lengths. As a proposal for continued efforts, other reg-
ularization techniques based on Tikhonov regularization
could be considered. Furthermore, improved methods to
include the contributions from higher-order modes would
also be of interest.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was funded by the Swedish Energy Agency, Project
no. 34146-1.

References

[1] Y. Li, G. Liu, L. Zhang, and Z. Lin, “Transformer winding defor-
mation diagnosis using middle band frequency response anal-
ysis,” in Proceedings of the International Conference on Solid
Dielectrics (ICSD ’07), pp. 677–680, Winchester, UK, July 2007.

[2] M. Dalarsson, A. Motevasselian, and M. Norgren, “Online
power transformer diagnostics using multiple modes of
microwave radiation to reconstruct winding conductor loca-
tions,” Inverse Problems in Science and Engineering, vol. 22, no.
1, pp. 84–95, 2014.

[3] M. Dalarsson, A. Motevasselian, and M. Norgren, “Using mul-
tiple modes to reconstruct conductor locations in a cylindrical
model of a power transformerwinding,” International Journal of
Applied Electromagnetics and Mechanics, vol. 41, no. 3, pp. 279–
291, 2013.

[4] M. Dalarsson and M. Norgren, “First-order perturbation
approach to transformer winding deformations,” Progress in
Electromagnetics Research Letters, vol. 43, pp. 1–14, 2013.

[5] M. Norgren, M. Dalarsson, and A.Motevasselian, “Reconstruc-
tion of boundary perturbations in a waveguide,” in Proceedings
of the 21st International Symposium on Electromagnetic Theory
(EMTS ’13), pp. 934–937, Hi-roshima, Japan, May 2013.

[6] M. Dalarsson, S. M. H. Emadi, and M. Norgren, “Reconstruc-
tion of continuous deformations in a coaxial cylindrical waveg-
uide using Tikhonov regularization,” in Proceedings of the 31th
URSI General Assembly and Scientific Symposium (URSI GASS
’14), pp. 1–4, Beijing, China, August 2014.

[7] N. Kumar, S. K. Srivastava, and S. P. Ojha, “A theoretical anal-
ysis of the propagation characteristics of an annular circular
waveguide with a helical winding as the inner cladding,”
Microwave and Optical Technology Letters, vol. 37, no. 1, pp. 69–
74, 2003.

[8] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, vol. 55 of Applied Mathematics Series, US Depart-
ment of Commerce, National Bureau of Standards,Washington,
DC, USA, 1964.

[9] H.-S. Tuan, “The radiation and reflection of surface waves at a
discontinuity,” IEEE Transactions of Antennas and Propagation,
vol. 21, no. 3, pp. 351–356, 1973.

[10] J. D. Jackson, Classcial Electrodynamics, Wiley, New York, NY,
USA, 3rd edition, 1999.

[11] P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the
regularization of discrete ill-posed problems,” SIAM Journal on
Scientific Computing, vol. 14, no. 6, pp. 1487–1503, 1993.

[12] M. Hanke, “Limitations of the L-curve method in ill-posed
problems,” BIT. Numerical Mathematics, vol. 36, no. 2, pp. 287–
301, 1996.

[13] P. C. Hansen, “Regularization tools version 4.0 for matlab 7.3,”
Numerical Algorithms, vol. 46, no. 2, pp. 189–194, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


