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Airport congestion, in particular congestion of departure aircraft, has already been discussed by other researches. Most solutions,
though, fail to account for uncertainties. Since it is difficult to remove uncertainties of the operations in the real world, a strategy
should be developed assuming such uncertainties exist. Therefore, this research develops a fast-time stochastic simulation model
used to validate various methods in order to decrease airport congestion level under existing uncertainties. The surface movement
data is analyzed first, and the uncertainty level is obtained. Next, based on the result of data analysis, the stochastic simulation
model is developed.Themodel is validated statistically and the characteristics of airport operation under existing uncertainties are
investigated.

1. Introduction

Airport ground congestions are becoming a critical problem
at many airports in the world. Since the bottleneck of airport
operations exists on the runway, there are longwaiting queues
of aircraft both on the ground taxiway and in the air, which
increase the fuel burn and emissions. Arrival aircraft are
often considered in research targeting airport congestions
decrease because any additional flight time obviously requires
extra fuel. Even if not so apparent, departure aircraft burn
sufficient amount of fuel during taxiing, too, so departure
queue management can help to reduce fuel burn. Although
there are some researches regarding the taxi-out time saving
of the departure aircraft [1–5], these researches focus on taxi-
out time saving and do not investigate its negative effect.
One such possible negative effect caused by departure queue
management is take-off delay.

The main reason for increased taxi-out time is that many
departure aircraft wait in a queue before the runway due to
runway congestion, so taxi-out time reduction is achieved by
shifting the pushback time later intentionally. If the aircraft
waits in the spot instead of waiting in a queue near the
runway, the aircraft can turn its engines off and therefore

save fuel. However, if this shift is too large, the aircraft
cannot take off at the expected time. If all airport operations
were estimated without errors, the reduction of taxi-out time
would be maximized without imposing any take-off time
delay, but this is impossible due to various uncertainties. Even
if large margins are set to absorb uncertainties, the expected
delay will be close to 0, but not definitely 0. Besides, setting of
a largemargin leads to decrease the reduction of taxi-out time
as well. Therefore, to evaluate uncertainty effects, stochastic
simulation model is necessary. The main focus of this paper
is the development of such a stochastic simulation model.

There are numerous airport simulation models proposed
by many researchers already. However, this paper focuses
on a stochastic model, which should also be appropriate
to run a simulation fast enough. Most existing simulation
models account for detailed aircraft movement but are also
deterministic and slow, thus not suitable for the purpose of
this paper [6–13]. Although some airport models consider
uncertainty effect, such as the variance of taxiing speed or
the take-off separation [14, 15], there are few researches con-
sidering uncertainties. In addition, uncertainty parameters
are usually obtained via actual airport operation data, but
only specific parameters are used in the simulation, and
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no stochastic simulation model has been verified whether
it accurately models the airport operation. For example,
even when the variation of taxiing speed is assumed, the
model does not estimate the take-off time well unless the
model handles variation of take-off separation.Therefore, this
paper aims at developing a sufficiently accurate stochastic
airport simulation model to account for the uncertainty
effect. The stochastic parameters are obtained based on the
actual operation data in each phase of the aircraft movement,
and, using these parameters, the taxi-out of each departure
aircraft is simulated. The simulated take-off time is then
compared to the actual take-off time. Using the developed
simulationmodel, the characteristics of the airport operation
are also investigated, and the importance of the uncertainty
is revealed.

2. Stochastic Airport Simulation Model at
Tokyo International Airport

Tokyo International Airport is the target airport of this
research. First, the airport operation is briefly explained in
Section 2.1, and a stochastic simulation model is developed.
To conduct sufficient number of simulations to account
for uncertainty effects, a single simulation run time should
be short enough, so the model itself should be simplified.
Error distribution models for stochastic components are
introduced in Section 2.2, and taxi-out time of departure
aircraft and taxi-in time of arrival aircraft are stochastically
modeled in Section 2.3. Additional simulation constraints
are explained in Section 2.4, and the take-off separation is
stochastically modeled in Section 2.5. Finally, the simulation
flow is shown and the model limitations are described in
Section 2.6.

2.1. Tokyo International Airport and Its Runway Operation.
Tokyo International Airport is the busiest airport in Japan
and is mostly used for domestic flights. In 2010, the traffic
volume was 303,000 flights per year and increases to 447,000
flights per year in 2014 with the opening of the new runway.
Figure 1 shows the airport map and typical operation under
north wind. There are four runways at the airport. A runway
is used for arrival and D runway is used for departure, but
C runway is shared by both departure and arrival aircraft.
Due to the runway location, aircraft departing fromDrunway
cannot take off while a landing aircraft is approaching C
runway. B runway is usually not used under north wind.

In order to model taxiing correctly, knowledge of the
procedures preceding take-off is necessary. The air traffic
control (ATC) flow of departure aircraft is summarized in
Figure 2. First, about 5 minutes before the aircraft is ready
for starting the engines, the pilot calls clearance delivery.
If the flight plan is approved, the pilot will get a departure
clearance from ATC. When the aircraft is ready for block-
off, the pilot requests pushback to ATC. Once the pilot gets
pushback approval, the aircraft starts pushback. During or
after the pushback, the pilot requests taxiing to the runway.
If the taxiing is approved and the aircraft is ready for taxiing,
the aircraft will start taxiing. When the aircraft approaches

the runway, the pilot requests runway clearance. Only after
the runway clearance is approved, the aircraft can take off.

Here, several variables are defined. The time when the
pilot starts pushback is AOBT (actual off-block time), and
actual take-off time is defined as ATOT. The difference
between ATOT and AOBT is defined as AXOT (actual taxi-
out time). Airport operation is not completely deterministic,
and there are probabilistic factors. Therefore, considering
certain uncertainty, AXOT is determined probabilistically in
the simulation. The distribution of AXOT is examined in
Section 2.3.

As for arrival aircraft, the aircraft lands at ALDT (actual
landing time). After landing, the aircraft go taxiing to the spot
and block in at AIBT (actual in-block time). The duration
of taxiing (AIBT-ALDT) is defined as AXIT (actual taxi-in
time).

This time, the data used to determine the simulation
parameters in this research are obtained based on the
smoothened airport surface movement data for 20 days
between 2012 and 2014 (called Day 1 to Day 20), when north
wind operation was conducted throughout a day.

2.2. Error Distribution Model. To consider the error factor,
several error distributionmodels are applied. In this research,
normal distribution and Erlang distribution are used. Nor-
mal distribution, also known as Gaussian distribution, is a
symmetric distribution. Detailed explanation is not given
here, but it has two parameters: average 𝜇 and standard
deviation (SD) 𝜎. The probability density function of normal
distribution is given by the following equation:

𝑁(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎
exp(−
(𝑥 − 𝜇)

2

2𝜎2
) . (1)

Furthermore, to account for error’s asymmetry, Erlang
distribution is also introduced.This distribution is asymmet-
ric and is defined only when 𝑥 is greater than 0.This function
is often used in the field of stochastic processes. There are
two parameters: average 𝜇 and shape 𝑛 (positive integer).The
probability density function of Erlang distribution is given
by the following equation. This distribution approaches the
normal distribution as 𝑛 increases:

𝐸 (𝑥; 𝜇, 𝑛) =
𝑛
𝑛
𝑥
𝑛−1
𝑒
−𝑛𝑥/𝜇

𝜇𝑛 (𝑛 − 1)!
(𝑥 > 0) . (2)

2.3. Distribution of Taxi-Out Time (AXOT) and Taxi-In
Time (AXIT). Taxi-out time is defined as the time between
pushback start and take-off. To determine the taxi-out time,
it is divided into several stages, and the duration of each
stage is determined. Figure 3 shows the taxi-out flow. First,
the aircraft has to complete pushback, defined as “pushback
time” (Δ𝑡pushback). Next, the aircraft has to be released from
the pushback truck and prepare for taxiing, defined as
“preparation time” (Δ𝑡prepare). Then, the aircraft goes taxiing
to the runway, defined as “taxiing time.” If there is a queue
before the runway, the aircraft will need to wait extra. The
minimum time which an aircraft needs to cover the distance
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Figure 1: The airport map and runway operation under north wind.
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Figure 3: Taxi-out flow.

between its spot and the runway even when no congestion is
observed is defined as “minimum taxiing time” (Δ𝑡taxi). The
difference between total taxiing time and minimum taxiing
time is defined as “additional waiting time” (Δ𝑡wait). Finally,
taxi-out time (AXOT) is calculated by the following equation.
Each time is estimated based on the data available:

AXOT = Δ𝑡pushback + Δ𝑡prepare + Δ𝑡taxi + Δ𝑡wait. (3)

Here, some variables are defined. PTOT (earliest possible
take-off time) is defined as the time when the aircraft is
ready for take-off assuming there is no congestion. PTOT is
calculated by the following equation:

PTOT = ATOT − Δ𝑡wait. (4)

PXOT (earliest possible taxi-out time) is also defined in
the same way by the following equation:

PXOT = AXOT − Δ𝑡wait = Δ𝑡pushback + Δ𝑡prepare + Δ𝑡taxi.
(5)

As for the pushback time (Δ𝑡pushback), it is expected to
depend on the pushback distance. The pushback distance
and thus the pushback time are usually determined by the
spot position. Another variable defined in this research is the
preparation time (Δ𝑡prepare). It includes the time for the pilot
to receive a taxiing clearance and the time needed to release
the pushback truck from the aircraft. This preparation time
is assumed to be the same in all situations, so the sum of the
pushback time and the preparation time (Δ𝑡pushback+Δ𝑡prepare)
is assumed to depend on the spot position, and this variable
(called setup time) is used for the data analysis. Figure 4
shows the average and standard deviation of setup time in
each spot position. As seen in the figure, the average of setup
time varies with spot position, but the standard deviation of
setup time does not change significantly with spot positions.
Therefore, the setup time is assumed to depend on the spot
position only. Here, the difference between the average setup
time and the actual setup time is denoted by the residual of
the setup time, and it is fitted by the combination of normal
distribution and Erlang distribution as shown in Figure 5.
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The probability density function of setup time is calculated
by the following function:

0.0959𝑁 (Δ𝑡pushback + Δ𝑡prepare − 𝑡setup (spot) ; 46.07, 78.72)

+ 0.9041𝐸 (Δ𝑡pushback + Δ𝑡prepare − 𝑡setup (spot)

+ 117.0; 122.0, 13) ,

(6)

where 𝑡setup(spot) is the average setup time in each spot
obtained by data.

The next element needed to be defined in order to
determine the earliest possible taxi-out time is the taxiing
time (Δ𝑡taxi). The taxiing time is basically related to taxiing
distance, so it is modeled with the parameter of the taxiing
distance. Of course, the taxiing time varies with each pilot,
and some aircraft go faster taxiing while others go slower. In
addition, if two aircraft are conflicted along the taxiing route,
additional taxiing time is required. Here, these effects are
included in uncertainty. When obtaining the data of taxiing
time, only the value of the sum of taxiing time and waiting
time (Δ𝑡taxi + Δ𝑡wait) is available, because the data of start
taxiing time and take-off time is obtained based on the surface
movement data. Here, only the data where the aircraft goes
taxiing smoothly and is not stuck in the waiting queue are
used to calculate the taxiing time, because the waiting time is
assumed to be zero for such aircraft.

Figure 6 shows the relationship between taxiing distance
and taxiing time for noncongested aircraft departing from D
runway. Note that the red points indicate the aircraft whose
spot is at the international terminal. The figure shows that
there is a correlation between taxiing distance and taxiing
time, and the residual tends to increase with the taxiing dis-
tance. Therefore, the distribution of the normalized residual
(residual per 1 km taxiing distance) is fitted by an Erlang
distribution. In addition, the aircraft from the international
terminal tends to have longer taxiing time, but that is because
these aircraft have to cross A runway along the taxiing route
and often wait due to passing landing aircraft. Therefore, it
is assumed that these aircraft require additional taxiing time.
Finally, the probability density function of taxiing time is
calculated based on the following equations:

C RWY: 𝐸(Δ𝑡taxi − 0.1090𝑑taxi − 68.03 − Δ𝑥;
37.3𝑑taxi
1000, 5
) ,

(7)

D RWY: 𝐸(Δ𝑡taxi − 0.1002𝑑taxi − 71.60 − Δ𝑥;
75.2𝑑taxi
1000, 30

) ,

(8)

Δ𝑥 = {
120, spot is in the international terminal.
0, otherwise.

(9)

Taxiing route and route structure differ between C and D
runways, so minimum taxiing time is calculated in a different
manner. Once the spot position and the departure runway are
determined, the taxiing distance and time are easily obtained.

Table 1: Prohibited departure time relative to the landing time on C
runway.

Prohibited start Prohibited end
Departure from C runway −65 s +85 s
Departure from D runway −80 s +0 s

As for the arrival aircraft, the result of RWY C is well fitted,
so the taxiing time is calculated based on (7).

Finally, the additional waiting time (Δ𝑡wait) is considered.
The additional waiting time is caused by the waiting queue at
the runway, so it is strongly affected by take-off separation.
Since only one aircraft can use the runway at the same time,
a minimum separation (called take-off separation) is set. The
take-off is usually operated based on first-come-first-served
policy. If many aircraft come to the runway at the same
time, a departure queue is made and the aircraft has to wait
before the runway. In addition, the departure and arrival
traffic are mutually dependent due to the arrangement of the
runways at this airport, so the runway interaction should
also be considered. The runway interaction is explained
in Section 2.4. The take-off separation is affected by many
parameters, so it is explained in Section 2.5.

As for taxi-in time of arrival aircraft, the arrival aircraft
only goes taxiing to the spot. If the spot is not occupied by
other aircraft, the aircraft can block in.Therefore, uncertainty
is found only in the taxiing phase. As mentioned before,
the distribution of taxiing of arrival aircraft almost follows
the one of departure aircraft on C runway, so (7) is used to
estimate the taxiing time from the runway to the spot. The
spot occupancy problem is described in Section 2.4.

2.4. Constraints at the Airport. In Section 2.3, the normal
operation of departure and arrival aircraft was explained.
However, there aremany constraints at the airport, such as (1)
take-off separation, (2)mutual interaction between runways,
(3) the spot occupancy problem, and (4) conflict of two
aircraft on the taxiway.The run time of the simulation should
be small, so this time only the constraints (1), (2), and (3) are
considered, and the constraint (4) is not explicitly considered
and is assumed to be included in “uncertainty.”The constraint
(1) take-off separationwill be explained in Section 2.5, so here
the constraints (2) and (3) are explained.

As for mutual interaction between runways, as shown
in Figure 1, the runway interaction is observed between
take-off and landing aircraft on C runway and between
take-off aircraft on D runway and landing aircraft on C
runway. In addition, due to the departure and arrival route
structure, C runway traffic and D runway traffic are mutually
affected. However, this effect is complicated and its influence
is relatively small so it is not considered here. Considering
the runway operation, the landing time of arrival aircraft is
currently not controlled, and the take-off time is controlled
in accordance with the landing aircraft. Therefore, it is
reasonable that the “no take-off time” relative to the landing
time on C runway is set. According to the data analysis, the
following constraints are set as shown in Table 1.
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Figure 4: Average and standard deviation of setup time in each spot position. (Spot number does not correspond to the actual spot number.)
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As for the spot occupancy problem, obviously a single
spot contains a single aircraft only. If the spot is already
occupied by another aircraft, the arrival aircraft cannot block
in until the aircraft leaves the spot, which is implemented in
the simulation. In addition, paths near the spots are often
shared among several spots, so arrival aircraft sometimes
cannot get into the spot during the pushback of departure
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Figure 6: Taxiing time versus taxiing distance of aircraft departing
from runway D.

aircraft from a nearby spot. Therefore, based on the surface
movement data, the conflict path of pushback and block-in
is investigated in each spot, and the conflict effect between
block-in path and pushback path is also implemented in the
simulation.

2.5. Distribution of Take-Off Separation. The take-off sepa-
ration is the key to determine the waiting time of departure
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Table 2: Average take-off separation in each combination of wake
turbulence category [s] (data size = 4144).

Preceding/following Heavy Medium
Heavy 99.92 106.06
Medium 90.28 91.31

aircraft. The take-off procedure is operated by a pilot, so the
take-off separation should include uncertainty effect. How-
ever, the take-off separation is also affected by the following
two factors: wake turbulence and weather condition.

As for the wake turbulence, ICAO determines the min-
imum take-off separation based on the aircraft size of
the current aircraft and the aircraft ahead [16]. There are
four categories of aircraft: super, heavy, medium, and light
(denoted by “S,” “H,” “M,” and “L”). Note that super and
light aircraft are not operated at Tokyo International Airport,
so only heavy and medium aircraft are considered in this
research.

Table 2 shows the average take-off separation in each
combination of wake turbulence category. Note that the
standard deviation of take-off separation is about 20 s for each
category. This table shows that the take-off separation differs
by the wake turbulence category, and it is reflected in the
calculation. The take-off separation between M-H and M-M
is almost the same, so it is treated as the same value (90.75 s).
From now, the take-off separation of “M-H” and “M-M” is
treated as the nominal take-off separation, and the separation
of “H-H” and “H-M” is reduced by the difference of the aver-
age to fit the nominal separation. The uncertainty of take-off
separation is assumed to be the same for all wake turbulence
categories.

Regarding weather conditions, it is said that wind and
visibility affect the take-off separation. According to the
data analysis, only visibility statistically affects the take-off
separation, and here only the visibility effect is explained.The
visibility information is provided by METAR (METeological
Airport Report) usually every thirty minutes. If the visibility
is more than 10 km, it is recorded as 9999m. Figure 7 shows
the relationship between the visibility and take-off separation
(wake turbulence effect is already considered). Note that 80%
of data is obtained when the visibility is more than 10 km, so
low visibility data is relatively less. As shown in the figure,
the take-off separation increases with smaller visibility, but
it jumps up around 4000m of visibility. Therefore, this is
modeled by sigmoid function and linear regression as shown
in the following expression:

95.64 − 0.0005356V +
7.235

1 + exp (0.0604 (V − 4000))
, (10)

where V is the visibility in m. When the visibility of 10 km is
treated as the nominal take-off separation, the separation data
of another visibility is reduced to fit the nominal separation.

Now, the nominal take-off separation is defined as the
data where the visibility is 10 km and “M-H” or “M-M” of
wake turbulence category is applied. Even if these effects are
considered, there is still a large residual, which is modeled
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by the combination of normal distribution and Erlang dis-
tribution. Figure 8 shows the distribution of obtained take-
off separation and probability density function of the fitted
distribution of the nominal take-off separation (𝑡sep nom) is
described by the following equation:

0.890𝐸 (𝑡sep nom − 13.56; 72.47, 30)

+ 0.110𝑁 (𝑡sep nom; 122.47, 30.03) .

(11)
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The take-off separation should include the wake turbu-
lence effect and visibility effect. Finally, the take-off separa-
tion (𝑡sep) is calculated in the following equation:

𝑡sep = 𝑡sep nom − 0.0005356V +
7.235

1 + exp (0.0604 (V − 4000))

+ 5.35 + Δ𝑡wake,

Δ𝑡wake =
{{

{{

{

9.17, H-H
15.31, H-M
0, M-H or M-M.

(12)

2.6. Flow of the Simulation and Limitations of the Simulation
Model. In order to conduct a simulation, initial conditions
must be specified. As for the departure aircraft, once AOBT
is obtained, the PTOT can be calculated considering the
uncertainty explained before. In the simulation, each depar-
ture aircraft is assumed to come to the runway at PTOT,
and ATOT is decided based on the runway status and first-
come-first-served basis. For arrival aircraft, once ALDT is
obtained, AIBT is obtained based on (7) and taxiway status.
The flow of the calculation of each variable is summarized in
Figure 9.

In order to simulate the actual airport operation, AOBT
and ALDT are set the same as the data obtained on each
day. Furthermore, the spot position, the taxiing distance,
the wake turbulence category, and the departure/arrival
runway of each aircraft are also set based on each day’s
data. These data are called each day’s scenario data. This
scenario data includes each day’s traffic volume and the
distribution of traffic. Even if the traffic volume is the same,
the congestion level at the airport might differ between days.
By using the scenario data, the daily fluctuation can also be
investigated.

In order to appropriately evaluate the results, the limita-
tions of the simulationmodel should be carefully considered.
First, this model does not take into account the conflict
on taxiway between aircraft in any areas apart from the
spot areas. It is assumed that the additional taxiing time
by the conflict includes uncertainty. Second, in the real
world, there are cases when the runway operation does not
necessarily follow the first-come-first-served basis. The air
traffic controllers are in charge of the operations, so the
take-off sequence is sometimes changed. In addition, EDCT

(expected departure clearance time) is sometimes set to
the departure aircraft. This is the take-off time restriction
due to the congestion in airspace or destination airport,
and the aircraft cannot take off before EDCT, which is
not considered in the simulation. EDCT also changes the
departure sequence. Finally, nonstandard operation might
be included in the data. It is confirmed in advance that the
data do not include the long runway close, but short runway
close might be included in data, which is difficult to exclude.
Considering these limitations, the simulation accuracy will
be evaluated.

3. Verification of Proposed Simulation
Model and Daily Data Analysis

3.1. Characteristics of Daily Data. Before evaluating the
simulation model, the characteristics of the daily traffic are
investigated first. The proposed simulation model is to be
used to evaluate uncertainty effect, especially important in
congestions, so the model performance in such cases is of
the utmost importance. Therefore, first, the congestion level
throughout a day at the airport is investigated.

When the airport is not congested, the take-off is operated
smoothly; that is, the waiting time of take-off aircraft is zero.
Therefore, the congestion level at the airport closely relates
to the waiting time of take-off aircraft. To investigate the
actual congestion level at the airport, the actual waiting time
of take-off aircraft is calculated. Since the actual waiting
time is difficult to obtain directly, it is estimated based on
the difference between AXOT and PXOT. AXOT can be
obtained directly from the data. PXOT can be estimated as
the nominal PXOT. PXOT is usually stochastically calculated
as explained in the last section, but the nominal PXOT can be
estimated if the uncertainty is assumed to be zero. Even if the
uncertainty is zero, the nominal PXOT includes the taxiing
distance effect and the spot position effect. In this way, the
waiting time is estimated for each aircraft, and this waiting
time based on actual data is called estimated waiting time.
Figure 10 shows the estimated waiting time of each aircraft
throughout a day onDay 1.Thewaiting time is not distributed
evenly throughout a day, because the traffic volume in each
time range differs. Some data include negative waiting time,
which occurs because the estimatedwaiting time is calculated
based on the estimated PXOT. Now, the time is split into
three hours each, and the congestion is considered in each
time range. The traffic volume and scheduled traffic distri-
bution are almost the same within the time range between
days, so the waiting time can be compared in each time
range.

Figure 11 shows the total estimated waiting time in each
time range on each day. Table 3 shows the average of esti-
mated total waiting time for 20 days and the average number
of departure and arrival aircraft. According to the figure and
the table, the largest total waiting time is observed at PM6–
PM9, and the smallest waiting time is observed at PM3–
PM6, but the daily fluctuation is also large. On the other
hand, both departure and arrival traffic are the largest at
AM9–AM12. Although more traffic potentially causes longer
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Figure 10: Estimated waiting time on Day 1 (ordered by actual take-off sequence).

Table 3: Average estimated waiting time and traffic volume in each time range for 20 days.

Time range Estimated waiting time [minutes] Number of departure aircraft Number of arrival aircraft
AM6–AM9 174.5 105.5 44.0
AM9–AM12 178.3 105.8 104.4
AM12–PM3 158.3 99.6 98.8
PM3–PM6 133.4 93.8 102.1
PM6–PM9 281.9 98.4 104.2
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Figure 11: Total estimated waiting time in each time range on each
day.

waiting time, there seems to be other factors as well. The
waiting time increases if the runway waiting queue gets
longer. The length of the runway queue is heavily affected
by the traffic concentration. If many aircraft approach the
runway at the same time, the runway queue becomes long and
therefore the waiting time gets long and vice versa. Actually,
at PM6–PM9, the departure traffic is not evenly distributed
for these 3 hours, and it is concentrated between PM7 and
PM8 and the waiting time is also long.Therefore, the effect of
the traffic concentration seems to bemore important than the
traffic volume itself. Each day’s scenario fixes AOBT, which

includes the actual distribution of off-block time, so the traffic
concentration effect can also be evaluated in the simulation.

In addition, the take-off separation can also affect the total
waiting time. According to Figure 7 and (11), the visibility
affects the take-off separation. When the take-off separation
is large, large total waiting time is expected. In Figure 11,
the cases where the visibility is less than 5000m are shown
separately. When the visibility is less than 5000m, large
total waiting time is observed at all times. However, the
cases where the large total waiting time is observed are not
necessarily on a low visibility day. The visibility, that is, the
take-off separation, is an important factor, but it is not the
only one.

3.2. Validation of the Proposed Simulation Model. Next, the
proposed simulationmodel is evaluated.Themodel considers
the uncertainty effect, so it should be evaluated by a sufficient
number of simulation runs.This time, 10,000 runs of simula-
tions are conducted and the result is discussed. The program
is made by C++ language and run with Intel Core i7-3770.
It takes about 20 s to complete 10,000 runs of simulation on
each day, and it is sufficiently fast to evaluate the uncertainty
effect.

When evaluating the simulation model, it is important to
decide what is expected in the simulation model. The main
purpose of the simulationmodel is to evaluate the uncertainty
effect, and the modeling of the congestion phenomena is the
most important. On the other hand, the runway operation
is assumed to follow the first-come-first-served basis, so
the take-off time of individual aircraft (i.e., waiting time of
individual aircraft) might not be necessarily well modeled.
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Figure 12: The distribution of total waiting time based on 10,000
runs of simulation and the estimated waiting time on Day 1 PM6–
PM9.
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Figure 13: Q-Q plot of the total estimated waiting time on each day
and each time range.

Here, the total waiting time and the take-off time of each
aircraft are used as an index of the simulation accuracy.

First, the total waiting time is discussed. Figure 12 shows
the distribution of the total waiting time on Day 1 PM6–
PM9 based on 10,000 times of simulation. The estimated
waiting time based on the actual data is 316.5 minutes,
and the peak of the distribution by the simulation and the
estimated waiting time almost match. The estimated waiting
time corresponds to 47.49 percentile of the distribution.
However, only this result by itself does not indicate that the
proposed simulation model works well. The actual operation
can be considered a single sample set of simulations. If so, it
is expected that the actual operation is the same as one of the
simulations. To evaluate it, the percentile of the waiting time
is used. If the uncertainty of the simulation is underestimated,
the percentile will be observed often around 0 and 100.
If the uncertainty is overestimated, the percentile will be
observed often around 50.Therefore, if the uncertainty of the
simulation is well modeled, the percentile of the estimated

Table 4: Statistical tests results.

𝑃 value
KS test AD test

AM6–AM9 0.8247 0.8443
AM9–PM12 0.2684 0.1409
PM12–PM3 0.7513 0.6186
PM3–PM6 0.4026 0.0693
PM6–PM9 0.3282 0.5481
All 0.8211 0.4698

waiting time should be uniformly distributed between 0 and
100. As shown in Figure 11, a whole day is split into 5 time
ranges for all 20 days; the percentile of the total estimated
waiting time of 100 data is obtained. To investigate that the
obtained percentile is evenly distributed, Q-Q plot is often
used. Q-Q plot is a probability plot, where one axis shows
the data quantile and the other axis shows the theoretical
quantile. If the actual data completely follow the theoretical
distribution, the plot is observed on the line “𝑦 = 𝑥.” Figure 13
shows the Q-Q plot of the total waiting time.

This figure shows that the theoretical quantile and data
quantile match very well, which infers that the uncertainty is
well modeled, and therefore the proposed simulation model
works well. The uniformity of the distribution is also exam-
ined via a statistical test.This time, Kolmogorov-Smirnov test
(KS test) [17] and Anderson-Darling test (AD test) [18] are
used. Both tests are statistical tests to verify whether a given
sample of data is made from a given probability distribution
(this time, uniform distribution). Both tests show a 𝑃 value,
which is the probability of a test result being at least as
extreme as the one that is actually obtained. A small 𝑃 value
means that the actual data is more extreme, and usually if the
𝑃 value is less than 0.05, it is concluded that the actual data
do not come from a given probability distribution. The main
difference betweenKS test andAD test is that AD test weights
much more on the tail probability. However, these tests are
usually done to reject the null hypothesis, that is, to prove
that the obtained data do not come from the given probability
distribution.Therefore, even if the𝑃 value is greater than 0.05,
it does not directly mean that the obtained data follow the
given probability distribution, but such a result leaves open
the probability that the obtained data do not come from the
given probability distribution.

The statistical test results are shown in Table 4. The
statistical test is also done with data of each time range only.
According to the result, the 𝑃 value of all data is much greater
than 0.05 for both tests, and no 𝑃 value being less than 0.05 is
observed for any time range.

Next, the take-off time is considered. The take-off time
in the simulation is also distributed, and the percentile of
the actual take-off time is obtained. However, as mentioned
before, the take-off sequence is not modeled in the sim-
ulation, so the percentile of the take-off time might not
be uniformly distributed. Figure 14 shows the Q-Q plot of
the take-off time of all aircraft for 20 days. In total, 10,226
departure aircraft data are used.
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Figure 14: Q-Q plot of take-off time.
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Figure 15: Total estimated waiting time and 95% range of total
simulated waiting time at PM6–PM9 on each day.

The data quantile slightly differs from the theoretical
quantile around the edge of the quantile. KS test is also
conducted, and the 𝑃 value here is 1.385𝐸 − 9, which
means that the actual percentile is not uniformly distributed.
However, as mentioned in the last section, this simulation
model does not include all effects of airport operation, and
it is expected that the percentile of take-off time is not
completely uniformly distributed. However, according to
Figure 14, the data quantile and theoretical quartile almost
match each other, and also considering the result of total
waiting time, it is concluded that the proposed simulation
model is sufficiently accurate as an airport-runway statistical
simulation model.

3.3. Uncertainty Effect Based on the Simulation. Since the
simulationmodel is developed successfully, several aspects of
uncertainty effects in airport operations are examined. The
congestion in a runway queue is observed every day, but the
congestion level changes every day. There are many possible
factors related to the total waiting time, such as the number
of departure aircraft, the initial condition (howmuch traffic is
concentrated on a specific time slot, here also called scenario
uncertainty), uncertainties of taxi-in, taxi-out, and take-off
separation (called traffic uncertainty), and meteorological

conditions. The effects of the number of departure aircraft
and meteorological conditions can be associated with each
day.The traffic uncertainty effect can be evaluatedwith a large
number of simulations under the same initial condition. The
scenario uncertainty can be investigated between days. It is
interesting to understand how much each factor affects the
congestion level.

First, the variation of the congestion within a day is
examined. An example is shown in Figure 12 on Day PM6–
PM9,which shows the distribution of total waiting time based
on 10,000 simulations. According to additional calculations,
the similar shape of distribution is obtained on other days
and other time ranges. This variation of the total waiting
time stems from traffic uncertainty effects. On this day, the
estimated total waiting time based on the actual data is
316.5 minutes, but the distribution of the total waiting time
between about 150 minutes and 600 minutes is observed.
Even between 2.5 percentile and 97.5 percentile, the total
waiting time varies between 211 and 472 minutes. This
infers that the congestion level changes more than twice
even if the scenario involves no uncertainty. In addition,
the distribution of the total waiting time is not symmet-
ric, and the large waiting time is observed slightly more
often.

Next, Figure 15 shows the daily fluctuation of the total
waiting time at PM6–PM9. The bar indicates the estimated
total waiting time based on actual data (the same data shown
in Figure 11), and the error bar indicates the 95% range of
the total waiting time in the simulation. The red line shows
the number of departure aircraft within this time range. On
Day 15, visibility was low. From this figure, there are many
interesting points found.

First, the number of departure aircraft is almost constant
in this time range, and only a small difference among
the days is observed. However, like the result obtained in
Table 3, there is no clear relationship between the number of
departure aircraft and the total waiting time. Second, even
though the flight schedule is almost the same on each day
in each time range, the range of the total waiting time in the
simulation varies.The simulation scenario includes the initial
condition of the off-block time, so it does not include the
uncertainty between actual off-block time and scheduled off-
block time, that is, scenario uncertainty. On Days 15 and 17,
large estimated waiting time is observed, but the simulated
total waiting time is also large. The low visibility seems to be
a reason for large total waiting time on Day 15, but that is not
the case on Day 17, maybe due to the traffic concentration.
Therefore, on these days, the large total waiting time is caused
not because of the traffic uncertainty effect, but because
of either visibility or the scenario uncertainty, that is, the
uncertainty of the off-block time compared to the scheduled
time. If so, the total waiting time in the simulation varies
very much with only traffic uncertainty, which means that
the further large distribution will be obtained if the scenario
uncertainty is considered. Therefore, the uncertainty affects
the airport congestion very much, and it is almost impossible
to estimate the airport congestion level on a specific day
in advance, though the average congestion level can be
estimated.
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However, this result does not directly mean that conges-
tion cannot be relieved. If the scheduled departure or arrival
time is optimally decided, the average congestion level might
be reduced with keeping the traffic volume. The better spot
allocation might also decrease the congestion level. However,
since we understand that the uncertainty in airport traffic
is significant, the uncertainty effect cannot be ignored when
considering the airport operation.Otherwise, even if the taxi-
out time is reduced, the uncertainty might cause the delay of
take-off time or reduce the runway capacity.

4. Conclusions

This paper evaluated the uncertainty effect in the airport
operation. The uncertainty level was obtained in each phase
based on the surface movement data, and a fast-time airport
traffic simulation model was developed.The validation of the
simulation model was also done, and the simulation model
seemed to model the uncertainty effect appropriately. Based
on the developed simulation model, the characteristics of the
airport traffic were investigated. The results inferred that the
airport traffic congestion seemed to be mostly affected by the
uncertainty of taxi-out or taxi-in and the traffic concentra-
tion, not by the traffic volume and weather conditions. Since
the uncertainty effect was significant in airport traffic, it was
difficult to estimate the congestion level on a specific day in
advance.The developed airport simulationmodel would help
to evaluate the airport operation with existing uncertainties.
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