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Recently, the first oligopolistic competitionmodel of the closed-loop supply chain network involving uncertain demand and return
has been established. This model belongs to the context of oligopolistic firms that compete noncooperatively in a Cournot-Nash
framework. In this paper, we modify the above model in two different directions. (i) For each returned product from demand
market to firm in the reverse logistics, we calculate the percentage of its optimal product flows in each individual path connecting
the demand market to the firm.This modification provides the optimal product flow routings for each product in the supply chain
and increases the optimal profit of each firm at the Cournot-Nash equilibrium. (ii) Our model extends the method of finding the
Cournot-Nash equilibrium involving smooth objective functions to problems involving nondifferentiable objective functions.This
modification caters for more real-life applications as a lot of supply chain problems involve nonsmooth functions. Existence of the
Cournot-Nash equilibrium is established without the assumption of differentiability of the given functions. Intelligent algorithms,
such as the particle swarm optimization algorithm and the genetic algorithm, are applied to find the Cournot-Nash equilibrium for
such nonsmooth problems. Numerical examples are solved to illustrate the efficiency of these algorithms.

1. Introduction

In the past decade, the perfect competition equilibrium
models of the supply chain network (SCN) have been widely
studied. For instance, a perfect competition determinis-
tic equilibrium model and a stochastic equilibrium model
involving a lot of decision-makers were first established by
Nagurney et al. [1] and Dong et al. [2], respectively. On the
other hand, a perfect competition equilibrium model of a
reverse SCN was constructed by Nagurney and Toyasaki [3]
for the optimal management of the electronic wastes. More-
over, perfect competition equilibrium models of a closed-
loop supply chain (CLSC) network were established by
Hammond and Beullens [4] andYang et al. [5] for the optimal
management of waste electrical/electronic equipment and
raw material, respectively. Qiang et al. [6] were the first

to investigate a stochastic equilibrium model of a CLSC
network, which involved uncertainties in demands, but not
uncertainties in returns. The equilibrium conditions of all
the above papers were obtained by the theory of varia-
tional inequality and were solved by the modified projection
method (Korpelevich [7]).

Nowadays, more firms are aware of the importance of
integrating the supply chain as a whole, consisting of all the
marketing activities of all the competitors. The integration
of the entire supply chain generates oligopolistic competition
among firms. As a consequence, research works were recently
extended from the perfect competition markets model to the
oligopolistic firmsmodel in the forward SCN.The oligopolis-
tic competition among firms in the forward SCNwas consid-
ered in a lot of real-life situations. For instance, oligopolistic
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competition equilibrium models of a forward SCN were
established by Masoumi et al. [8] and Yu and Nagurney [9]
for the optimal management of perishable products such as
pharmacies and fresh foods and by Nagurney and Yu [10] for
the minimization of emission-generations. The equilibrium
conditions of these models were also obtained by the theory
of variational inequality and were solved by the Eulermethod
(Dupuis and Nagurney [11]).

However, for both perfect competition and oligopolistic
competition, the CLSC integrating the forward and reverse
supply chain ismore important than the forward supply chain
alone due to the government legislation (such as the paper
recycling directive and WEEE within the European Union
[12]). Moreover, the process used in the CLSC to recycle
used products (such as papers, glass, building wastes, and
electronic and electrical equipment) for minimizing resource
wastage also leads to people’s understanding of the green
supply chainmanagement (GSCM) (Sheu and Talley [13] and
Seuring [14]). Research work on oligopolistic competition
model of the CLSC network only began very recently. The
first oligopolistic competition equilibriummodel of theCLSC
network was established recently by Zhou et al. [15].

The model developed by Zhou et al. [15] belongs to the
context of oligopolistic firms that compete noncooperatively
in a Cournot-Nash framework in a stochastic environment.
Since the demands and returns are uncertain, two types
of risk, namely, the overstocking and understocking of
multiproducts in the forward supply chain, are considered.
By using the quantities of each new product and the path
flows of each product on the forward supply chain as the
decision variables, every oligopolistic firm’s expected profit
can be maximized at the Cournot-Nash equilibrium. The
equilibrium condition of this model was also obtained by the
theory of variational inequality; the variational inequalities in
this paper were solved by the logarithmic quadratic proximal
prediction-correction method (He et al. [16]).

Asmentioned in the abstract, wemodify the abovemodel
in two different directions as follows:

(i) Themodel of Zhou et al. [15] can calculate the optimal
product flow in each path from firms to demand
markets in the forward logistics, but not in paths
from demandmarkets to firms in the reverse logistics
because the quantity of the returned products from
each demand market is a random variable. In this
paper, for each returned product 𝑗 from demand
market 𝑅𝑘 to firm 𝑖 in the reverse logistics, we can
calculate the percentage of its optimal product flows
in each individual path connecting the above demand
market to the above firm. This modification provides
the optimal product flow routings for each product
in the entire supply chain and hence can increase the
optimal profit of each of the firms at the Cournot-
Nash equilibrium.

(ii) Our proposed model extends the method of finding
the Cournot-Nash equilibrium for CLSC problems
involving smooth objective functions to problems
involving nondifferentiable objective functions. This
modification caters for more real-life applications as

a lot of supply chain problems involve nonsmooth
objective functions.

In this paper, we establish the Cournot-Nash equilib-
rium without the assumption of differentiability on the
given functions and use intelligent algorithms, such as the
genetic algorithm and the particle swarm optimization (PSO)
algorithm, for finding the Cournot-Nash equilibrium for
nonsmooth CLSC problems.

Genetic algorithm (Holland [17]) is a common intelligent
optimization algorithm, which can find the Nash (Nash
[18, 19]) equilibrium effectively. For instance, genetic algo-
rithm has been used for finding the Stackelberg- [20] Nash
equilibrium of a nonlinear, nonconvex, nondifferentiable
multilevel programming model (Liu [21]). Complicated SNC
problems involving the design of the hierarchical spanning
tree network (Kim et al. [22]) and that of a vendor man-
aged inventory SNC network (Yu and Huang [23]) were
also successfully solved by the genetic algorithm. In these
papers, the efficiency of the genetic algorithm for solving
complicated combinational problems, in terms of both speed
and accuracy, has been demonstrated.

The PSO algorithm, originally proposed by Eberhart
and Kennedy [24], is a member of the swarm intelligence
methods (Kennedy and Eberhart [25]) for solving global
optimization problems. Similar to a lot of intelligent opti-
mization algorithms, the PSO algorithm does not require the
gradient information of both the objective functions and the
constraint functions, but only their values. Thus, it is easily
implemented and computationally inexpensive and has been
successfully applied to solve continuous optimization prob-
lems as well as discrete optimization problems (Goksal et al.
[26]). Numerical results have shown that the PSO algorithm
is more efficient than the genetic algorithm, especially for
solving problems involving continuous solution space. For
instance, Kadadevaramath et al. [27] and Govindan et al.
[28] solved, respectively, a three-echelon SCN problem and
an optimization problem involving both the economic and
environmental benefits of a perishable food SCN by both the
genetic algorithm and the PSO algorithm. Numerical results
indicated that the PSO algorithm is more efficient than the
genetic algorithm, in terms of the accuracy of the optimal
solutions.

In Section 5 of this paper, two numerical examples are
solved to compare the efficiencies of the PSO algorithm, the
genetic algorithm, and an algorithm based on variational
inequalities for finding theCournot-Nash equilibrium. In one
numerical example (Example 1), the results show that when
all the given functions are differentiable, the efficiencies of
the PSO algorithm, the genetic algorithm, and the algorithm
based on variational inequality are almost the same, in terms
of the accuracy of the computed equilibrium. However,
the PSO algorithm is just as efficient as the algorithm
based on variational inequality but more efficient than the
genetic algorithm, in terms of the total computational time
required to obtain the equilibrium. In another numerical
example (Example 2), the results show that, for problems
involving nonsmooth objective functions, the PSO algorithm
and the genetic algorithm can still find the Cournot-Nash
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Figure 1: The CLSC network topology.

equilibrium efficiently, but the algorithmbased on variational
inequality is not efficient.

The rest of this paper is as follows. Section 2 develops the
oligopolistic CLSC network model with multiproducts and
uncertain demands and returns and constructs the Cournot-
Nash equilibrium conditions for our model. Section 3 proves
the existence of theCournot-Nash equilibrium for ourmodel.
Section 4 presents a PSOalgorithmand a genetic algorithm to
find the Cournot-Nash equilibrium. In Section 5, numerical
examples are solved to compare the effectiveness of the PSO
algorithm, the genetic algorithm, and an algorithm based on
variational inequality for finding the Cournot-Nash equilib-
rium. Section 6 presents our summary and conclusion.

2. An Equilibrium Model of a CLSC Network
under Oligopolistic Competition among
Firms Involving Product Flow Routings in
Both Forward and Reverse Logistics

Zhou et al. [15] have established the first oligopolistic com-
petition model of the closed-loop supply chain network
(CLSC) involving uncertain demand and return. This model
belongs to the context of oligopolistic firms that compete
noncooperatively in a Cournot-Nash framework. In this
model, they maximize every oligopolistic firm’s expected
profit by deciding the optimal production qualities of each
new product as well as the amount of product flows in
each individual path containing firms to demand markets
in the forward logistics. Due to the fact that the quantities
of returned products are random variables, they are unable
to calculate the optimal amount of product flows in the
reverse logistics. In this paper, we modify the above model
by including the percentage of product flows in each path in
the reverse logistics as a decision variable.

The topology of the network of our model is shown in
Figure 1. Each firm 𝑖 (𝑖 = 1, . . . , 𝐼) produces 𝐽 products. In
order to satisfy the demand, the firms eithermanufacture new
products or remanufacture used products through recycling
used components obtained from the previous production
period. Both the demands and returns are random variables
having uniform distributions. As mentioned in the previous
paragraph, each firm determines the optimal production
quantities of the new products, the amount of product flows
in each path in the forward logistics, and the percentage of
product flows in each path in the reverse logistics tomaximize
its profit.

In the closed-loop supply chain, each firm is represented
as a network of its economic activities. In the forward
logistics, firm 𝑖 (𝑖 = 1, . . . , 𝐼) has 𝑛𝑖

𝑀
manufacturing

faculties/plants and 𝑛𝑖
𝐷
distribution centers and serves the

same 𝑛𝑅 demand markets. In the reverse logistics, firm 𝑖

has 𝑛𝑖
𝐶
recovery centers. The activities in the forward supply

chain involve the production, remanufacturing, delivery,
and distribution of products. The activities in the reverse
supply chain involve the disposal, recycling, and returning of
products.

In Figure 1, the links from the top-tiered 𝑖 (𝑖 = 1, . . . , 𝐼)
of the forward logistics representing the individual firm are
connected to the manufacturing nodes of the respective firm
𝑖, which are denoted by 𝑀𝑖

1
, . . . ,𝑀𝑖

𝑛𝑖
𝑀

, respectively. The links
from the manufacturing nodes are, in turn, connected to
the distribution center nodes of firm 𝑖, which are denoted
by 𝐷𝑖
1
, . . . , 𝐷𝑖

𝑛𝑖
𝐷

, respectively. The links from the distribution
centers nodes are, in turn, connected to the demand market
nodes, denoted by 𝑅1, . . . , 𝑅𝑛𝑅 , respectively; each of these
demand markets is served by all the firms.

Also, in Figure 1, the links from every demand market
node 𝑅𝑘 (𝑘 = 1, . . . , 𝑛𝑅) of the reverse logistics are connected
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to all the recovery center nodes of firm 𝑖, which are denoted by
𝐶𝑖
1
, . . . , 𝐶𝑖

𝑛𝑖
𝐶

, respectively. Finally, the links from the recovery
centers nodes are connected to firm 𝑖 to complete a single
loop.

Thus, our CLSC network is one which incorporates the
forward supply chain processes (such as production, reman-
ufacturing, delivery, and distribution) with the reverse supply
chain processes (such as disposal, recycling, and returning) to
form a closed-loop network.

We wish to emphasize that the network topology in
Figure 1 is for demonstration purpose only. In fact, the model
can handle any prospective closed-loop chain network topol-
ogy, provided that there are top-tiered nodes to represent
each firm and bottom-tiered nodes to represent the demand
markets with two sequences of directed links containing each
top-tiered node to each bottom-tiered node in the forward
and reverse directions, respectively.

In the forward supply chain, any set of correlated links
that can connect a firm to a demand market via a manu-
facturer and a distribution center form a forward path 𝑝𝑓.
Similarly, in the reverse supply chain, any set of correlated
links that can connect a demand market to a firm via the
recovery center form a reverse path 𝑝𝑟. From the discussion
in the previous paragraph, the structure of our model can be
completed specified by its forward and reverse paths.

We now give a few assumptions together with their
justifications. These are common assumptions in the CLSC
literature, except possibly for (A8). (See Hammond and
Beullens [4] and Zhou et al. [15] for details.)

Assumption A. (A1) The demand for product 𝑗 (𝑗 = 1, . . . , 𝐽)
of firm 𝑖 (𝑖 = 1, . . . , 𝐼) at demand market 𝑅𝑘 (𝑘 = 1, . . . , 𝑛𝑅)
in one production period, denoted by 𝑑𝑖𝑗𝑘, is a random
variable. Any two demands𝑑𝑖1𝑗1𝑘1 and𝑑𝑖2𝑗2𝑘2 with (𝑖1, 𝑗1, 𝑘1) ̸=
(𝑖2, 𝑗2, 𝑘2) are independent of each other. This assumption is
due to the fact that all the buyers are independent.

(A2) A fraction of the used products which is in good
condition will be returned to the firms for remanufacturing;
the remainder of used products which is not in good
condition will be sent to the landfill for disposal. Thus, we
assume that, for any used product 𝑗 (𝑗 = 1, . . . , 𝐽) which is in
good condition, a cost of 𝜌Re

𝑗
per item will be charged to the

firms for the purchase of these used products. For any used
product 𝑗 (𝑗 = 1, . . . , 𝐽) which is not in good condition, a cost
of 𝜌 (independent of 𝑗) per item will be charged to the firms
for the disposal of these used products at the landfall.

(A3)All the returned products are remanufacturable.This
assumption is a direct consequence of (A2).

(A4) The return of used product 𝑗 (𝑗 = 1, . . . , 𝐽) from
demand market 𝑅𝑘 (𝑘 = 1, . . . , 𝑛𝑅) to firm 𝑖 (𝑖 = 1, . . . , 𝐼) in
one production period, denoted by 𝑟𝑘𝑗𝑖, is a random variable.
Any two returns 𝑟𝑘1𝑗1𝑖1 and 𝑟𝑘2𝑗2𝑖2 with (𝑘1, 𝑗1, 𝑖1) ̸= (𝑘2, 𝑗2, 𝑖2)
are independent of each other. This assumption is due to the
fact that all the customers are independent.

(A5) Due to the existence of modern manufacturing
technologies, manufacturers can easily transform the reman-
ufactured products into as-new products. Thus, we assume
that there is no distinction between the qualities of the brand

new products and the remanufactured products and they are
sold to the markets at the same price.

(A6) The operational cost of product 𝑗 on any link 𝑎 in
the forward logistics, denoted by 𝑐𝑗𝑎, is a continuous function
of all the link flows of this product in the forward supply
chain. In other words, 𝑐𝑗𝑎 depends continuously not only on
the product flow in link 𝑎, but also on the product flows in
all the manufacturer links and all the shipment links and
all the distribution links. Consequently, the operation cost
of product 𝑗 on any path 𝑝𝑓 in the forward supply chain,
denoted by 𝑐𝑗𝑝𝑓 , is also a continuous function of all the
path flows of its product in the forward supply chain. This
assumption is due to the fact that competition for business
exists among all the companies involving economic activities
in the forward logistics.

(A7) The operational cost of product 𝑗 on any path 𝑝𝑟 in
the reverse logistics, denoted by 𝑐𝑗𝑝𝑟 , is a continuous function
of the path flow of this product on 𝑝𝑟 only.

(A8) For product 𝑗 (𝑗 = 1, . . . , 𝐽) of firm 𝑖 (𝑖 = 1, . . . , 𝐼),
the cost of manufacturing 𝑧 items of new product 𝑗 by firm 𝑖

is 𝑓
𝑖𝑗
(𝑧), and the cost of remanufacturing 𝑧 items of returned

product 𝑗 by firm 𝑖 is 𝑓
Re
𝑖𝑗

(𝑧), where 𝑓
𝑖𝑗
and 𝑓

Re
𝑖𝑗

are given
continuous functions. Due to the operational advantages, the
manufacturing costs are higher than the remanufacturing
costs; that is,

𝑓
𝑖𝑗
(𝑧) > 𝑓

Re
𝑖𝑗

(𝑧) , (1)

for 𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽.
(Note that, due to the logistics advantages, the optimal

strategies of any firm 𝑖 (𝑖 = 1, . . . , 𝐼) at the Cournot-
Nash equilibrium must automatically satisfy the following
relationship: total reverse logistics costs of firm 𝑖 (i.e., total
purchase costs of returned products + total transportation
costs of returned products) + total remanufacturing costs of
firm 𝑖 < total manufacturing costs of firm 𝑖.)

(A9) Due to the limitation of the facilities at themanufac-
turers’ factories, the quantity of new product 𝑗 (𝑗 = 1, . . . , 𝐽)
manufactured by firm 𝑖 (𝑖 = 1, . . . , 𝐼) in one production
period cannot exceed 𝑥, where 𝑥 is a positive integer.

In order to formulate the problemof finding theCournot-
Nash equilibrium for our CLSC network, we first formulate
three types of decision variables, namely, the quantity of new
manufactured product, the amount of product flows in each
path in the forward logistics, and the percentage of product
flows in each path in the reverse logistics.

For any firm 𝑖 (𝑖 = 1, . . . , 𝐼), there are 𝑛𝑖
𝑀

manufacturers
and 𝑛𝑖

𝐷
distribution centers served for firm 𝑖 in the forward

logistics. Thus, there are altogether 𝑛𝑖
𝑀

× 𝑛𝑖
𝐷
different paths

which can connect firm 𝑖 to demand market 𝑅𝑘 (𝑘 =
1, . . . , 𝑛𝑅) via the manufacturers and distribution centers. Let
𝑃𝑖
𝑘
denote the set of all the forward paths associated with firm

𝑖 and demand market 𝑅𝑘 and let 𝑃 denote the set of all the
forward paths associatedwith all the firms and all the demand
markets. For each 𝑝𝑓 ∈ 𝑃𝑖

𝑘
, let 𝑥𝑗𝑝𝑓 be the amount of product

flows of product 𝑗 in the forward path 𝑝𝑓.
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For any firm 𝑖 (𝑖 = 1, . . . , 𝐼), there are 𝑛𝑖
𝐶
recovery

centers served for firm 𝑖 in the reverse logistics. Thus, there
are altogether 𝑛𝑖

𝐶
different paths which can connect demand

market 𝑅𝑘 (𝑘 = 1, . . . , 𝑛𝑅) to firm 𝑖 via the recovery centers.
Let �̂�𝑖
𝑘
denote the set of all the reverse paths associated with

firm 𝑖 and demand market 𝑅𝑘. For each returned product 𝑗
from demand market 𝑅𝑘 to firm 𝑖 in the reverse logistics, let
𝑦𝑗𝑝𝑟 be the percentage of its optimal product flows in the path
𝑝𝑟 connecting the above demand market to the above firm.

For any firm 𝑖 (𝑖 = 1, . . . , 𝐼) and product 𝑗 (𝑗 = 1, . . . , 𝐽),
let 𝑥New
𝑖𝑗

be the quantity of new product 𝑗 manufactured by
firm 𝑖 in one production period.

Thus, there are altogether (𝑛𝑖
𝑀

× 𝑛𝑖
𝐷
) × 𝑛𝑅 + 𝑛𝑖

𝐶
× 𝑛𝑅 + 1

decision variables associated with firm 𝑖 and product 𝑗 for any
𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽, where the (𝑛𝑖

𝑀
× 𝑛𝑖
𝐷
) × 𝑛𝑅 decision

variables are of the form 𝑥𝑗𝑝𝑓 , which represent the amount
of the flows of product 𝑗 on all the forward paths 𝑝𝑓 ∈ 𝑃𝑖

𝑘

(𝑘 = 1, . . . , 𝑛𝑅), the 𝑛𝑖
𝐶
× 𝑛𝑅 decision variables are of the form

𝑦𝑗𝑝𝑟 , which represent the percentage of the flows of product
𝑗 in all the reverse paths 𝑝𝑟 ∈ �̂�𝑖

𝑘
(𝑘 = 1, . . . , 𝑛𝑅), and the

other decision variable is of the form 𝑥New
𝑖𝑗

, which represents
the quantity of new product 𝑗 manufactured by firm 𝑖.

Let

𝑋𝑖𝑗 ≡ {(𝑥𝑗𝑝𝑓 , 𝑦𝑗𝑝𝑟 , 𝑥
New
𝑖𝑗

) | 𝑝
𝑓
∈ 𝑃
𝑖

𝑘
, 𝑝
𝑟
∈ �̂�
𝑖

𝑘
, 𝑘

= 1, . . . , 𝑛𝑅} ∈ R
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)×𝑛𝑅+1

+

(2)

be the vector representing all the decision variables associated
with firm 𝑖 and product 𝑗.

Let

𝑋𝑖 ≡ (𝑋𝑖1, . . . , 𝑋𝑖𝐽)
𝑇

∈ R
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)×𝑛𝑅𝐽+𝐽

+
(3)

be the strategy vector representing the overall decision
variables associated with firm 𝑖.

Then

𝑋 ≡ (𝑋1, . . . , 𝑋𝑖, . . . , 𝑋𝐼)
𝑇

∈ 𝐾 (4)

is the overall decision variables for the entire CLSC network,
where 𝐾 ≡ R

∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)×𝑛𝑅𝐽+𝐼𝐽

+ .
We now formulate all the constraints in the reverse

logistics. From the definition of 𝑦𝑗𝑝𝑟 , we have

0 ≤ 𝑦𝑗𝑝𝑟 ≤ 1,

𝑗 = 1, . . . , 𝐽, 𝑝
𝑟
∈ �̂�
𝑖

𝑘
(𝑖 = 1, . . . , 𝐼, 𝑘 = 1, . . . , 𝑛𝑅) ,

(5)

∑

𝑝𝑟∈�̂�𝑖
𝑘

𝑦𝑗𝑝𝑟 = 1,

𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝑛𝑅.

(6)

Thus (5) provides upper and lower bounds for the product
flow 𝑦𝑗𝑝𝑟 , 𝑗 = 1, . . . , 𝐽, 𝑝𝑟 ∈ �̂�𝑖

𝑘
(𝑖 = 1, . . . , 𝐼, 𝑘 = 1, . . . , 𝑛𝑅) in

the reverse logistics.
Since the total amount of returned product 𝑗 from

demand market 𝑅𝑘 to firm 𝑖 is 𝑟𝑘𝑗𝑖, it is clear that the amount

of product flow in the reverse path 𝑝𝑟 (𝑝𝑟 ∈ �̂�𝑖
𝑘
) is equal to

𝑥𝑗𝑝𝑟 , where

𝑥𝑗𝑝𝑟 = 𝑦𝑗𝑝𝑟𝑟𝑘𝑗𝑖,

𝑗 = 1, . . . , 𝐽, ∀𝑝
𝑟
∈ �̂�
𝑖

𝑘
, (𝑖 = 1, . . . , 𝐼, 𝑘 = 1, . . . , 𝑛𝑅) .

(7)

We now formulate all the constraints in the forward
logistics.

In view of (A9), we have

𝑥
New
𝑖𝑗

≤ 𝑥. (8)

Constraint (8) provides an upper bound for the quantity of
new product 𝑗 (𝑗 = 1, . . . , 𝐽) manufactured by firm 𝑖 (𝑖 =
1, . . . , 𝐼).

Let 𝑥Re
𝑖𝑗

be the random variable representing the quantity
of product 𝑗 remanufactured by firm 𝑖 in one production
period. Then in view of (A3) and (A4), we have

𝑥
Re
𝑖𝑗

=

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖, (9)

In view of (9), the following flow inequality, which
provides an upper bound for the total amount of flows of
product 𝑗 (𝑗 = 1, . . . , 𝐽) from firm 𝑖 (𝑖 = 1, . . . , 𝐼) to all the
demand markets in the forward supply chain, must hold:

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 ≤ 𝑥
New
𝑖𝑗

+ 𝐸(

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖) . (10)

Furthermore, the following flow inequality, which pro-
vides a lower bound for the amount of flows of product 𝑗
(𝑗 = 1, . . . , 𝐽) from firm 𝑖 (𝑖 = 1, . . . , 𝐼) to the demand market
𝑘 (𝑘 = 1, . . . , 𝑛𝑅) in the forward supply chain, must also hold:

𝐸 (𝑟𝑘𝑗𝑖) ≤ ∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 . (11)

We now formulate different cost functions for our CLSC
network. We first formulate the expected penalty cost (due to
excessive or insufficient supply).

Consider the forward supply chain involving firm 𝑖 (𝑖 =
1, . . . , 𝐼), product 𝑗 (𝑗 = 1, . . . , 𝐽), and demand market 𝑅𝑘
(𝑘 = 1, . . . , 𝑛𝑅). Let V𝑖𝑗𝑘 denote the quantity of product 𝑗
supplied by firm 𝑖 to demand market 𝑅𝑘 in one production
period. Then the above quantity is equal to the total amount
of flows of product 𝑗 on paths connecting firm 𝑖 to demand
market 𝑅𝑘. Thus,

V𝑖𝑗𝑘 = ∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 . (12)

Let 𝑑𝑖𝑗𝑘 be the total demand associated with firm 𝑖,
product 𝑗, and demand market 𝑅𝑘 in one production period.
LetF𝑖𝑗𝑘 be the probability density function of 𝑑𝑖𝑗𝑘. Then

Pr (𝑑𝑖𝑗𝑘 ≤ 𝑥) = ∫
𝑥

0

F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘, (13)
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where Pr denote the probability. For each product 𝑗, let

𝑑𝑗 = (𝑑1𝑗1, . . . , 𝑑1𝑗𝑛𝑅 , . . . , 𝑑𝐼𝑗1, . . . , 𝑑𝐼𝑗𝑛𝑅)
𝑇

∈ 𝑅
𝐼×𝑛𝑅 (14)

denote the vector consisting of all the demands of product 𝑗
in the entire CLSC network.

Now, the quantity of product 𝑗 supplied by firm 𝑖 to
demand market 𝑅𝑘 cannot exceed the minimum of V𝑖𝑗𝑘 and
𝑑𝑖𝑗𝑘. In other words, the actual sale of these products is equal
to min{V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘}. Let

Δ
+

𝑖𝑗𝑘
= max {0, V𝑖𝑗𝑘 − 𝑑𝑖𝑗𝑘} ,

Δ
−

𝑖𝑗𝑘
= max {0, 𝑑𝑖𝑗𝑘 − V𝑖𝑗𝑘} ,

(15)

denote, respectively, the quantity of the overstocking and
the understocking of product 𝑗 associated with firm 𝑖 and
demand market 𝑅𝑘. The expected values of Δ+

𝑖𝑗𝑘
and Δ−

𝑖𝑗𝑘
are

given by

𝐸 (Δ
+

𝑖𝑗𝑘
) = ∫

V𝑖𝑗𝑘

0

(V𝑖𝑗𝑘 − 𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘, (16)

𝐸 (Δ
−

𝑖𝑗𝑘
) = ∫

+∞

V𝑖𝑗𝑘
(𝑑𝑖𝑗𝑘 − V𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘. (17)

Assume that the unit penalty incurred on firm 𝑖 due to
excessive supply of product 𝑗 to demandmarket 𝑅𝑘 is 𝜃

+

𝑖𝑗𝑘
and

the unit penalty incurred on firm 𝑖 due to insufficient supply
of product 𝑗 to demand market 𝑅𝑘 is 𝜃

−

𝑖𝑗𝑘
, where 𝜃+

𝑖𝑗𝑘
≥ 0 and

𝜃−
𝑖𝑗𝑘

≥ 0. Then, the total expected penalty incurred on firm 𝑖

associated with product 𝑗 and demand market 𝑅𝑘 is given by

𝐸 (𝜃
+

𝑖𝑗𝑘
Δ
+

𝑖𝑗𝑘
+ 𝜃
−

𝑖𝑗𝑘
Δ
−

𝑖𝑗𝑘
) = 𝜃
+

𝑖𝑗𝑘
𝐸 (Δ
+

𝑖𝑗𝑘
) + 𝜃
−

𝑖𝑗𝑘
𝐸 (Δ
−

𝑖𝑗𝑘
) . (18)

Apart from the penalty costs given by (18) (due to
excessive or insufficient supply), the following additional
costs are also charged for firm 𝑖 (𝑖 = 1, . . . , 𝐼):

(i) From (A6), the total operational cost of product 𝑗 (𝑗 =
1, . . . , 𝐽) on the forward path is

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑐𝑗𝑝𝑓 (𝑥𝑗𝑃) , (19)

where 𝑥𝑗𝑃 is the vector representing the amount of product
flows of product 𝑗 on all the forward paths.

(ii) From (A7) and (7), the total operational cost of
product 𝑗 (𝑗 = 1, . . . , 𝐽) on all the reverse path is

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈�̂�𝑖
𝑘

𝑐𝑗𝑝𝑟 (𝑦𝑗𝑝𝑟𝑟𝑘𝑗𝑖) . (20)

(iii) From (A2), the total cost related to the purchase of
returned product 𝑗 is

𝜌
Re
𝑗

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖. (21)

(iv) Also from (A2), the total cost related to the disposal
of uncollected product 𝑗 (𝑗 = 1, . . . , 𝐽) at the landfill site is

𝜌

𝑛𝑅

∑
𝑘=1

( ∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 − 𝑟𝑘𝑗𝑖) . (22)

(v) From (A8) and (9), the cost of manufacturing new
product 𝑗 (𝑗 = 1, . . . , 𝐽) is

𝑓
𝑖𝑗
(𝑥

New
𝑖𝑗

) , (23)

and the cost of remanufacturing the returned product 𝑗 (𝑗 =
1, . . . , 𝐽) is

𝑓
Re
𝑖𝑗

(

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖) . (24)

By virtue of (18) and (19)–(24), the total expected cost
incurred on firm 𝑖 (𝑖 = 1, . . . , 𝐼) is given by

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝐸 (𝜃
+

𝑖𝑗𝑘
Δ
+

𝑖𝑗𝑘
+ 𝜃
−

𝑖𝑗𝑘
Δ
−

𝑖𝑗𝑘
) +

𝐽

∑
𝑗=1

𝑓
𝑖𝑗
(𝑥

New
𝑖𝑗

)

+

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑐𝑗𝑝𝑓 (𝑥𝑗𝑃)

+

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈�̂�𝑖
𝑘

𝐸 [𝑐𝑗𝑝𝑟 (𝑦𝑗𝑝𝑟𝑟𝑘𝑗𝑖)] +

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝜌
Re
𝑗

𝐸 (𝑟𝑘𝑗𝑖)

+

𝐽

∑
𝑗=1

𝐸(𝑓
Re
𝑖𝑗

(

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖))

+ 𝜌

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝐸( ∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 − 𝑟𝑘𝑗𝑖) .

(25)

Now, we formulate the total revenue received by firm 𝑖
(𝑖 = 1, . . . , 𝐼). In order to capture competition for demand in
the entire CLSC network, we assumed that, for each product
𝑗, the demand price function 𝜌𝑖𝑗𝑘 (𝑖 = 1, . . . , 𝐼, 𝑘 = 1, . . . , 𝑛𝑅)
is a continuous function of all the demands associated with
product 𝑗 in the entire CLSC network; that is,

𝜌𝑖𝑗𝑘 = 𝜌𝑖𝑗𝑘 (𝑑𝑗) . (26)

In other words, the price function 𝜌𝑖𝑗𝑘 depends continuously
not only on 𝑑𝑖𝑗𝑘, but also on all the demand associated with
product 𝑗. Masoumi et al. [8] and Nagurney and Yu [10] used
such demand price function in the study of forward supply
chain network involving oligopolistic competition among
firms. Then the expected revenue received by firm 𝑖 (𝑖 =
1, . . . , 𝐼) is given by

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝐸 (𝜌𝑖𝑗𝑘 (𝑑𝑗)min {V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘}) . (27)
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By virtue of the revenue, the cost of the forward supply
chain, and the cost of the reverse supply chain, the expected
profit function of firm 𝑖 (𝑖 = 1, . . . , 𝐼), denoted by 𝑈𝑖, can be
expressed as follows:

𝑈𝑖 =

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝐸 (𝜌𝑖𝑗𝑘 (𝑑𝑗)min {V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘})

−

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝐸 (𝜃
+

𝑖𝑗𝑘
Δ
+

𝑖𝑗𝑘
+ 𝜃
−

𝑖𝑗𝑘
Δ
−

𝑖𝑗𝑘
) −

𝐽

∑
𝑗=1

𝑓
𝑖𝑗
(𝑥

New
𝑖𝑗

)

−

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑐𝑗𝑝𝑓 (𝑥𝑗𝑃)

−

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈�̂�𝑖
𝑘

𝐸 [𝑐𝑗𝑝𝑟 (𝑦𝑗𝑝𝑟𝑟𝑘𝑗𝑖)]

−

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝜌
Re
𝑗

𝐸 (𝑟𝑘𝑗𝑖) −

𝐽

∑
𝑗=1

𝐸(𝑓
Re
𝑖𝑗

(

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖))

− 𝜌

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

𝐸( ∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 − 𝑟𝑘𝑗𝑖) ,

(28)

where (12) holds for all decision variables defined by (4). By
virtue of (16), (17), (19)–(24), and (26), we know that 𝑈𝑖 is a
function of the strategy vector of all firms in the entire CLSC
network. That is,

𝑈𝑖 = 𝑈𝑖 (𝑋) . (29)

Now, in order to define the Cournot-Nash equilibrium
of the CLSC network, we need to consider the following
constraints involving firm 𝑖 and product 𝑗 (𝑖 = 1, . . . , 𝐼, 𝑗 =
1, . . . , 𝐽):

𝑥
New
𝑖𝑗

≤ 𝑥, (30)

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 ≤ 𝑥
New
𝑖𝑗

+ 𝐸(

𝑛𝑅

∑
𝑘=1

𝑟𝑘𝑗𝑖) , (31)

𝐸 (𝑟𝑘𝑗𝑖) ≤ ∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 , 𝑘 = 1, . . . , 𝑛𝑅, (32)

∑

𝑝𝑟∈�̂�𝑖
𝑘

𝑦𝑗𝑝𝑟 = 1, 𝑘 = 1, . . . , 𝑛𝑅, (33)

0 ≤ 𝑦𝑗𝑝𝑟 ≤ 1, 𝑝
𝑟
∈ �̂�
𝑖

𝑘
, (𝑘 = 1, . . . , 𝑛𝑅) , (34)

𝑥𝑗𝑝𝑓 ≥ 0, 𝑝
𝑓

∈ 𝑃
𝑖

𝑘
, (𝑘 = 1, . . . , 𝑛𝑅) ,

𝑥
New
𝑖𝑗

≥ 0,
(35)

where constraints (30), (31), (32), (33), and (34) are directly
obtained from (8), (1), (11), (6), and (5), respectively; con-
straints (34) and (35) ensure that all the decision variables are
nonnegative.

In this CLSC network, there are 𝐼 oligopolistic firms
competing noncooperatively tomaximize their own expected
profits and selecting their strategy vectors till an equilibrium
is established. So the game is based on oligopolistic Cournot
pricing in a Cournot-Nash framework.

Now, we can define the Cournot-Nash equilibrium of
the CLSC network according to Definitions 1, 2, and 3 given
below.

Definition 1 (a feasible strategy vector). For each 𝑖 (𝑖 =

1, . . . , 𝐼), a strategy vector 𝑋𝑖 ∈ R
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)𝑛𝑅𝐽+𝐽

+ is said to be
a feasible strategy vector, if 𝑋𝑖 satisfies constraints (30)–(35).

Definition 2 (the set of all feasible strategy pattern). LetX be
the set of all feasible strategy pattern defined by

X ≡ {(𝑋1, 𝑋2, . . . , 𝑋𝐼)} , (36)

where 𝑋𝑖 (𝑖 = 1, . . . , 𝐼) is a feasible strategy vector defined by
Definition 1.

Definition 3 (the Cournot-Nash equilibrium of the CLSC
network). A feasible strategy pattern 𝑋∗ ∈ X constitutes
a Cournot-Nash equilibrium of the CLSC network, if the
following inequality holds for all 𝑖 and for all feasible strategy
vectors 𝑋𝑖:

𝑈𝑖 (𝑋
∗

𝑖
, 𝑋
∗

𝑖
) ≥ 𝑈𝑖 (𝑋𝑖, 𝑋

∗

𝑖
) , (37)

where 𝑋∗
𝑖
≡ (𝑋∗
1
, . . . , 𝑋∗

𝑖−1
, 𝑋∗
𝑖+1

, . . . , 𝑋∗
𝐼
).

Thus, an equilibrium is established if no firm in the CLSC
network can unilaterally increase its expected profit (without
violating feasibility) by changing any of its strategy, given that
the strategies of the other firms do not change.

3. Existence Results

In this section, we establish the existence of the Cournot-
Nash equilibrium of the CLSC network defined by
Definition 3.

To guarantee the existence of the Cournot-Nash equilib-
rium of the CLSC network, the following additional assump-
tion is held for 𝑈𝑖(𝑋) (𝑖 = 1, . . . , 𝐼).

Assumption B. (B1) The operational cost of product 𝑗 in
any path 𝑝𝑓 in the forward logistics, denoted by 𝑐𝑗𝑝𝑓 , is
both a continuous and a convex function of 𝑥𝑗𝑃, the vector
consisting of all forward path flows of product 𝑗.

(B2) The operational cost of product 𝑗 in any path 𝑝𝑟 in
the reverse logistics, denoted by 𝑐𝑗𝑝𝑟 , is both a continuous and
a convex function of 𝑥𝑗𝑝𝑟 , the product flow of this product in
the reverse path 𝑝𝑟.

(B3) The production cost 𝑓
𝑖𝑗
is a continuous and convex

function of 𝑥New
𝑖𝑗

, the new product 𝑗 manufactured by firm 𝑖.

Remark 4. Note that Assumption (B1) and Assumption (B3)
in this paper are similar to Assumption (B1) and Assumption
(B2) by Zhou et al. [15], except that there is no assumption of
differentiability of the given functions in this paper.
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In the following discussion, Lemma 5 provides us with
sufficient conditions under which the set of all feasible
strategy patternX has a Cournot-Nash equilibrium, whereas
in Lemmas 6–8 we prove that, under Assumptions A and B,
the set of all feasible strategy pattern X indeed satisfies the
sufficient condition for the existence of the Cournot-Nash
equilibrium.

Lemma 5. Suppose the set of all feasible strategy pattern X
defined by Definition 2 is both a compact and convex set of 𝐾.
Suppose the expected profit function𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) defined
by (28) is continuous and concave with respect to the decision
variable 𝑋 defined by (4). Then there exists a Cournot-Nash
equilibrium of the CLSC network defined by Definition 3.

Proof. By virtue of the fact that all the conditions imposed in
this lemma are almost the same as those imposed inTheorem
1, page 639 of Nishimura and Friedman’s paper [29], except
that the concavity condition in this lemma is more restrictive
than that imposed inTheorem 1 ofNishimura and Friedman’s
paper [29] (see condition (A5) on page 639 of Nishimura and
Friedman’s paper [29]), the proof of this lemma follows easily
from that of Theorem 1 of Nishimura and Friedman’s paper
[29].

Lemma 6. Suppose that Assumption A is satisfied; then the set
of all feasible strategy patternX defined by Definition 2 is both
a compact and a convex set of 𝐾.

Proof. The fact that X is bounded follows easily from (35),
(31), (30), and (34). The fact that X is closed and convex
follows easily from (30), (31), (32), (33), (34), and (35). Hence,
X is both a compact and a convex set of 𝐾.

Lemma 7. Suppose that Assumptions A and B are satisfied;
then the expected profit function 𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) defined by
(28) is continuous with respect to the decision variable𝑋 being
defined by (4).

Proof. Firstly, from (28), (12), (16)–(19), and (B1), we know
that the first, second, and fourth terms of 𝑈𝑖(⋅) are continuous
with respect to 𝑥𝑗𝑝𝑓 , for each 𝑗 (𝑗 = 1, . . . , 𝐽) and 𝑝𝑓 ∈ 𝑃𝑖

𝑘

(𝑘 = 1, . . . , 𝑛𝑅). From (B3), we know that the third term of
𝑈𝑖(⋅) is a continuous function of𝑥

New
𝑖𝑗

, for each 𝑗 (𝑗 = 1, . . . , 𝐽).
The sixth, seventh, and eighth terms of 𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) are
constants, because 𝑟𝑘𝑗𝑖 and 𝑥Re

𝑖𝑗
are random variables, for each

𝑘 (𝑘 = 1, . . . , 𝑛𝑅) and 𝑗 (𝑗 = 1, . . . , 𝐽). By virtue of the fact that
𝑟𝑘𝑗𝑖 is a random variable, we know that the last term of 𝑈𝑖(⋅)
is also a continuous function of 𝑥𝑗𝑝𝑓 , for each 𝑗 (𝑗 = 1, . . . , 𝐽)
and 𝑝𝑓 ∈ 𝑃𝑖

𝑘
, 𝑘 = 1, . . . , 𝑛𝑅. From (B2), we know that the

fifth term of 𝑈𝑖(⋅) is a continuous function of 𝑦𝑗𝑝𝑟 , for each 𝑗

(𝑗 = 1, . . . , 𝐽) and 𝑝𝑟 ∈ �̂�𝑖
𝑘
(𝑘 = 1, . . . , 𝑛𝑅). Thus, every term

of 𝑈𝑖(⋅) is continuous with respect to the decision variable 𝑋

defined by (4). The proof is complete.

Lemma 8. Suppose that Assumptions A and B are satisfied;
then the expected profit function 𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) defined by

(28) is concave with respect to the decision variable 𝑋 defined
by (4).

Proof. In order to prove that the first and second terms of𝑈𝑖(⋅)
(𝑖 = 1, . . . , 𝐼) are concave with respect to the decision variable
𝑋 defined by (4), we calculate the second partial derivative
of these terms with respect to the decision variable 𝑥𝑗𝑝𝑓 as
follows.

By virtue of the fact that any two demands are indepen-
dent of each other (from (A1)), the first term of 𝑈𝑖(⋅) (𝑖 =
1, . . . , 𝐼) can be expressed as

𝐸 (𝜌𝑖𝑗𝑘 (𝑑𝑗)min {V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘})

= ∫
V𝑖𝑗𝑘

0

𝑑𝑖𝑗𝑘𝐺(𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘

+ ∫
+∞

V𝑖𝑗𝑘
V𝑖𝑗𝑘𝐺(𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘,

(38)

where

𝐺(𝑑𝑖𝑗𝑘) = ∫
+∞

0

⋅ ⋅ ⋅ ∫
+∞

0

𝜌𝑖𝑗𝑘 (𝑑111, . . . , 𝑑𝑖𝑗(𝑘−1), 𝑑𝑖𝑗𝑘,

𝑑𝑖𝑗(𝑘+1), . . . , 𝑑𝐼𝑗𝑛𝑅)F111 (𝑑111)

⋅ ⋅ ⋅F𝑖𝑗(𝑘−1) (𝑑𝑖𝑗(𝑘−1))F𝑖𝑗(𝑘+1) (𝑑𝑖𝑗(𝑘+1))

⋅ ⋅ ⋅F𝐼𝑗𝑛𝑅 (𝑑𝐼𝑗𝑛𝑅) d𝑑111 ⋅ ⋅ ⋅ d𝑑𝑖𝑗(𝑘−1)d𝑑𝑖𝑗(𝑘+1) ⋅ ⋅ ⋅ d𝑑𝐼𝑗𝑛𝑅 .

(39)

From (38), we have

𝜕𝐸 (𝜌𝑖𝑗𝑘 (𝑑𝑗)min {V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘})
𝜕V𝑖𝑗𝑘

= ∫
+∞

V𝑖𝑗𝑘
𝐺(𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘,

(40)

𝜕2𝐸 (𝜌𝑖𝑗𝑘 (𝑑𝑗)min {V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘})
𝜕V2
𝑖𝑗𝑘

= −𝐺 (V𝑖𝑗𝑘)F𝑖𝑗𝑘 (V𝑖𝑗𝑘) .

(41)

But, from (12), we know that

𝜕V𝑖𝑗𝑘
𝜕𝑥𝑗𝑝𝑓

= 1, (42)

for each 𝑗 (𝑗 = 1, . . . , 𝐽) and 𝑝𝑓 ∈ 𝑃𝑖
𝑘
(𝑘 = 1, . . . , 𝑛𝑅).

Thus, from (41) and (42), the second partial derivative of
the first term of 𝑈𝑖(⋅) becomes

𝜕2𝐸 (𝜌𝑖𝑗𝑘 (𝑑𝑗)min {V𝑖𝑗𝑘, 𝑑𝑖𝑗𝑘})
𝜕𝑥2
𝑗𝑝𝑓

= −𝐺 (V𝑖𝑗𝑘)F𝑖𝑗𝑘 (V𝑖𝑗𝑘) < 0,

(43)

for each 𝑗 (𝑗 = 1, . . . , 𝐽) and 𝑝𝑓 ∈ 𝑃𝑖
𝑘
(𝑘 = 1, . . . , 𝑛𝑅).
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From (16), we have

𝜕𝐸 (Δ+
𝑖𝑗𝑘

)

𝜕V𝑖𝑗𝑘
=

𝜕

𝜕V𝑖𝑗𝑘
∫
V𝑖𝑗𝑘

0

(V𝑖𝑗𝑘 − 𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘

= ∫
V𝑖𝑗𝑘

0

F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘,

(44)

𝜕2𝐸 (Δ+
𝑖𝑗𝑘

)

𝜕V2
𝑖𝑗𝑘

= F𝑖𝑗𝑘 (V𝑖𝑗𝑘) . (45)

From (17), we have

𝜕𝐸 (Δ−
𝑖𝑗𝑘

)

𝜕V𝑖𝑗𝑘
=

𝜕

𝜕V𝑖𝑗𝑘
∫
+∞

V𝑖𝑗𝑘
(𝑑𝑖𝑗𝑘 − V𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘

= −∫
+∞

V𝑖𝑗𝑘
F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘,

(46)

𝜕2𝐸 (Δ−
𝑖𝑗𝑘

)

𝜕V2
𝑖𝑗𝑘

= F𝑖𝑗𝑘 (V𝑖𝑗𝑘) . (47)

Thus, from (18), (42), (45), and (47), the second partial
derivative of the second term of 𝑈𝑖(⋅) becomes

𝜕2𝐸 (𝜃+
𝑖𝑗𝑘

Δ+
𝑖𝑗𝑘

+ 𝜃−
𝑖𝑗𝑘

Δ−
𝑖𝑗𝑘

)

𝜕𝑥2
𝑗𝑝𝑓

= (𝜃
+

𝑖𝑗𝑘
+ 𝜃
−

𝑖𝑗𝑘
)F𝑖𝑗𝑘 (V𝑖𝑗𝑘)

> 0,

(48)

for each 𝑗 (𝑗 = 1, . . . , 𝐽) and 𝑝𝑓 ∈ 𝑃𝑖
𝑘
, 𝑘 = 1, . . . , 𝑛𝑅.

By virtue of (B1), we know that (−𝑐𝑗𝑝𝑓(𝑥𝑗𝑃)) is concave
with respect to 𝑥𝑗𝑝𝑓 for each 𝑗 (𝑗 = 1, . . . , 𝐽) and 𝑝𝑓 ∈ 𝑃𝑖

𝑘

(𝑘 = 1, . . . , 𝑛𝑅).
Now, by virtue of (43), (48), the fact that the third, fifth,

sixth, and seventh terms of (28) are independent of 𝑥𝑗𝑝𝑓 , the
fact that the fourth term of (28) is concave with respect to
𝑥𝑗𝑝𝑓 , and the fact that the last term of (28) is a linear function
of 𝑥𝑗𝑝𝑓 , we conclude that 𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) is concave with
respect to 𝑥𝑗𝑝𝑓 for each 𝑗 (𝑗 = 1, . . . , 𝐽) and 𝑝𝑓 ∈ 𝑃𝑖

𝑘
(𝑘 =

1, . . . , 𝑛𝑅).
From (B3), we know that (−𝑓

𝑖𝑗
(𝑥New
𝑖𝑗

)) is concave with
respect to 𝑥New

𝑖𝑗
. Since (−𝑓

𝑖𝑗
(𝑥New
𝑖𝑗

)) is the only term in (28)
involving𝑥New

𝑖𝑗
, we conclude that𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) is concave

with respect to 𝑥New
𝑖𝑗

for each 𝑗 (𝑗 = 1, . . . , 𝐽).
By virtue of (B2), we know that −𝐸[𝑐𝑗𝑝𝑟(𝑦𝑗𝑝𝑟𝑟𝑖𝑗𝑘)] is

concave with respect to 𝑦𝑗𝑝𝑟 for each 𝑗 (𝑗 = 1, . . . , 𝐽) and
𝑝𝑟 ∈ �̂�𝑖

𝑘
(𝑘 = 1, . . . , 𝑛𝑅).

Hence, we conclude that the expected profit function𝑈𝑖(⋅)
(𝑖 = 1, . . . , 𝐼) defined by (28) is concave with respect to the
decision variable 𝑋 defined by (4).

Theorem 9. Suppose that Assumptions A and B are satisfied;
then there exists a Cournot-Nash equilibrium of the CLSC
network defined by Definition 3.

Proof. The proof follows easily from Lemmas 5, 6, 7,
and 8.

4. Computing the Cournot-Nash Equilibrium

In this section, we develop two intelligent optimization
algorithms, namely, the particle swarm algorithm (proposed
by Eberhart and Kennedy [24]) and the Nash genetic algo-
rithm (proposed by Sefrioui and Periaux [30]), denoted
by PSO algorithm and GA, respectively, for finding the
Cournot-Nash equilibrium of the CLSC network defined by
Definition 3. For this purpose, we first need to transform the
problem of finding the Cournot-Nash equilibrium into solv-
ing sequences of optimization problems with a continuous
solution space as follows.

Let 𝑋𝑙
𝑖
denote the potential strategy vector of firm 𝑖

(𝑖 = 1, . . . , 𝐼) obtained at iteration 𝑙 of the algorithm (to be
presented in the next paragraph). Let

𝑋
𝑙
= (𝑋
𝑙

1
, . . . , 𝑋

𝑙

𝑖
, . . . , 𝑋

𝑙

𝐼
) (49)

be the strategy vector of all firms obtained at iteration 𝑙. In
order to obtain the Cournot-Nash equilibrium as defined in
Definition 3, at iteration 𝑙 of the algorithm, we need to find a
feasible strategy vector 𝑋𝑙∗

𝑖
(𝑖 = 1, . . . , 𝐼) which satisfies

𝑈𝑖 (𝑋
𝑙∗

𝑖
, 𝑋
(𝑙−1)∗

𝑖
) ≥ 𝑈𝑖 (𝑋

𝑙

𝑖
, 𝑋
(𝑙−1)∗

𝑖
) , (50)

for all feasible strategy vector 𝑋𝑙
𝑖
, where

𝑋
0

𝑖
= (𝑋
0

1
, . . . , 𝑋

0

𝑖−1
, 𝑋
0

𝑖+1
, . . . , 𝑋

0

𝐼
) ,

𝑋
(𝑙−1)∗

𝑖
= (𝑋
(𝑙−1)∗

1
, . . . , 𝑋

(𝑙−1)∗

𝑖−1
, 𝑋
(𝑙−1)∗

𝑖+1
, . . . , 𝑋

(𝑙−1)∗

𝐼
) ,

𝑙 > 1,

(51)

where 𝑋
0

𝑖
is chosen arbitrarily and 𝑋

(𝑙−1)∗

𝑖
denotes the best

strategy of firm 𝑖 obtained at iteration 𝑙 − 1 of the algorithm.
Thus, we need to find the feasible strategy vector 𝑋𝑙∗

𝑖

which maximizes the expected profit function𝑈𝑖(𝑋
𝑙

𝑖
, 𝑋
(𝑙−1)∗

𝑖
)

over the set of all the feasible vectors 𝑋𝑙
𝑖
. For this purpose,

we need to define a fitness function for any strategy vector
𝑋𝑙
𝑖
, denoted by fitness (𝑋𝑙

𝑖
), which is obtained by appending

a penalty function penal (𝑋𝑙
𝑖
) to the expected profit function

𝑈𝑖(𝑋
𝑙

𝑖
, 𝑋
(𝑙−1)∗

𝑖
). The penalty function penal (𝑋𝑙

𝑖
) is defined by

penal (𝑋𝑙
𝑖
) ≡ 𝑀 ⋅ 𝐺 (𝑋

𝑙

𝑖
) , (52)

where 𝑀 is a large number and 𝐺(𝑋𝑙
𝑖
) denotes the total

amount of constraints violations for all the constraints (30)–
(34) of the strategy vector𝑋𝑙

𝑖
. (Note that when𝑋𝑙

𝑖
is a feasible

strategy vector, then 𝐺(𝑋𝑙
𝑖
) = 0.) Thus, the fitness function

for the strategy vector𝑋𝑙
𝑖
at iteration 𝑙 of the algorithm can be

defined as follows:

fitness (𝑋𝑙
𝑖
, 𝑋
(𝑙−1)∗

𝑖
) ≡ 𝑈𝑖 (𝑋

𝑙

𝑖
, 𝑋
(𝑙−1)∗

𝑖
) − penal (𝑋𝑙

𝑖
) . (53)

Thus, (53) states that, at iteration 𝑙 (𝑙 > 0), the fitness of
the strategy vector 𝑋𝑙

𝑖
for firm 𝑖 is defined as “the expected

profit obtained by firm 𝑖 by using the strategy 𝑋𝑙
𝑖
, under
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the condition that all the other firms are using their best
strategies obtained at iteration (𝑙 − 1) minus the amount of
penalty due to the constraints violations of the strategy vector
𝑋𝑙
𝑖
.”
Thus, the problem of finding the Cournot-Nash equilib-

rium of the CLSC network is equivalent to solving the follow-
ing sequences of optimization problems with a continuous
solution space, denoted by 𝑃𝑙

𝑖
(𝑙 = 1, 2, . . .).

Problem(𝑃𝑙
𝑖
) is as follows:

max fitness (𝑋𝑙
𝑖
, 𝑋
(𝑙−1)∗

𝑖
) , 𝑖 = 1, . . . , 𝐼, (54)

where 𝑋0∗
𝑖

and 𝑋
(𝑙−1)∗

𝑖
are as defined in (51). For the sake of

simplicity, we replace fitness (𝑋𝑙
𝑖
, 𝑋
(𝑙−1)∗

𝑖
) by fitness (𝑋𝑙

𝑖
).

Let

Δ (𝑋
𝑙∗
) =
𝐼

∑
𝑖=1

fitness (𝑋
𝑙∗

𝑖
) − fitness (𝑋(𝑙−1)∗

𝑖
)


(55)

be the error function, where 𝑋𝑙∗ = (𝑋𝑙∗
1
, . . . , 𝑋𝑙∗

𝐼
)
𝑇. Suppose

that Δ(𝑋𝑙∗) = 0; then 𝑋𝑙∗ is the Cournot-Nash equilibrium
of the CLSC network. In other words, for all 𝑖 = 1, 2, . . . , 𝐼,
when the optimal solutions of two consecutive optimization
problems 𝑃𝑙−1

𝑖
and 𝑃𝑙

𝑖
are sufficiently close to each other,

then we arrive at the Cournot-Nash equilibrium of the CLSC
network.

We will use both PSO algorithm and GA to solve the
above sequences of optimization problems. We now define
the following terms for PSO algorithm.

Let

𝑝
IB

≡ (𝑝
IB
1
, . . . , 𝑝

IB
𝑖
, . . . , 𝑝

IB
𝐼
)
𝑇 (56)

be the individual best strategy vector found by a particle,
where 𝑝IB

𝑖
is the best strategy vector for firm 𝑖 found by this

particle. Let

𝑝
GB

≡ (𝑝
GB
1

, . . . , 𝑝
GB
𝑖

, . . . , 𝑝
GB
𝐼

)
𝑇 (57)

be the global best strategy vector among all the particles in the
swarm, where 𝑝GB

𝑖
is the best strategy vector for firm 𝑖 among

all the particles in the swarm. Let

V ≡ (V1, . . . , V𝑖, . . . , V𝐼)
𝑇 (58)

be the velocity vector which represents both the distance and
the direction that should be traveled by the particle from its
current position. Let swarm size denote the swarm size of
the particle swarm. Let 𝜔 denote the weight representing the
trade-off between global exploration and local exploitation
abilities of the swarm. Let 𝑐1 and 𝑐2 denote the weight
representing the stochastic acceleration terms that pull each
particle toward 𝑝IB and 𝑝GB positions of PSO algorithm,
respectively. Let 𝜀 be a small number. Let𝑁end be the number
of successive iterations that criteria Δ(𝑋𝑙∗) < 𝜀 needed to
be satisfied before we can ensure the convergence of PSO

algorithm. PSO algorithm can now be formally stated as
follows.

PSO Algorithm. Input parameters swarm size, 𝜔, 𝑐1, 𝑐2, Vmin ∈

R∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)𝑛𝑅𝐽+𝐼𝐽, Vmax ∈ R∑

𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)𝑛𝑅𝐽+𝐼𝐽, 𝜀,𝑁end, and

𝑥max,𝑖 (𝑖 = 1, . . . , 𝐼) with 0 ≤ 𝑥max,𝑖 ≤ 𝑀𝑖, where 𝑀𝑖 is a large
number.

Iteration 0. Choose initial velocity vectors V0 (Vmin ≤ V0 ≤
Vmax). For each 𝑖 = 1, . . . , 𝐼, choose initial swarm size strategy
vectors to form the initial swarm swarm0

𝑖
. For each particle

𝑋0
𝑖
∈ swarm0

𝑖
, let 𝑝IB

𝑖
= 𝑋0
𝑖
be the best strategy vector found

by the above particle. Then

𝑝
IB

≡ (𝑝
IB
1
, . . . , 𝑝

IB
𝑖
, . . . , 𝑝

IB
𝐼
)
𝑇 (59)

is the individual best strategy vector found by the above
particle.

Compute fitness (𝑋0
𝑖
) for each𝑋0

𝑖
∈ swarm0

𝑖
to obtain the

best strategy vector 𝑋0∗
𝑖

for firm 𝑖.
Let 𝑝GB
𝑖

= 𝑋0∗
𝑖
. Then

𝑝
GB

≡ (𝑝
GB
1

, . . . , 𝑝
GB
𝑖

, . . . , 𝑝
GB
𝐼

)
𝑇 (60)

is the global best strategy vector among all particles in the
swarm.

Let 𝑙 = 1.

Iteration 𝑙

Step 1. For each 𝑖 = 1, . . . , 𝐼, update each particle in the swarm
swarm(𝑙−1)

𝑖
by using the following:

V𝑙 = 𝜔 × V𝑙−1 + 𝑐1𝜉1 (𝑝
IB

− 𝑋
𝑙−1

)

+ 𝑐2𝜉2 (𝑝
GB

− 𝑋
𝑙−1

) ,

If V𝑙 > Vmax, then V𝑙 = Vmax,

if V𝑙 < Vmin, then V𝑙 = Vmin,

V𝑙 = (V𝑙
1
, V𝑙
2
, . . . , V𝑙

𝐼
) ,

𝑋
𝑙

𝑖
= 𝑋
𝑙−1

𝑖
+ V𝑙
𝑖
,

if 𝑋
𝑙

𝑖
> 𝑥max,𝑖, then 𝑋

𝑙

𝑖
= 𝑥max,𝑖,

if 𝑋
𝑙

𝑖
< 0, then 𝑋

𝑙

𝑖
= 0,

(61)

where 𝜉1, 𝜉2 ∈ 𝑈[0, 1] are pseudorandom number. The new
swarm obtained is denoted by swarm𝑙

𝑖
.

Step 2. For each 𝑖 = 1, . . . , 𝐼, compute fitness (𝑋𝑙
𝑖
) for each

𝑋𝑙
𝑖
∈ swarm𝑙

𝑖
. If

fitness (𝑋𝑙
𝑖
) > fitness (𝑝IB

𝑖
) , (62)
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then 𝑝IB
𝑖

= 𝑋𝑙
𝑖
. Update the individual best vector found by

each particle in the swarm as follows:

𝑝
IB

≡ (𝑝
IB
1
, . . . , 𝑝

IB
𝑖
, . . . , 𝑝

IB
𝐼
)
𝑇

. (63)

Step 3. For each 𝑖 = 1, . . . , 𝐼, compare fitness (𝑋𝑙
𝑖
) for each

𝑋𝑙
𝑖
∈ swarm𝑙

𝑖
to obtain the best strategy vector X𝑙∗

𝑖
. Hence

obtain the best strategy vector 𝑋𝑙∗ = (𝑋𝑙∗
1
, . . . , 𝑋𝑙∗

𝐼
)
𝑇. If

fitness (𝑋𝑙∗
𝑖
) > fitness (𝑝GB

𝑖
) , (64)

then 𝑝GB
𝑖

= 𝑋𝑙∗
𝑖
. Update the global best strategy vector found

by all particles in the swarm as follows:

𝑝
GB

≡ (𝑝
GB
1

, . . . , 𝑝
GB
𝑖

, . . . , 𝑝
GB
𝐼

)
𝑇

. (65)

Step 4. If 𝑙 < 𝑁end, let 𝑙 = 𝑙+1 and repeat iteration 𝑙; otherwise
go to Step 5.

Step 5. Compute Δ(𝑋𝑙∗). If Δ(𝑋𝑙∗) < 𝜀 for all 𝑙 = 𝑙 − 𝑁end +
1, . . . , 𝑙, the Cournot-Nash equilibrium of the CLSC network
is reached, which is given by 𝑋∗ = 𝑋𝑙∗. For each 𝑖 = 1, . . . , 𝐼,
compute fitness (𝑋∗

𝑖
) to obtain the optimal expected profit of

firm 𝑖, stop; otherwise, let 𝑙 = 𝑙 + 1 and repeat iteration 𝑙.

We now define the following parameters for GA.
Let pop size, 𝑃𝑐, and 𝑃𝑚 denote the population size, the

crossover probability, and the mutation probability of the
genetic algorithm, respectively. Let 𝜀 be a small number.
Let 𝑁end be the number of successive iterations that criteria
Δ(𝑋𝑙∗) < 𝜀 needed to be satisfied before we can ensure the
convergence ofGA.GA can nowbe formally stated as follows.

GA. Input parameters pop size, 𝑃𝑐, 𝑃𝑚, 𝜀, and 𝑁end.

Iteration 0. For each 𝑖 = 1, . . . , 𝐼, choose initial pop size
strategy vectors to form the initial population Pop0

𝑖
based on

real-coded genetic algorithm. Compute fitness (𝑋0
𝑖
) for each

𝑋0
𝑖
∈ Pop0

𝑖
to obtain the best strategy vector 𝑋0∗

𝑖
. Let 𝑙 = 1.

Iteration 𝑙

Step 1. For each 𝑖 = 1, . . . , 𝐼, update the population Pop(𝑙−1)
𝑖

by spinning the roulette wheel with a bias towards selecting
fitter strategy vectors to form the new population.

Step 2. For each 𝑖 = 1, . . . , 𝐼, update the population
Pop(𝑙−1)
𝑖

by using the crossover operation and the mutation
operation given inAppendix A.Thenewpopulation obtained
is denoted by Pop𝑙

𝑖
.

Step 3. For each 𝑖 = 1, . . . , 𝐼, compute fitness (𝑋𝑙
𝑖
) for each

𝑋𝑙
𝑖
∈ Pop𝑙

𝑖
to obtain the best strategy vector𝑋𝑙∗

𝑖
. Hence obtain

the best strategy vector for all the firms𝑋𝑙∗ = (𝑋𝑙∗
1
, . . . , 𝑋𝑙∗

𝐼
)
𝑇.

Step 4. If 𝑙 < 𝑁end, let 𝑙 = 𝑙+1 and repeat iteration 𝑙; otherwise
go to Step 5.

Step 5. Compute Δ(𝑋𝑙∗). If Δ(𝑋𝑙∗) < 𝜀, for all 𝑙 = 𝑙 − 𝑁end +
1, . . . , 𝑙, the Cournot-Nash equilibrium of the CLSC network
is reached, which is given by 𝑋∗ = 𝑋𝑙∗. For each 𝑖 = 1, . . . , 𝐼,
compute fitness (𝑋∗

𝑖
), which is the optimal expected profit of

firm 𝑖, stop; otherwise, let 𝑙 = 𝑙 + 1 and repeat iteration 𝑙.

Note that PSO algorithm and GA developed in this paper
can always find the Cournot-Nash equilibrium in a certain
number of iterations, even when the expected profit function
𝑈𝑖(⋅) (𝑖 = 1, . . . , 𝐼) defined by (28) is nondifferentiable.

5. Numerical Examples

In this section, two numerical examples are used to compare
the efficiencies of the PSO algorithm, the genetic algorithm,
and an algorithm based on variational inequalities for find-
ing the Cournot-Nash equilibrium of the CLSC network.
(The theory of variational inequality method is given in
Appendix B.) In the first example (Example 1), all the given
cost functions are differentiable. Thus, we can find the
Cournot-Nash equilibrium by PSO algorithm, GA, and Euler
algorithm (Dupuis and Nagurney [11]) based on variational
inequality (Euler algorithm is given in Appendix C). In the
second example (Example 2), the given cost functions corre-
sponding to the manufacturing of the new products are not
everywhere differentiable. We use this example to illustrate
that both PSO algorithm and GA can still solve nonsmooth
optimization problem efficiently, but the algorithm based on
variational inequality is not efficient.

We consider a CLSC network involving oligopolistic
competition among four firms. Each firm manufactures two
products and has two manufacturers and two distribution
centers to supply goods to three demand markets. Each firm
also has two recovery centers for recycling the used products.
For each of the examples solved in this section, we use the
same demand price functions as those given by Zhou et al.
[15].

Example 1 (comparison of the efficiencies of PSO algorithm,
GA, and the Euler algorithm based on variational inequal-
ity for solving problems with smooth cost functions). In
this example, the demand price functions are as given by
Zhou et al. [15].

The operation cost of product 𝑗 in the forward logistics
(which is a function of the product flow of product 𝑗 on all
the paths in the forward logistics) is as follows:

𝑐𝑗𝑝𝑓 (𝑥𝑗𝑃) = 2 (𝑥𝑗𝑝𝑓)
2

+ [0.2𝑖 + 0.5𝑘] 𝑥𝑗𝑝𝑓

+
𝐼

∑
𝑖=1

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 ,
(66)

where 𝑝𝑓 ∈ 𝑃𝑖
𝑘
(𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, and 𝑘 = 1, 2, 3). The

above operation cost is modified from that of Zhou et al.’s
paper [15] by adding the last two terms of (66) to capture the
competition among firms for the optimal product flows in the
forward logistics.
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The operation cost of product 𝑗 in the reverse logistics is
as follows:

𝑐𝑗𝑝𝑟 (𝑥𝑗𝑝𝑟) = 0.2 (𝑥𝑗𝑝𝑟)
2

+ [0.7𝑖 + 0.3𝑘] 𝑥𝑗𝑝𝑟 , (67)

for any path 𝑝𝑟 connecting demand market 𝑅𝑘 to firm 𝑖 via
the recovery center 𝐶𝑖

1
and

𝑐𝑗𝑝𝑟 (𝑥𝑗𝑝𝑟) = 0.2 (𝑥𝑗𝑝𝑟)
2

+ [0.3𝑖 + 0.7𝑘] 𝑥𝑗𝑝𝑟 , (68)

for any path 𝑝𝑟 connecting demand market 𝑅𝑘 to firm 𝑖 via
the recovery center 𝐶𝑖

2
, where 𝑝𝑟 ∈ �̂�𝑖

𝑘
(𝑖 = 1, 2, 3, 4 and 𝑘 =

1, 2, 3).

The manufacturing cost of new products and the reman-
ufacturing cost of returned products, which are exactly the
same as those in Zhou et al.’s paper [15], are as follows:

𝑓
𝑖𝑗
(𝑥

New
𝑖𝑗

) = 2.5 (𝑥
New
𝑖𝑗

)
2

+ 2𝑥
New
𝑖𝑗

,

𝑓
Re
𝑖𝑗

(𝑥
Re
𝑖𝑗

) = (𝑥
Re
𝑖𝑗

)
2

+ 0.5𝑥
Re
𝑖𝑗

.
(69)

where 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, and 𝑘 = 1, 2, 3.
Assume that 𝑑𝑖𝑗𝑘 is uniformly distributed in [0, 𝜏𝑖𝑗𝑘] with

probability density function given by

F𝑖𝑗𝑘 (𝑥) =
{{

{{
{

1

𝜏𝑖𝑗𝑘
, if 𝑥 ∈ [0, 𝜏𝑖𝑗𝑘] ,

0, if 𝑥 ∈ (𝜏𝑖𝑗𝑘, +∞) ,

(70)

where, for product 𝑗 = 1, 𝜏1𝑗𝑘 = 28, 𝜏2𝑗𝑘 = 27, 𝜏3𝑗𝑘 = 26,
and 𝜏4𝑗𝑘 = 25 (𝑘 = 1, 2, 3) and, for product 𝑗 = 2, 𝜏1𝑗𝑘 = 20,
𝜏2𝑗𝑘 = 19, 𝜏3𝑗𝑘 = 18, and 𝜏4𝑗𝑘 = 17 (𝑘 = 1, 2, 3).

Assume that 𝑟𝑘𝑗𝑖 is uniformly distributed in [0, 𝜏𝑘𝑗𝑖] with
probability density function given by

F
𝑟

𝑘𝑗𝑖
(𝑥) =

{{

{{
{

1

𝜏𝑘𝑗𝑖
, if 𝑥 ∈ [0, 𝜏𝑘𝑗𝑖] ,

0, if 𝑥 ∈ (𝜏𝑘𝑗𝑖, +∞) ,

(71)

where, for product 𝑗 = 1, 𝜏𝑘𝑗𝑖 = 8 and, for product 𝑗 = 2,
𝜏𝑘𝑗𝑖 = 6 (𝑘 = 1, 2, 3 and 𝑖 = 1, 2, 3, 4).

The values of the parameters are as follows:

𝜃+
𝑖𝑗𝑘

(unit penalty incurred on firm 𝑖 due to excessive
supply of product 𝑗 to demand market 𝑅𝑘) = 20,
𝜃−
𝑖𝑗𝑘

(unit penalty incurred on firm 𝑖 due to insufficient
supply of product 𝑗 to demand market 𝑅𝑘) = 20,
𝜌Re
𝑗

(purchase cost per item of returned product 𝑗

from demand market 𝑅𝑘 to firm 𝑖) = 10,
𝜌 (disposal fee per item of the used products at the
landfill site) = 10,
𝑥 (the maximum quantity of new product 𝑗manufac-
tured by firm 𝑖) = 50,

where 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, and 𝑘 = 1, 2, 3.
We have solved Example 1 by PSO algorithm, GA, and

the Euler algorithm based on the variational inequality. All
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Figure 2: Values of the error function for Example 1 by PSO
algorithm.

the optimal strategies in the forward logistics and the reverse
logistics at the Cournot-Nash equilibrium are depicted in
Tables 1 and 2, respectively.

The fourth column of Tables 1 and 2 represents the mean
values of the optimal strategies of all the firms obtained by
PSO algorithm, using the following input parameters:

swarm size = 100,

𝜔 = 0.6,

𝑐1 = 2,

𝑐2 = 2,

Vmax = 4,

Vmin = −4,

𝜀 = 0.01,

𝑁end = 100.

(72)

The mean values of the expected profits obtained by firm
𝑖 (𝑖 = 1, 2, 3, 4) at the Cournot-Nash equilibrium, denoted by
𝑈∗PSO,𝑖, are

𝑈
∗

PSO,1 = 15716,

𝑈
∗

PSO,2 = 15395,

𝑈
∗

PSO,3 = 14636,

𝑈
∗

PSO,4 = 14451.

(73)

Hence, the mean value of the total expected profit of all firms
is 60234.

Figure 2 shows the values of the error functionΔ(𝑋𝑙∗) and
Figure 3 shows all firms’ fitness (i.e., fitness (𝑋𝑙

1
), fitness (𝑋𝑙

2
),
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Figure 3: All firms’ fitness for Example 1 by PSO algorithm.

fitness (𝑋𝑙
3
), and fitness (𝑋𝑙

4
)) from iteration 0 to 500 for a

particular result generated by PSO algorithm.
The sixth column of Tables 1 and 2 represents the mean

values of the optimal strategies of all the firms obtained by
GA, using the following input parameters:

pop size = 100,

𝑃𝑐 = 0.6,

𝑃𝑚 = 0.01,

𝜀 = 0.01,

𝑁end = 100.

(74)

The mean values of the expected profits obtained by firm
𝑖 (𝑖 = 1, 2, 3, 4) at the Cournot-Nash equilibrium, denoted by
𝑈∗GA,𝑖, are

𝑈
∗

GA,1 = 15712,

𝑈
∗

GA,2 = 15361,

𝑈
∗

GA,3 = 14701,

𝑈
∗

GA,4 = 14417.

(75)

Hence, the mean value of the total expected profit of all firms
is 60191.

Figure 4 shows the values of the error function Δ(𝑋𝑙∗)

and Figure 5 shows all firms’ fitness (i.e., fitness (𝑋𝑙
1
),

fitness (𝑋𝑙
2
), fitness (𝑋𝑙

3
), and fitness (𝑋𝑙

4
)) from iteration 0 to

1500 for a particular result generated by GA.
The eighth column of Tables 1 and 2 represents the

optimal strategies of all the firms obtained by the Euler
algorithm based on the variational inequality. The expected

0 500 1000 1500

0

20

40

60

80

100

120

140

160

180

200

Number of iterations

Er
ro

r

Error

Figure 4: Values of the error function for Example 1 by GA.
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Figure 5: All firms’ fitness for Example 1 by GA.

profits obtained by firm 𝑖 (𝑖 = 1, 2, 3, 4) at the Cournot-Nash
equilibrium, denoted by 𝑈∗

𝐸,𝑖
, are

𝑈
∗

𝐸,1
= 15729,

𝑈
∗

𝐸,2
= 15430,

𝑈
∗

𝐸,3
= 14715,

𝑈
∗

𝐸,4
= 14474.

(76)

Hence, the total expected profit of all firms is 60348.
Figure 6 shows all firms’ fitness (i.e., fitness (𝑋𝑙

1
),

fitness (𝑋𝑙
2
), fitness (𝑋𝑙

3
), and fitness (𝑋𝑙

4
)) obtained by the

Euler algorithm from iteration 0 to 1500.
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Table 1: Comparison of the optimal strategies obtained by the Euler algorithm with the optimal strategies obtained by PSO algorithm and
GA in the forward logistics of Example 1.

PSO GA Euler
Mean Stdev. Mean Stdev.

Firm 1

Optimal quantity of product 1
supplied by firm 1 to demand
market 𝑅𝑘

𝑘 = 1 15.4812 0.1763 15.2751 0.3265 15.2807
𝑘 = 2 15.3944 0.2543 15.8214 0.3163 15.4540
𝑘 = 3 15.1247 0.3744 14.9799 0.5525 15.2798

Optimal quantity of new
manufactured product 1 34.0004 0.2496 34.0874 0.0301 34.0124

Optimal quantity of product 2
supplied by firm 1 to demand
market 𝑅

𝑘

𝑘 = 1 11.8935 0.2569 11.2828 0.7107 12.0464
𝑘 = 2 11.6125 0.3073 12.3592 0.5675 12.1290
𝑘 = 3 12.5527 0.3890 12.5719 0.7039 12.0301

Optimal quantity of new
manufactured product 2 24.0588 0.4450 24.2513 0.0708 24.2025

Firm 2

Optimal quantity of product 1
supplied by firm 2 to demand
market 𝑅𝑘

𝑘 = 1 14.8362 0.4743 14.4733 0.3827 15.0069
𝑘 = 2 14.4819 0.5303 14.7227 0.2718 15.0784
𝑘 = 3 14.8862 0.3080 14.9882 0.2961 14.8107

Optimal quantity of new
manufactured product 1 32.2042 0.2463 32.1870 0.0825 32.8937

Optimal quantity of product 2
supplied by firm 2 to demand
market 𝑅𝑘

𝑘 = 1 11.8696 0.2370 11.4820 0.7778 11.8671
𝑘 = 2 11.6569 0.2564 11.9422 0.4798 11.8944
𝑘 = 3 11.4962 0.3879 11.7069 0.8136 11.7576

Optimal quantity of new
manufactured product 2 23.0228 0.3726 23.3518 0.2146 23.5153

Firm 3

Optimal quantity of product 1
supplied by firm 3 to demand
market 𝑅𝑘

𝑘 = 1 15.2002 0.3042 14.7245 0.6152 14.5303
𝑘 = 2 13.6609 0.5233 14.3239 0.7908 14.5972
𝑘 = 3 14.1390 0.3938 14.5945 0.8268 14.3372

Optimal quantity of new
manufactured product 1 31.0001 0.1009 31.6438 0.4290 31.4625

Optimal quantity of product 2
supplied by firm 3 to demand
market 𝑅𝑘

𝑘 = 1 11.7620 0.3609 10.7958 0.4134 11.5539
𝑘 = 2 11.9596 0.3486 11.8798 0.4157 11.5755
𝑘 = 3 11.5913 0.3544 11.4596 0.7349 11.4546

Optimal quantity of new
manufactured product 2 23.3130 0.4206 22.1509 0.0989 22.5796

Firm 4

Optimal quantity of product 1
supplied by firm 4 to demand
market 𝑅𝑘

𝑘 = 1 13.7444 0.3978 13.5301 0.4678 14.1712
𝑘 = 2 14.1173 0.2761 14.1522 0.8036 14.1888
𝑘 = 3 14.2150 0.4706 13.7095 0.7046 14.0771

Optimal quantity of new
manufactured product 1 30.0767 0.5645 30.4098 0.1273 30.4346

Optimal quantity of product 2
supplied by firm 4 to demand
market 𝑅𝑘

𝑘 = 1 11.1741 0.2702 10.2537 0.8623 11.2665
𝑘 = 2 11.2078 0.2615 11.8534 0.7726 11.2646
𝑘 = 3 12.0043 0.2985 11.4950 0.7313 11.2136

Optimal quantity of new
manufactured product 2 22.3862 0.5094 21.6579 0.2226 21.7392

From the values of 𝑈∗PSO,𝑖, 𝑈
∗

GA,𝑖, and 𝑈∗
𝐸,𝑖

given in the
previous paragraph, we observe that, on the average, the
optimal expected profits of each of the firms obtained by
each of the three algorithms are almost the same, with the
total optimal expected profit (of all firms) obtained by the
Euler algorithm being marginally higher than that obtained
by PSO algorithm (by 0.33%) and byGA (by 0.41%).Thus, on

the average, the efficiency of the PSO algorithm, the genetic
algorithm, and the Euler algorithm (based on the variational
inequality) is almost the same, in terms of the accuracy of the
computed equilibrium.

From Figure 6, we observe that the Euler algorithm
(based on the variational inequality) converges to the
Cournot-Nash equilibrium of the CLSC network in 1500
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Table 2: Comparison of the optimal strategies obtained by the Euler algorithm with the optimal strategies obtained by PSO algorithm and
GA in the reverse logistics of Example 1.

PSO GA Euler
Mean Stdev. Mean Stdev.

Firm 1

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 1 via recovery center 𝐶1

1

𝑘 = 1 0.5014 0.0289 0.5036 0.0187 0.5000
𝑘 = 2 0.5240 0.0243 0.5545 0.0121 0.5937
𝑘 = 3 0.6922 0.0339 0.6201 0.0172 0.6875

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 1 via recovery center 𝐶1

1

𝑘 = 1 0.4938 0.0313 0.5258 0.0183 0.5000
𝑘 = 2 0.6306 0.0212 0.6133 0.0253 0.6250
𝑘 = 3 0.7990 0.0300 0.7686 0.0242 0.7500

Firm 2

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 2 via recovery center 𝐶2

1

𝑘 = 1 0.4124 0.0281 0.4216 0.0161 0.4063
𝑘 = 2 0.5515 0.0162 0.5235 0.0103 0.5000
𝑘 = 3 0.5958 0.0331 0.5309 0.0090 0.5937

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 2 via recovery center 𝐶2

1

𝑘 = 1 0.3626 0.0235 0.3118 0.0213 0.3750
𝑘 = 2 0.5039 0.0339 0.5100 0.0159 0.5000
𝑘 = 3 0.6709 0.0338 0.6086 0.0219 0.6250

Firm 3

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 3 via recovery center 𝐶3

1

𝑘 = 1 0.3098 0.0296 0.3770 0.0175 0.3125
𝑘 = 2 0.3992 0.0285 0.4551 0.0108 0.4063
𝑘 = 3 0.5000 0.0237 0.5092 0.0122 0.5000

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 3 via recovery center 𝐶3

1

𝑘 = 1 0.2012 0.0236 0.2647 0.0182 0.2500
𝑘 = 2 0.3534 0.0321 0.3434 0.0156 0.3750
𝑘 = 3 0.5028 0.0258 0.5078 0.0154 0.5000

Firm 4

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 4 via recovery center 𝐶4

1

𝑘 = 1 0.2128 0.0170 0.2099 0.0186 0.2188
𝑘 = 2 0.3749 0.0231 0.3623 0.0199 0.3125
𝑘 = 3 0.4598 0.0315 0.4481 0.0100 0.4063

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 4 via recovery center 𝐶4

1

𝑘 = 1 0.1238 0.0317 0.1118 0.0317 0.1250
𝑘 = 2 0.2219 0.0224 0.2399 0.0133 0.2500
𝑘 = 3 0.3221 0.0224 0.3182 0.0182 0.3750

Note: optimal percentage of product 𝑗 returning from demand market 𝑅𝑘 to firm 𝑖 via recovery center 𝐶𝑖
2
= 1 − optimal percentage of product 𝑗 returning

from demand market 𝑅𝑘 to firm 𝑖 via recovery center 𝐶
𝑖

1
(∀𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, and 𝑘 = 1, 2, 3).

iterations. Such convergence of the sequence of solutions
obtained by the Euler algorithm to the optimal solution
of variational inequality has been proved by Dupuis and
Nagurney [11] and Nagurney and Zhang [31]. On the other
hand, the convergence of the sequence of solutions obtained
by PSO algorithm (which converges in 500 iterations) and by
GA (which converges in 1500 iterations) to theCournot-Nash
equilibrium is illustrated in Figure 2 to Figure 5. In terms
of computational effort, the computational time required by
the Euler algorithm to obtain the equilibrium of the CLSC
network is 30.75 seconds, whereas the average computational
time required by PSO algorithm and GA is 39.04 seconds
and 115.18 seconds, respectively. Thus, on the average, the
computational time required by PSO algorithm is slightly
longer than that required by the Euler algorithm but is much
shorter than that required by GA to obtain the equilibrium.
Thus, the PSO algorithm is just as efficient as the Euler
algorithm but is more efficient than the genetic algorithm,

in terms of the computational time required to obtain the
equilibrium.

From this example, the two heuristics (PSO and GA)
are effective in searching for a near-optimal solution despite
the additional computational time as compared to the Euler
algorithm. However, in reality, the production cost functions
are not everywhere differentiable and, hence, the Euler
algorithm is not applicable. In the next example, Example 2,
some given functions are not everywhere differentiable and
therefore we cannot find the Cournot-Nash equilibrium of
theCLSCnetwork by the Euler algorithm. PSOalgorithmand
GA, which do not require the gradient information of both
the objective functions and the constraint functions, can still
obtain the Cournot-Nash equilibrium efficiently.

Example 2 (comparison of the efficiencies of PSO algorithm
and GA for solving problems with nonsmooth cost func-
tions). It is the same as Example 1, except that the production
cost functions 𝑓

𝑖𝑗
in Example 1 are now being replaced by
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𝑓
𝑖𝑗
(𝑥

New
𝑖𝑗

)

=
{

{
{

3.5 (𝑥New
𝑖𝑗

)
2

+ 2.5𝑥New
𝑖𝑗

, if 𝑥New
𝑖𝑗

≤ 10, 𝑖 = 1, . . . , 4, 𝑗 = 1, 2;

3.5 (𝑥New
𝑖𝑗

)
2

+ 𝑥New
𝑖𝑗

+ 15, if 𝑥New
𝑖𝑗

> 10, 𝑖 = 1, . . . , 4, 𝑗 = 1, 2.

(77)

(In other words, the differentiable production cost functions
in Example 1 are now being replaced by production cost
functions which are not everywhere differentiable.)Thus, the
main purpose of this example is to test the efficiency of PSO
algorithm and GA for finding the Cournot-Nash equilibrium
for problems involving nondifferentiable cost functions.

With the same input parameters as those used in
Example 1, we run PSO algorithm and GA to obtain the
near-optimal strategies. All the optimal strategies in the
forward logistics and the reverse logistics at the Cournot-
Nash equilibrium are depicted in Tables 3 and 4, respectively.

The mean values of the expected profits obtained by firm
𝑖 (𝑖 = 1, 2, 3, 4) at the Cournot-Nash equilibrium, denoted by
𝑈∗PSO,𝑖 and 𝑈∗GA,𝑖, respectively, are

𝑈
∗

PSO,1 = 14377,

𝑈
∗

PSO,2 = 14140,

𝑈
∗

PSO,3 = 13550,

𝑈
∗

PSO,4 = 13376,

𝑈
∗

GA,1 = 14364,

𝑈
∗

GA,2 = 14138,

𝑈
∗

GA,3 = 13500,

𝑈
∗

GA,4 = 13367.

(78)

Hence, the mean value of the total expected profit of all firms
obtained by PSO algorithm is 55443 and that obtained by GA
is 55369.

From the values of 𝑈∗PSO,𝑖 and 𝑈∗GA,𝑖 given in the previous
paragraph, we observe that, on the average, the optimal
expected profits of each of the firms obtained by each of the
two algorithms are almost the same, with the total optimal
expected profit (of all the firms) obtained by PSO algorithm
beingmarginally higher (by 0.13%) than that obtained byGA.

Figures 7 and 9 show the values of the error functions
obtained by PSO algorithm and GA, respectively, whereas
Figures 8 and 10 show all firms’ fitness obtained by the
above two algorithms, respectively. From Figures 7 and 9,
we observe that PSO algorithm and GA converge to the
Cournot-Nash equilibrium of the CLSC network in 500
iterations and 2000 iterations, respectively. In terms of com-
putational effort, the average computational time required
by PSO algorithm and GA is 35.59 seconds and 121.51
seconds, respectively. Hence, the average computational time

required by the PSO algorithm to obtain the Cournot-Nash
equilibrium of the CLSC network is much shorter than that
required by the genetic algorithm. Similar to the conclusion
of Example 1, the PSO algorithm is more efficient than the
genetic algorithm, in terms of computational effort.

Remark 3. From Examples 1 and 2, we conclude that as long
as the given functions are continuous (it does not matter
whether they are differentiable everywhere or not), on the
average, the efficiency of the PSO algorithm and the genetic
algorithm is almost the same, in terms of the accuracy of
the computed equilibrium; however, the PSO algorithm is
more efficient than the genetic algorithm, in terms of the
computational time required to obtain the equilibrium. This
difference in efficiencies between the two algorithms in terms
of speed is probably due to the fact that genetic algorithms
are more suitable for solving combinatorial problems than
problems with a continuous solution space. (Note that the
problem of finding the Cournot-Nash equilibrium of the
CLSC network in our paper is transformed into solving
sequences of optimization problems with a continuous solu-
tion space in Section 4.)

Remark 4. Since the production cost functions in this exam-
ple are continuous but not everywhere differentiable, we
cannot get the variational inequality formulation of this
example and thus cannot obtain the Cournot-Nash equi-
librium by the variational inequality method. Thus, PSO
algorithm and GA of this paper are particularly useful for
solving this nonsmooth problem, because they do not require
the gradient information of both the objective functions and
the constraint functions.

6. Conclusion and Suggestions for
Further Studies

In this paper, we develop stochastic multiproducts closed-
loop supply chain network equilibrium model involving
oligopolistic competition formultiproducts and their product
flow routings in the entire supply chain. This model belongs
to the context of oligopolistic firms that compete noncoop-
eratively in a Cournot-Nash framework under a stochastic
environment. Since the problem of finding the Cournot-
Nash for the oligopolistic competition CLSC network model
in our paper can be transformed into solving sequences of
optimization problems with a continuous solution space,
both the PSO algorithm and the genetic algorithm can be
used for finding the above equilibrium.The numerical results
show that when all the given functions are differentiable,
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Figure 6: All firms’ fitness for Example 1 by Euler algorithm.
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Figure 7: Values of the error function for Example 2 by PSO
algorithm.

the efficiencies of the PSO algorithm, the genetic algorithm,
and an algorithm based on variational inequality are almost
the same, in terms of the accuracy of the computed equilib-
rium. However, the PSO algorithm is just as efficient as the
algorithm based on variational inequality but more efficient
than the genetic algorithm, in terms of the computational
time required to obtain the equilibrium. For problems involv-
ing nondifferentiable cost functions, the numerical results
show that the PSO algorithm and the genetic algorithm can
still find the Cournot-Nash equilibrium efficiently, but the
algorithm based on variational inequality is not efficient.
Thus, we conclude that both the PSO algorithm and the
genetic algorithm can solve optimization problems with
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Figure 8: All firms’ fitness for Example 2 by PSO algorithm.
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Figure 9: Values of the error function for Example 2 by GA.

a continuous solution space efficiently, but the PSO algorithm
is faster than the genetic algorithm. In the future, we would
like to apply the PSO algorithm and the genetic algorithm to
solve problems involving a multiperiod CLSC network under
oligopolistic competition among firms.

Appendices

A. The Crossover Operation and
the Mutation Operation

In the following crossover and mutation operation, the term
“chromosome” is used to represent the strategy vector of firm
𝑖 (denoted by 𝑋𝑖, where 𝑋𝑖 ∈ 𝐾𝑖).
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Table 3: Comparison of the optimal strategies obtained by PSO algorithm and GA in the forward logistics of Example 2.

PSO GA
Mean Stdev. Mean Stdev.

Firm 1

Optimal quantity of product 1
supplied by firm 1 to demand
market 𝑅𝑘

𝑘 = 1 13.0209 0.3023 14.4351 0.7513
𝑘 = 2 14.0660 0.3063 13.3885 0.4320
𝑘 = 3 13.2913 0.2571 13.5359 0.6898

Optimal quantity of new
manufactured product 1 28.3783 0.3691 29.3675 0.2781

Optimal quantity of product 2
supplied by firm 1 to demand
market 𝑅𝑘

𝑘 = 1 10.6559 0.2370 10.6977 0.5947
𝑘 = 2 10.1936 0.3070 11.1715 0.7511
𝑘 = 3 11.7843 0.3214 10.9480 0.3460

Optimal quantity of new
manufactured product 2 20.6338 0.3454 20.8259 0.2688

Firm 2

Optimal quantity of product 1
supplied by firm 2 to demand
market 𝑅𝑘

𝑘 = 1 13.0987 0.1915 12.7234 0.6973
𝑘 = 2 12.9814 0.2434 13.7705 0.0993
𝑘 = 3 12.9200 0.2846 13.5463 0.2621

Optimal quantity of new
manufactured product 1 27.0000 0.4155 28.0405 0.6897

Optimal quantity of product 2
supplied by firm 2 to demand
market 𝑅𝑘

𝑘 = 1 11.3123 0.3327 9.8867 0.7544
𝑘 = 2 10.6753 0.3787 11.4666 0.9035
𝑘 = 3 10.3289 0.3804 11.2320 0.8300

Optimal quantity of new
manufactured product 2 20.3165 0.3663 20.5914 0.5499

Firm 3

Optimal quantity of product 1
supplied by firm 3 to demand
market 𝑅𝑘

𝑘 = 1 12.5400 0.4467 12.9380 0.6420
𝑘 = 2 13.0791 0.4328 13.0966 0.8916
𝑘 = 3 12.7047 0.5142 12.0838 0.3959

Optimal quantity of new
manufactured product 1 26.3238 0.3406 26.1193 0.7190

Optimal quantity of product 2
supplied by firm 3 to demand
market 𝑅𝑘

𝑘 = 1 10.4219 0.4377 10.7817 0.4922
𝑘 = 2 10.4076 0.3780 9.8720 0.3852
𝑘 = 3 10.6253 0.2417 10.7148 0.3356

Optimal quantity of new
manufactured product 2 19.4547 0.3097 19.3687 0.1064

Firm 4

Optimal quantity of product 1
supplied by firm 4 to demand
market 𝑅𝑘

𝑘 = 1 12.5708 0.3300 11.2457 0.8963
𝑘 = 2 13.3946 0.5604 13.1968 0.4776
𝑘 = 3 12.1992 0.2689 13.2656 0.0695

Optimal quantity of new
manufactured product 1 26.1646 0.5159 25.7109 0.7179

Optimal quantity of product 2
supplied by firm 4 to demand
market 𝑅

𝑘

𝑘 = 1 10.5663 0.3677 11.0721 0.6788
𝑘 = 2 10.0228 0.3526 10.3900 0.6832
𝑘 = 3 10.7935 0.3971 11.1403 0.8083

Optimal quantity of new
manufactured product 2 19.3827 0.2282 19.6067 0.7179

Crossover Operation. Consider the following.

Step 1. Among all the chromosomes in a given population of
size pop size, we choose 𝑚1 = pop size × 𝑃𝑐 chromosome
as parents (where 𝑃𝑐 < 1), with the probability of each
chromosome being selected equal to 𝑃𝑐.

Step 2. We group all the selected parents in Step 1 into pairs
and denoted themby (par1,𝑗, par2,𝑗), 𝑗 = 1, . . . , 𝑚1/2.Then for
each pair of parents, we generate a random number, denoted

by rand1, from the interval (0, 1) and create a pair of children
according to these formulae:

child1,𝑗 = rand1 ∗ par1,𝑗 + (1 − rand1) ∗ par2,𝑗,

𝑗 = 1, . . . ,
𝑚1
2

,

child2,𝑗 = (1 − rand1) ∗ par1,𝑗 + rand1 ∗ par2,𝑗,

𝑗 = 1, . . . ,
𝑚1
2

.

(A.1)
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Table 4: Comparison of the optimal strategies obtained by PSO algorithm and GA in the reverse logistics of Example 2.

PSO GA
Mean Stdev. Mean Stdev.

Firm 1

Optimal percentage of product 1
returning from demand market 𝑅

𝑘

to firm 1 via recovery center 𝐶1
1

𝑘 = 1 0.5709 0.0269 0.5151 0.0110
𝑘 = 2 0.5927 0.0250 0.5211 0.0226
𝑘 = 3 0.6977 0.0224 0.6428 0.0145

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 1 via recovery center 𝐶1

1

𝑘 = 1 0.5790 0.0317 0.5413 0.0043
𝑘 = 2 0.6262 0.0218 0.6666 0.0135
𝑘 = 3 0.7497 0.0204 0.7562 0.0134

Firm 2

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 2 via recovery center 𝐶2

1

𝑘 = 1 0.4084 0.0352 0.4199 0.0152
𝑘 = 2 0.5694 0.0244 0.5242 0.0190
𝑘 = 3 0.5859 0.0313 0.5452 0.0180

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 2 via recovery center 𝐶2

1

𝑘 = 1 0.4000 0.0326 0.3517 0.0158
𝑘 = 2 0.5401 0.0231 0.5403 0.0182
𝑘 = 3 0.6085 0.0366 0.6510 0.0066

Firm 3

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 3 via recovery center 𝐶3

1

𝑘 = 1 0.3107 0.0235 0.3166 0.0080
𝑘 = 2 0.4213 0.0175 0.4384 0.0138
𝑘 = 3 0.5590 0.0317 0.5069 0.0249

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 3 via recovery center 𝐶3

1

𝑘 = 1 0.2819 0.0215 0.2287 0.0071
𝑘 = 2 0.3262 0.0318 0.3523 0.0152
𝑘 = 3 0.5463 0.0176 0.5463 0.0229

Firm 4

Optimal percentage of product 1
returning from demand market 𝑅𝑘
to firm 4 via recovery center 𝐶4

1

𝑘 = 1 0.2110 0.0315 0.2177 0.0143
𝑘 = 2 0.3224 0.0293 0.3159 0.0152
𝑘 = 3 0.4405 0.0297 0.4358 0.0094

Optimal percentage of product 2
returning from demand market 𝑅𝑘
to firm 4 via recovery center 𝐶4

1

𝑘 = 1 0.1726 0.0214 0.1219 0.0080
𝑘 = 2 0.2561 0.0221 0.2699 0.0220
𝑘 = 3 0.3390 0.0334 0.3169 0.0162

Note: optimal percentage of product 𝑗 returning from demand market 𝑅𝑘 to firm 𝑖 via recovery center 𝐶𝑖
2
= 1 − optimal percentage of product 𝑗 returning

from demand market 𝑅𝑘 to firm 𝑖 via recovery center 𝐶
𝑖

1
(∀𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, and 𝑘 = 1, 2, 3).
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0 500 1000 1500

0.8

1

1.2

1.4

1.6

1.8

2

Fitness (Xl
1
)

Fitness (Xl
2
)

Fitness (Xl
3
)

Fitness (Xl
4
)

×10
4

Fi
tn

es
s (
X
l i
)

Figure 10: All firms’ fitness for Example 2 by GA.

Replace these 𝑚1 parents by their children to obtain the new
population.

Mutation Operation. Consider the following.

Step 1. Among all the chromosomes in a given population of
size pop size, we choose 𝑚2 = pop size × 𝑃𝑚 chromosome
as parents (where 𝑃𝑚 < 1), with the probability of each
chromosome being selected equal to 𝑃𝑚.

Step 2. Denote each selected parent in Step 1 by par𝑗, 𝑗 =
1, . . . , 𝑚2. Then, for each par𝑗, we choose a feasible direction
𝑑𝑗 and create a child according to this formula:

child𝑗 = par𝑗 + rand2 ∗ 𝑑𝑗, 𝑗 = 1, . . . , 𝑚2, (A.2)

where rand2 is a random number generated in the interval
(0, 1). Replace these 𝑚2 parents by their children to obtain
the new population.
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B. The Theorem of Variational
Inequality Method

Theorem C. Suppose that Assumptions A and B are satisfied,
and suppose that the expected profit function 𝑈𝑖(𝑋) (𝑖 =
1, . . . , 𝐼) defined by (28) is differentiable with respect to

the decision variable𝑋 defined by (4). Then the strategy vector
of all firms 𝑋∗ ∈ R

∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)𝑛𝑅𝐽+𝐼𝐽

+ ⋃R𝐼𝐽𝐾 is a Cournot-
Nash equilibrium of the CLSC network defined by Definition 3
if there exist 𝜆∗

1
∈ R𝐼𝐽
+
, 𝜆∗
2

∈ R𝐼𝐽
+
, 𝜆∗
3

∈ R𝐼𝐽𝐾
+

, and 𝜆∗
4

∈ R𝐼𝐽𝐾,
such that the following variational inequality holds:

𝐼

∑
𝑖=1

𝐽

∑
𝑗=1

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

[

[

𝜕𝑐𝑗𝑝𝑓 (𝑥
∗

𝑗𝑃
)

𝜕𝑥𝑗𝑝𝑓
+ 𝜃
+

𝑖𝑗𝑘
Pr (𝑑𝑖𝑗𝑘 ≤ V∗

𝑖𝑗𝑘
) + 𝜃
−

𝑖𝑗𝑘
(Pr (𝑑𝑖𝑗𝑘 ≤ V∗

𝑖𝑗𝑘
) − 1) − ∫

+∞
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𝐺(𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘 + 𝜌 + 𝜆

∗

2𝑖𝑗
− 𝜆
∗

3𝑖𝑗𝑘
]

]

⋅ [𝑥𝑗𝑝𝑓 − 𝑥
∗

𝑗𝑝𝑓
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𝐼
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𝐽
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𝑛𝑅
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∗

4𝑖𝑗𝑘
] ≥ 0,

∀ (𝑋; 𝜆1; 𝜆2; 𝜆3; 𝜆4) ∈ R
∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
)𝑛𝑅𝐽+3𝐼𝐽+𝐼𝐽𝐾

+ ⋃R
𝐼𝐽𝐾

,

(B.1)

where𝐺(𝑑𝑖𝑗𝑘) is as defined in (39) and 𝜆1𝑖𝑗, 𝜆2𝑖𝑗, 𝜆3𝑖𝑗𝑘, and 𝜆4𝑖𝑗𝑘
are Lagrangian multipliers of constraints (30), (31), (32), and
(33), respectively.

Proof. The proof ofTheorem C follows from that ofTheorem
1 of [8].

Variational inequality has a standard form.
Find 𝑍∗ ∈ R

∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)𝑛𝑅𝐽+3𝐼𝐽+𝐼𝐽𝐾

+ ⋃R𝐼𝐽𝐾, such that

⟨𝐹 (𝑍
∗
) , 𝑍 − 𝑍

∗
⟩ ≥ 0,

∀𝑍 ∈ R
∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
+𝑛
𝑖

𝐶
)𝑛𝑅𝐽+3𝐼𝐽+𝐼𝐽𝐾

+ ⋃R
𝐼𝐽𝐾

,

(B.2)

where 𝑍 = (𝑋, 𝜆1, 𝜆2, 𝜆3, 𝜆4), 𝐹(𝑍) = (𝐹1(𝑍), 𝐹2(𝑍), 𝐹3(𝑍),

𝐹4(𝑍), 𝐹5(𝑍), 𝐹6(𝑍), 𝐹7(𝑍)), 𝐹1(𝑍) ∈ R∑
𝐼

𝑖=1
(𝑛
𝑖

𝑀
×𝑛
𝑖

𝐷
)𝑛𝑅𝐽, 𝐹2(𝑍) ∈

R∑
𝐼

𝑖=1
𝑛
𝑖

𝐶
𝑛𝑅𝐽, 𝐹3(𝑍) ∈ R𝐼𝐽, 𝐹4(𝑍) ∈ R𝐼𝐽, 𝐹5(𝑍) ∈ R𝐼𝐽, 𝐹6(𝑍) ∈

R𝐼𝐽𝐾, 𝐹7(𝑍) ∈ R𝐼𝐽𝐾, the component of 𝐹1(𝑍) corresponding
to the variable 𝑥𝑗𝑝𝑓 (∀𝑝

𝑓 ∈ 𝑃𝑖
𝑘
, ∀𝑖, ∀𝑗, ∀𝑘) is

𝜕𝑐𝑗𝑝𝑓 (𝑥𝑗𝑃)

𝜕𝑥𝑗𝑝𝑓
+ 𝜃
+

𝑖𝑗𝑘
Pr (𝑑𝑖𝑗𝑘 ≤ V𝑖𝑗𝑘)

+ 𝜃
−

𝑖𝑗𝑘
(Pr (𝑑𝑖𝑗𝑘 ≤ V𝑖𝑗𝑘) − 1)

− ∫
+∞

V𝑖𝑗𝑘
𝐺(𝑑𝑖𝑗𝑘)F𝑖𝑗𝑘 (𝑑𝑖𝑗𝑘) d𝑑𝑖𝑗𝑘 + 𝜌 + 𝜆2𝑖𝑗

− 𝜆3𝑖𝑗𝑘,

(B.3)

the component of 𝐹2(𝑍) corresponding to the variable 𝑦𝑗𝑝𝑟

(∀𝑝𝑟 ∈ �̂�𝑖
𝑘
, ∀𝑖, ∀𝑗, ∀𝑘) is

𝜕𝐸 [𝑐𝑗𝑝𝑟 (𝑦𝑗𝑝𝑟𝑟𝑘𝑗𝑖)]

𝜕𝑦𝑗𝑝𝑟
− 𝜆4𝑖𝑗𝑘, (B.4)

the component of 𝐹3(𝑍) corresponding to the variable 𝑥New
𝑖𝑗

(∀𝑖, ∀𝑗) is

𝜕𝑓
𝑖𝑗
(𝑥New
𝑖𝑗

)

𝜕𝑥New
𝑖𝑗

+ 𝜆1𝑖𝑗 − 𝜆2𝑖𝑗, (B.5)

the component of 𝐹4(𝑍) corresponding to the variable 𝜆1𝑖𝑗
(∀𝑖, ∀𝑗) is

𝑥 − 𝑥
New
𝑖𝑗

, (B.6)

the component of 𝐹5(𝑍) corresponding to the variable 𝜆2𝑖𝑗
(∀𝑖, ∀𝑗) is

𝑥
New
𝑖𝑗

+ 𝐸 (𝑥
Re
𝑖𝑗

) −

𝑛𝑅

∑
𝑘=1

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 , (B.7)

the component of 𝐹6(𝑍) corresponding to the variable 𝜆3𝑖𝑗𝑘
(∀𝑖, ∀𝑗, ∀𝑘) is

∑

𝑝𝑓∈𝑃𝑖
𝑘

𝑥𝑗𝑝𝑓 − 𝐸 (𝑟𝑘𝑗𝑖) , (B.8)

and the component of 𝐹7(𝑍) corresponding to the variable
𝜆4𝑖𝑗𝑘 (∀𝑖, ∀𝑗, ∀𝑘) is

∑

𝑝𝑟∈�̂�𝑖
𝑘

𝑦𝑗𝑝𝑟 − 1. (B.9)
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C. Euler Algorithm

Euler algorithm is induced by the general iterative scheme of
[11]. At iteration 𝑙 of the Euler algorithm, one computes

𝑍
𝑙+1

= 𝑃𝐾 (𝑍
𝑙
− 𝛼
𝑙
𝐹 (𝑍
𝑙
)) , (C.1)

where 𝑃𝐾 is the projection on the set 𝐾 and 𝐹 is the function
corresponding to the variational inequality in Appendix B.
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