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The leader-following consensus of fractional nonlinear multiagent systems is investigated over an undirected fixed interaction
graph. Mittag-Leffler stability and the fractional Lyapunov direct method are firstly introduced into the fractional multiagent
systems. The sufficient conditions are given to guarantee that the leader-following consensus can be achieved in the systems
with both single-integrator dynamics and double-integrator dynamics. Finally, the numerical simulations are given to verify the
correctness of the presented theory.

1. Introduction

Since the precursory works of Reynolds [1] and Vicsek et al.
[2], the consensus problem ofmultiagent systems has become
a hot topic in the engineering community. It has been applied
to the analysis of animal group behaviors, the formation
control of unmanned air vehicles, and the distributed coordi-
nation of sensor networks. So, due to its broad applications,
the consensus problem has been more and more widely
studied in various systems, such as biological systems and
social and engineering systems. For a cooperative multiagent
system, leaderless consensus means that all agents reach an
agreement on certain global criteria of common interest by
sharing information locally with their neighbors, which has
been widely studied in the integer-order systems with both
single-integrator dynamics and double-integrator dynamics
[3–6], while leader-following consensus means that there
exists a virtual leader which specifies an objective for all
agents to follow.

In the past few years, the leader-following consensus
problem of integer-order multiagent systems has been inten-
sively studied. In [7], the leader-following consensus problem
for second-order multiagent systems with nonlinear inher-
ent dynamics was investigated and the distributed control
protocols were proposed under both fixed undirected and
fixed directed communication topologies. In [8], the second-
order leader-following consensus problem of nonlinear

multiagent systems was studied with general network topolo-
gies. Moreover the leaderless and leader-following consensus
algorithms with communication and input delays under a
directed network topology were considered in [9].

At present, a growing number of works by many authors
from various fields of science and engineering have been
dealingwith dynamical systems described by fractional equa-
tions. Fractional calculus is a generalization of integer-order
differentiation and integration to arbitrary noninteger order,
which provides a powerful instrument for the description of
memory and hereditary properties of different substances. In
recent years, more andmore researchersmainly pay attention
to the distributed coordination for multiagent systems with
fractional dynamics. In [10], Cao et al. studied the coordina-
tion algorithms for networked fractional systems with single-
integrator dynamics and obtained the sufficient conditions
such that the distributed coordination can be achieved.
Yang et al. [11] investigated the distributed coordination of
fractional multiagent systems with communication delays.
And Cao and Ren [12] discussed the distributed formation
control problem for fractional multiagent systems under
dynamic interaction and with absolute/relative damping.

Nonlinear dynamics can be used to describe many com-
plex phenomena in natural world and human society. Hence,
it is more practical to investigate the collective behavior
of the fractional nonlinear multiagent systems. Motivated
by the above discussion, we consider fractional nonlinear
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multiagent systems in this paper. First, we study the leader-
following consensus in the fractional systems with both
single-integrator dynamics and double-integrator dynamics,
respectively. Second, we obtain the sufficient conditions to
ensure the leader-following consensus by introducingMittag-
Leffler stability and the fractional Lyapunov direct method
into fractional multiagent systems. Finally, we give some
numerical simulations to illustrate the correctness of the
presented results.

The rest of this paper is arranged as follows. The graph
theory notions and some definitions of fractional calculus are
introduced as a basis in Section 2.Themain results on leader-
following consensus for fractional nonlinear multiagent sys-
tems are presented in Sections 3 and 4.Then, some simulation
results are given in Section 5. Finally, a short conclusion is
shown to close the paper in Section 6.

2. Preliminaries

In this section, somebasic notions about the graph theory and
some definitions of fractional calculus are introduced as the
preliminaries of this paper. And some necessary conclusions
are presented for the use of next several sections.

2.1. Graph Theory Notions. The interaction topologies in the
multiagent systems consisting of 𝑛 agents can be modelled
by a graph G = (V,W), where V = {V1, V2, . . . , V𝑛} and
W ⊆ V2 represent the agent set and the edge set of the graph,
respectively. Each edge denoted by (V

𝑖
, V
𝑗
)means that agent 𝑗

can access the state information of agent 𝑖. Accordingly, agent
𝑖 is a neighbor of agent 𝑗. All neighbors of agent 𝑖 are denoted
by 𝑁
𝑖
. Then, we introduce two types of matrices to represent

the interaction graph: (1) the adjacency matrix 𝐴 = [𝑎
𝑖𝑗
] ∈

𝑅
𝑛×𝑛 with 𝑎

𝑖𝑗
= 1 if (V

𝑖
, V
𝑗
) ∈ W and 𝑎

𝑖𝑗
= 0; otherwise, (2)

the (nonsymmetric) Laplacian matrix 𝐿 = [𝑙
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 with
𝑙
𝑖𝑖
= ∑
𝑗∈𝑁𝑖

𝑎
𝑖𝑗
and 𝑙
𝑖𝑗

= −𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗.

Lemma 1 (see [13]). Suppose that the connection topology
of 𝑛 agents is undirected and connected. The matrix 𝐿 +

𝐵 is symmetric positive definite, where 𝐿 is the Laplacian
matrix of the connection topology of 𝑛 agents and 𝐵 =

diag{𝑏1, 𝑏2, . . . , 𝑏𝑛}, 𝑖 = 1, 2, . . . , 𝑛, where 𝑏
𝑖
is a nonnegative

real number that does not always equal 0.

2.2. Caputo Fractional Operator and Mittag-Leffler Stability.
There are mainly two widely used fractional operators:
Caputo and Riemann-Liouville (R-L) fractional operators
[14]. In this paper, the Caputo fractional operator is used
because the Caputo fractional derivative owns the same
initial conditions with integer-order derivative, which is well
understood in physical situations andmore applicable to real-
world problems.

Definition 2 (see [15]). Caputo’s fractional derivative of order
𝛼 for a function 𝑓 ∈ 𝐶

𝑛

([𝑡0, +∞], 𝑅) is defined by

𝑡0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1
Γ (𝑛 − 𝛼)

∫

𝑡

𝑡0

𝑓
(𝑛)

(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1 𝑑𝜏, (1)

where 𝑡 ≥ 𝑡0 and 𝑛 is a positive integer such that 𝑛−1 < 𝛼 < 𝑛.
Particularly, when 0 < 𝛼 < 1,

𝑡0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1
Γ (1 − 𝛼)

∫

𝑡

𝑡0

𝑓
󸀠

(𝜏)

(𝑡 − 𝜏)
𝛼
𝑑𝜏. (2)

In the following, we will introduce the Mittag-Leffler
function [14]. For 𝛼, 𝛽 ∈ 𝐶, theMittag-Leffler function in two
parameters is defined as

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝑎 + 𝛽)

. (3)

When 𝛽 = 1 and 𝛼 > 0, (3) can be written in a special case as
𝐸
𝛼
(𝑧) = ∑

∞

𝑘=0(𝑧
𝑘

/Γ(𝑘𝑎 + 1)).
As an important dynamical property of fractional sys-

tems, Mittag-Leffler stability is introduced in the following.
Consider the following 𝑛-dimensional Caputo fractional-
order system:

𝑡0
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑥 (𝑡0) = 𝑥
𝑡0
,

(4)

where 𝛼 ∈ (0, 1), 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇

∈ 𝑅
𝑛, 𝑡0 ≥ 0, and

𝑓 is piecewise continuous on 𝑡 and satisfies locally Lipschitz
condition on 𝑥.

Assumption 3. The nonlinear function 𝑓(𝑡, 𝑥, 𝑦) (𝑥, 𝑦 ∈ 𝑅) is
continuous and satisfies Lipschitz condition on 𝑥 and 𝑦 with
Lipschitz constant 𝑙 ≥ 0; that is,

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑦) −𝑓 (𝑡, 𝑢, V)󵄨󵄨󵄨

󵄨
≤ 𝑙 (|𝑥 − 𝑢| +

󵄨
󵄨
󵄨
󵄨
𝑦 − V󵄨󵄨󵄨

󵄨
) (5)

for any 𝑡 ≥ 0.

Definition 4 (see [16]). The constant 𝑥 is an equilibrium point
of Caputo fractional-order dynamic system (4) if and only if
𝑓(𝑡, 𝑥) = 0.

Definition 5 (see [16]). If 𝑥 = 0 is an equilibrium point of
system (4), the solution of (4) is said to be Mittag-Leffler
stable if

‖𝑥 (𝑡)‖ ≤ [𝑚 (𝑥
𝑡0
) 𝐸
𝛼
(−𝜆 (𝑡 − 𝑡0)

𝛼

)]

𝑏

, (6)

where 𝜆 > 0, 𝑏 > 0,𝑚(0) = 0, ‖ ⋅ ‖ denotes an arbitrary norm,
and 𝑚(𝑥) ≥ 0 satisfies locally Lipschitz condition on 𝑥 ∈ 𝑅

𝑛

with Lipschitz constant 𝑚0.

Remark 6. Mittag-Leffler stability for system (4) implies
asymptotic stability for any initial value; that is, ‖𝑥‖ → 0
with 𝑡 → +∞.

Lemma 7 (see [15]). There exists a unique solution of system
(4) for any initial value, if system (4) has equilibrium point at
the origin and 𝑓(𝑡, 𝑥) satisfies locally Lipschitz condition on 𝑥.
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Lemma 8 (see [17]). When 𝑡0 = 0, the fractional-order system
(4) is Mittag-Leffler stable at the equilibrium point 𝑥 = 0, if
there exists a continuous function 𝑉(𝑡, 𝑥(𝑡)) which satisfies

𝛼1 ‖𝑥‖
𝑎

≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝛼2 ‖𝑥‖
𝑎𝑏

, (7)

0
𝐷
𝛽

𝑡
𝑉 (𝑡
+

, 𝑥 (𝑡
+

))

≤ − 𝛼3 ‖𝑥 (𝑡)‖
𝑎𝑏

(ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒V𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒) ,

(8)

where 𝑉(𝑡, 𝑥(𝑡)) : [0,∞) × 𝐷 → 𝑅 satisfies locally
Lipschitz condition on 𝑥; �̇�(𝑡, 𝑥(𝑡)) is piecewise continuous
and lim

𝜏→ 𝑡
+�̇�(𝜏, 𝑥(𝜏)) exists for any 𝑡 ∈ [0,∞); 𝐷 ⊂

𝑅
𝑛 is a domain containing the origin and 𝑉(𝑡

+

, 𝑥(𝑡
+

)) ≜

lim
𝜏→ 𝑡
+𝑉(𝜏, 𝑥(𝜏)); and 𝑡 ≥ 0, 𝛽 ∈ (0, 1), and 𝛼1, 𝛼2, 𝛼3, 𝑎,

and 𝑏 are arbitrary positive constants. If the assumptions hold
globally on 𝑅

𝑛, then 𝑥 = 0 is globally Mittag-Leffler stable.

Lemma 9 (see [17]). If ℎ(𝑡) ∈ 𝐶
1
([0, +∞), 𝑅) denotes a

continuously differentiable function, the following inequality
holds almost everywhere:

0
𝐷
𝛼

𝑡

󵄨
󵄨
󵄨
󵄨
ℎ (𝑡
+

)
󵄨
󵄨
󵄨
󵄨
≤ sgn (ℎ (𝑡))

0
𝐷
𝛼

𝑡
ℎ (𝑡) , 0 < 𝛼 < 1, (9)

where ℎ(𝑡
+

) ≜ lim
𝜏→ 𝑡
+ℎ(𝜏).

3. Leader-Following Consensus for
Single-Integrator Dynamics

In this section, the leader-following consensus for frac-
tional multiagent systems with single-integrator dynamics is
studied, and the sufficient condition is obtained to achieve
the leader-following consensus over an undirected fixed
interaction graph.

Consider the multiagent system consisting of 𝑛 agents,
labeled as agents 1 to 𝑛. The single-integrator dynamics of
each agent is given by

0
𝐷
𝛼

𝑡
𝑥
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝑢

𝑖
(𝑡) , 𝑖 ∈ {1, 2, . . . , 𝑛} , (10)

where 𝛼 ∈ (0, 1), 𝑥
𝑖
(𝑡) is the state for the 𝑖th agent, 𝑢

𝑖
(𝑡) is the

control input for the 𝑖th agent, and 𝑓(𝑡, 𝑥
𝑖
(𝑡)) is the intrinsic

nonlinear dynamics for the 𝑖th agent.
The virtual leader formultiagent system (10) is an isolated

agent described by

0
𝐷
𝛼

𝑡
𝑥
𝑟
(𝑡) = 𝑓 (𝑡, 𝑥

𝑟
(𝑡)) , (11)

where 𝑥
𝑟
(𝑡) is the state for the virtual leader.

In the following, assume that all agents are in a one-
dimensional space for the simplicity of presentation. How-
ever, all results hereafter are still valid for the 𝑚-dimensional
(𝑚 > 1) space by the introduction of the Kronecker product.

Definition 10. The multiagent system (10) is said to
achieve leader-following consensus if its solution satisfies
lim
𝑡→+∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)‖ = 0, 𝑖 = 1, 2, . . . , 𝑛, for any initial

condition.

The control protocol is proposed as

𝑢
𝑖
(𝑡)

= − 𝛽
[

[

𝑛

∑

𝑗=1
𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) + 𝑏

𝑖
(𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡))

]

]

,

(12)

where 𝑎
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑛) is the (𝑖, 𝑗)th entry of the
adjacency matrix 𝐴 ∈ 𝑅

𝑛×𝑛 associated with the undirected
graphG; 𝑏

𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a nonnegative real number that

does not always equal 0; and 𝛽 is a nonnegative constant.
Let 𝐵 = diag{𝑏1, 𝑏2, . . . , 𝑏𝑛} and 𝐻 = 𝐿 + 𝐵, where 𝐿 is the

Laplacian matrix of G. Let matrix Λ be the Jordan canonical
form of matrix 𝐻, which satisfies Λ = 𝑃

−1
𝐻𝑃, where 𝑃 =

[𝑝
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 and 𝑃

−1
= [𝑝
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛.

In the rest of this paper, ‖𝑥‖ = |𝑥1| + |𝑥2| + ⋅ ⋅ ⋅ + |𝑥
𝑛
| =

∑
𝑛

𝑖=1 |𝑥𝑖|, where 𝑥 is a vector and 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
𝑇, and

‖𝐵‖1 = max1≤𝑗≤𝑛{∑
𝑛

𝑖=1 |𝑏𝑖𝑗|}, where 𝐵 is a matrix and 𝐵 =

[𝑏
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛.

Theorem 11. Suppose that the fixed undirected graph G is
connected and the nonlinear function𝑓 in systems (10) and (11)
satisfies Assumption 3. Using the control input (12) for system
(10), if 𝛽/𝑙 ≥ ‖𝑃‖1‖𝑃

−1
‖1/min1≤𝑖≤𝑛{𝜆𝑖}, where 𝜆

𝑖
is the 𝑖th

eigenvalue of the matrix 𝐻, 𝑖 ∈ {1, 2, . . . , 𝑛}, then |𝑥
𝑖
(𝑡) −

𝑥
𝑟
(𝑡)| → 0, as 𝑡 → +∞, which implies that the multiagent

system (10) is said to achieve leader-following consensus.

Proof. With the control input (12), system (10) can be rewrit-
ten as

0
𝐷
𝛼

𝑡
𝑥
𝑖
(𝑡)

= 𝑓 (𝑡, 𝑥
𝑖
(𝑡))

− 𝛽
[

[

𝑛

∑

𝑗=1
𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) + 𝑑

𝑖
(𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡))

]

]

.

(13)

Noting that 𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑟
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, we have

0
𝐷
𝛼

𝑡
𝑦
𝑖
(𝑡) = 𝑓 (𝑡, 𝑦

𝑖
(𝑡) + 𝑥

𝑟
(𝑡)) −𝑓 (𝑡, 𝑥

𝑟
(𝑡))

− 𝛽
[

[

𝑛

∑

𝑗=1
𝑎
𝑖𝑗
(𝑦
𝑖
(𝑡) − 𝑦

𝑗
(𝑡)) + 𝑑

𝑖
𝑦
𝑖
(𝑡)

]

]

,

(14)

which can be written in a vector form as

0
𝐷
𝛼

𝑡
𝑌 (𝑡) = −𝛽𝐻𝑌 (𝑡) + 𝐹 (𝑡, 𝑌 (𝑡)) , (15)

where 𝑌(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)]
𝑇, 𝐹(𝑡, 𝑌(𝑡)) = [𝑓(𝑡,

𝑦1(𝑡) + 𝑥
𝑟
(𝑡)) − 𝑓(𝑡, 𝑥

𝑟
(𝑡)), 𝑓(𝑡, 𝑦2(𝑡) + 𝑥

𝑟
(𝑡)) − 𝑓(𝑡, 𝑥

𝑟
(𝑡)),

. . . , 𝑓(𝑡, 𝑦
𝑛
(𝑡) + 𝑥

𝑟
(𝑡)) − 𝑓(𝑡, 𝑥

𝑟
(𝑡))]
𝑇.

Let 𝑍(𝑡) = 𝑃
−1

𝑌(𝑡), and (15) can be rewritten as

0
𝐷
𝛼

𝑡
𝑍 (𝑡) = −𝛽Λ𝑍 (𝑡) + 𝑃

−1
𝐹 (𝑡, 𝑃𝑍 (𝑡)) , (16)
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where 𝑍(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑛(𝑡)]
𝑇, 𝐹(𝑡, 𝑃𝑍(𝑡)) =

[𝑓(𝑡, ∑
𝑛

𝑘=1 𝑝1𝑘𝑧𝑘(𝑡) + 𝑥
𝑟
(𝑡)) − 𝑓(𝑡, 𝑥

𝑟
(𝑡)), 𝑓(𝑡, ∑

𝑛

𝑘=1 𝑝2𝑘𝑧𝑘(𝑡) +

𝑥
𝑟
(𝑡)) − 𝑓(𝑡, 𝑥

𝑟
(𝑡)), . . . , 𝑓(𝑡, ∑

𝑛

𝑘=1 𝑝𝑛𝑘𝑧𝑘(𝑡) + 𝑥
𝑟
(𝑡)) −

𝑓(𝑡, 𝑥
𝑟
(𝑡))]
𝑇

.

Because the fixed undirected graph G is connected and
𝑏
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a nonnegative real number that does

not always equal 0, from Lemma 1, 𝐻 is symmetric positive
definite and Λ is a diagonal positive definite matrix; that
is, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑛}, 𝜆𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛. From
Lemma 7 and Assumption 3, system (16) has a unique and
continuous solution 𝑍(𝑡). In what follows, we demonstrate
that system (16) is asymptotically stable.

Consider the Lyapunov function candidate constructed as

𝑉 (𝑡, 𝑧 (𝑡)) =

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
. (17)

Obviously, the Lyapunov functional (17) satisfies inequality
(7). According to Lemma 9, the following inequality holds
almost everywhere:

0𝐷
𝛼

𝑡
𝑉 (𝑡
+

, 𝑧 (𝑡
+

)) =

𝑛

∑

𝑖=1
0𝐷
𝛼

𝑡

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡
+

)
󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑖=1
sgn (𝑧

𝑖
(𝑡))

⋅ 0𝐷
𝛼

𝑡
𝑧
𝑖
(𝑡) =

𝑛

∑

𝑖=1
sgn (𝑧

𝑖
(𝑡))

[

[

−𝛽𝜆
𝑖
𝑧
𝑖
(𝑡)

+

𝑛

∑

𝑗=1
𝑝
𝑖𝑗
(𝑓(𝑡,

𝑛

∑

𝑘=1
𝑝
𝑗𝑘
𝑧
𝑘
(𝑡) + 𝑥

𝑟
(𝑡))−𝑓 (𝑡, 𝑥

𝑟
(𝑡)))

]

]

≤

𝑛

∑

𝑖=1

[

[

−𝛽𝜆
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑘=1
𝑝
𝑗𝑘
𝑧
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

]

]

≤

𝑛

∑

𝑖=1

[

[

−𝛽𝜆
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
]

]

= −𝛽

𝑛

∑

𝑖=1
𝜆
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨

= − 𝛽

𝑛

∑

𝑖=1
𝜆
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑝
𝑘𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

=

𝑛

∑

𝑖=1
(−𝛽𝜆

𝑖
+ 𝑙

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑝
𝑘𝑖

󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ −(𝛽

⋅min
𝑖

{𝜆
𝑖
} − 𝑙max

1≤𝑘≤𝑛

{

{

{

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

max
1≤𝑖≤𝑛

{

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑘𝑖

󵄨
󵄨
󵄨
󵄨
})

⋅𝑉 (𝑡, 𝑧 (𝑡)) = − (𝛽min
𝑖

{𝜆
𝑖
} − 𝑙

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
−1󵄩󵄩

󵄩
󵄩
󵄩1 ‖𝑃‖1)𝑉 (𝑡,

𝑧 (𝑡)) .

(18)

From (18), if 𝛽/𝑙 > ‖𝑃‖1‖𝑃
−1

‖1/min1≤𝑖≤𝑛{𝜆𝑖}, inequality
(8) can be satisfied almost everywhere. Therefore, according
to Lemma 8,when themultiagent system (10)with the control

input (12) meets the conditions of Theorem 11, system (16)
is Mittag-Leffler stable at the equilibrium point 𝑧(𝑡) = 0.
It follows from 𝑦(𝑡) = 𝑃𝑧(𝑡) that lim

𝑡→+∞
𝑦(𝑡) = 0. This

implies that lim
𝑡→+∞

|𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡)| = 0 because 𝑦

𝑖
(𝑡) =

𝑥
𝑖
(𝑡) − 𝑥

𝑟
(𝑡), 𝑖 = 1, 2, . . . , 𝑛.

The proof is completed.

4. Leader-Following Consensus for Double-
Integrator Dynamics

The leader-following consensus of fractional multiagent sys-
tems with double-integrator dynamics is investigated in this
section.

Consider the multiagent system consisting of 𝑛 agents.
The double-integrator dynamics of each follower is given by

0𝐷
𝛼

𝑡
𝑥
𝑖0 (𝑡) = 𝑥

𝑖1 (𝑡) ,

0𝐷
𝛼

𝑡
𝑥
𝑖1 (𝑡) = 𝑓 (𝑡, 𝑥

𝑖0
(𝑡) , 𝑥
𝑖1
(𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛,

(19)

where 𝛼 ∈ (0, 1), 𝑥
𝑖0(𝑡) and 𝑥

𝑖1(𝑡) are the states for the
𝑖th agent, 𝑢

𝑖
(𝑡) is the control input for the 𝑖th agent, and

𝑓(𝑡, 𝑥
𝑖0(𝑡), 𝑥𝑖1(𝑡)) is the intrinsic nonlinear dynamics for the

𝑖th agent.
The virtual leader formultiagent system (19) is an isolated

agent described by

0𝐷
𝛼

𝑡
𝑥
𝑟0 (𝑡) = 𝑥

𝑟1 (𝑡) ,

0𝐷
𝛼

𝑡
𝑥
𝑟1 (𝑡) = 𝑓 (𝑡, 𝑥

𝑟0
(𝑡) , 𝑥
𝑟1

(𝑡)) ,

(20)

where 𝑥
𝑟0(𝑡) and 𝑥

𝑟1(𝑡) are the states for the virtual leader.
The definition of the second-order leader-following con-

sensus is given here, which will be used in the development
of the next few sections.

Definition 12. The multiagent system (19) is said to achieve
second-order leader-following consensus if its solution satis-
fies lim

𝑡→+∞
‖𝑥
𝑖0(𝑡)−𝑥

𝑟0(𝑡)‖ = 0, lim
𝑡→+∞

‖𝑥
𝑖1(𝑡)−𝑥

𝑟1(𝑡)‖ =

0, 𝑖 = 1, 2, . . . , 𝑛, for any initial condition.
The following control input is considered to implement

second-order leader-following consensus of multiagent sys-
tem (19):

𝑢
𝑖
= −

𝑛

∑

𝑗=1
𝑎
𝑖𝑗
[(𝑥
𝑖0 (𝑡) − 𝑥

𝑗0 (𝑡)) + 𝛽 (𝑥
𝑖1 (𝑡) − 𝑥

𝑗1 (𝑡))]

− 𝑏
𝑖
[(𝑥
𝑖0 (𝑡) − 𝑥

𝑟0 (𝑡)) + 𝛽 (𝑥
𝑖1 (𝑡) − 𝑥

𝑟1 (𝑡))] ,

(21)

where 𝑎
𝑖𝑗
( 𝑖, 𝑗 = 1, 2, . . . , 𝑛) is the (𝑖, 𝑗)th entry of the

adjacency matrix 𝐴 ∈ 𝑅
𝑛×𝑛 associated with the undirected

graphG; 𝑏
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a nonnegative real number that

does not always equal 0; and 𝛽 is a nonnegative constant.
Let 𝐵 = diag{𝑏1, 𝑏2, . . . , 𝑏𝑛}, 𝐻 = 𝐿 + 𝐵, and 𝐴 =

(
0𝑛×𝑛 −𝐼𝑛
𝐻 𝛽𝐻

) ∈ 𝑅
2𝑛×2𝑛, which is useful in the following state-

ments, where 𝐼
𝑛
is the 𝑛 × 𝑛 identity matrix and 0

𝑛×𝑛
denotes

the 𝑛 × 𝑛 zero matrix. Let matrix Δ be the Jordan canonical
form of matrix 𝐴, which satisfies Δ = 𝑄

−1
𝐴𝑄, where 𝑄 =

[𝑞
𝑖𝑗
] ∈ 𝑅

2𝑛×2𝑛 and 𝑄
−1

= [𝑞
𝑖𝑗
] ∈ 𝑅

2𝑛×2𝑛.
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Theorem 13. For system (19) with the control input (21), the
second-order leader-following consensus is realized, if the fixed
undirected graph G is connected and Assumption 3 holds, 𝛽 ≥

2/√min1≤𝑖≤𝑛{𝜆𝑖}, 𝑙 < min1≤𝑖≤2𝑛{𝛿𝑖}/‖𝑄‖1‖𝑄
−1

‖1, where 𝜆
𝑖
is

the 𝑖th eigenvalue of the matrix 𝐻, 𝑖 ∈ {1, 2, . . . , 𝑛}, and 𝛿
𝑖
is

the 𝑖th eigenvalue of the matrix 𝐴, 𝑖 ∈ {1, 2, . . . , 2𝑛}.

Proof. With the control input (21), system (19) can be rewrit-
ten as

0𝐷
𝛼

𝑡
𝑥
𝑖0 (𝑡) = 𝑥

𝑖1 (𝑡) ,

0𝐷
𝛼

𝑡
𝑥
𝑖0 (𝑡)

= 𝑓 (𝑡, 𝑥
𝑖0
(𝑡) , 𝑥
𝑖1
(𝑡))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
[(𝑥
𝑖0
(𝑡) − 𝑥

𝑗0
(𝑡)) + 𝛽 (𝑥

𝑖1
(𝑡) − 𝑥

𝑗1
(𝑡))]

− 𝑑
𝑖
[(𝑥
𝑖0
(𝑡) − 𝑥

𝑟0
(𝑡)) + 𝛽 (𝑥

𝑖1
(𝑡) − 𝑥

𝑟1
(𝑡))] .

(22)

Noting that 𝑦
𝑖0(𝑡) = 𝑥

𝑖0(𝑡) − 𝑥
𝑟0(𝑡), 𝑦𝑖1(𝑡) = 𝑥

𝑖1(𝑡) −

𝑥
𝑟1(𝑡), 𝑖 = 1, 2, . . . , 𝑛, we have

0𝐷
𝛼

𝑡
𝑦
𝑖0 (𝑡) = 𝑦

𝑖1 (𝑡) ,

0𝐷
𝛼

𝑡
𝑦
𝑖0
(𝑡)

= 𝑓 (𝑡, 𝑥
𝑖0
(𝑡) , 𝑥
𝑖1
(𝑡)) −𝑓 (𝑡, 𝑥

𝑟0
(𝑡) , 𝑥
𝑟1

(𝑡))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
[(𝑦
𝑖0
(𝑡) − 𝑦

𝑗0
(𝑡)) + 𝛽 (𝑦

𝑖1
(𝑡) − 𝑦

𝑗1
(𝑡))]

− 𝑑
𝑖
(𝑦
𝑖0
(𝑡) + 𝛽𝑦

𝑖1
(𝑡)) ,

(23)

for 𝑖 = 1, 2, . . . , 𝑛, which can be written in a vector form as

0
𝐷
𝛼

𝑡
(

𝑌0 (𝑡)

𝑌1 (𝑡)
) = −𝐴(

𝑌0 (𝑡)

𝑌1 (𝑡)
)

+(

0
𝑛×1

𝐹 (𝑡, 𝑌0 (𝑡) , 𝑌1 (𝑡))
) ,

(24)

where 𝑌
𝑘
(𝑡) = [𝑦1𝑘(𝑡), 𝑦2𝑘(𝑡), . . . , 𝑦𝑛𝑘(𝑡)]

𝑇

(𝑘 = 0, 1), and
𝐹(𝑡, 𝑌0(𝑡), 𝑌1(𝑡)) = [𝑓(𝑡, 𝑦10(𝑡) + 𝑥

𝑟0(𝑡), 𝑦11(𝑡) + 𝑥
𝑟1(𝑡)) −

𝑓(𝑡, 𝑥
𝑟0(𝑡), 𝑥𝑟1(𝑡)), . . . , 𝑓(𝑡, 𝑦

𝑛0(𝑡) + 𝑥
𝑟0(𝑡), 𝑦𝑛1(𝑡) + 𝑥

𝑟1(𝑡)) −

𝑓(𝑡, 𝑥
𝑟0(𝑡), 𝑥𝑟1(𝑡))]

𝑇.
Suppose that 𝛿

𝑖𝑗
(𝑖 = 1, . . . , 𝑛; 𝑗 = 1, 2) are eigenvalues of

the matrix 𝐴. From the results in [8], it is easy to obtain

𝛿
𝑖1 =

𝜆
𝑖
+ √𝛽

2
𝜆
2
𝑖
− 4𝜆
𝑖

2
,

𝛿
𝑖2 =

𝜆
𝑖
− √𝛽

2
𝜆
2
𝑖
− 4𝜆
𝑖

2
,

(25)

where 𝜆
𝑖
is the 𝑖th eigenvalue of thematrix𝐻, 𝑖 ∈ {1, 2, . . . , 𝑛}.

When 𝛽 ≥ 2/√min1≤𝑖≤𝑛{𝜆𝑖}, all eigenvalues of the matrix
𝐴 are positive real numbers. So the matrix Δ is a diagonal

0

1

4 5 6

2 3

7

Figure 1: Interaction graph for a leader and 7 followers.
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i(
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Figure 2: The states 𝑥
𝑖
(𝑡) (𝑖 = 0, 1, . . . , 7) of all agents in system (11)

and system (10) with 𝛼 = 0.9.

positive definitematrix; that is,Δ = diag{𝛿1, 𝛿2, . . . , 𝛿2𝑛}, 𝛿
𝑖
>

0, 𝑖 = 1, 2, . . . , 2𝑛.
Let 𝑍(𝑡) = 𝑄

−1
(
𝑌0(𝑡)
𝑌1(𝑡)

), and (24) can be rewritten as

0
𝐷
𝛼

𝑡
𝑍 (𝑡) = −Δ𝑍 (𝑡) +𝑄

−1
(

0
𝑛×1

𝐹 (𝑡, 𝑌0 (𝑡) , 𝑌1 (𝑡))
) , (26)

where 𝑍(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧2𝑛(𝑡)]
𝑇. From Lemma 7 and

Assumption 3, system (26) has a unique and continuous
solution 𝑍(𝑡). Then we prove the asymptotic stability of
system (26).

Consider the Lyapunov function candidate constructed as

𝑉 (𝑡, 𝑍 (𝑡)) =

2𝑛
∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
. (27)

Obviously, the Lyapunov functional (27) satisfies inequality
(7). According to Lemma 9 and (23), the following inequality
holds almost everywhere:
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0
𝐷
𝛼

𝑡
𝑉 (𝑡
+

, 𝑍 (𝑡
+

)) =

2𝑛
∑

𝑖=1
0
𝐷
𝛼

𝑡

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡
+

)
󵄨
󵄨
󵄨
󵄨
≤

2𝑛
∑

𝑖=1
sgn (𝑧

𝑖
(𝑡))
0
𝐷
𝛼

𝑡
𝑧
𝑖
(𝑡)

=

2𝑛
∑

𝑖=1
sgn (𝑧

𝑖
(𝑡))

[

[

−𝛿
𝑖
𝑧
𝑖
(𝑡) +

𝑛

∑

𝑗=1
𝑞
𝑖,𝑗+𝑛

(𝑓 (𝑡, 𝑦
𝑗0 (𝑡) + 𝑥

𝑟0 (𝑡) , 𝑦𝑗1 (𝑡) + 𝑥
𝑟1 (𝑡)) −𝑓 (𝑡, 𝑥

𝑟0 (𝑡) , 𝑥𝑟1 (𝑡)))]

]

≤

2𝑛
∑

𝑖=1

[

[

−𝛿
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑖,𝑗+𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗0 (𝑡) + 𝑦

𝑗1 (𝑡)
󵄨
󵄨
󵄨
󵄨
󵄨

]

]

=

2𝑛
∑

𝑖=1

[

[

−𝛿
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑖,𝑗+𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝑛
∑

𝑘=1
𝑞
𝑗𝑘
𝑧
𝑘
(𝑡) +

2𝑛
∑

𝑘=1
𝑞
𝑗+𝑛,𝑘

𝑧
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

]

]

≤

2𝑛
∑

𝑖=1

[

[

−𝛿
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑖,𝑗+𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

2𝑛
∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑘

+ 𝑞
𝑗+𝑛,𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
]

]

= −

2𝑛
∑

𝑖=1
𝛿
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

2𝑛
∑

𝑖=1

𝑛

∑

𝑗=1

2𝑛
∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑖,𝑗+𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑘

+ 𝑞
𝑗+𝑛,𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨

= −

2𝑛
∑

𝑖=1
𝛿
𝑖

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝑙

2𝑛
∑

𝑖=1

𝑛

∑

𝑗=1

2𝑛
∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑘,𝑗+𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖

+ 𝑞
𝑗+𝑛,𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ − min

1≤𝑖≤2𝑛
{𝛿
𝑖
}

2𝑛
∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

+ 𝑙max
1≤𝑗≤𝑛

{

2𝑛
∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑘,𝑗+𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
} max

1≤𝑖≤2𝑛

{

{

{

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑗𝑖
+ 𝑞
𝑗+𝑛,𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

2𝑛
∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ − ( min

1≤𝑖≤2𝑛
{𝛿
𝑖
} − 𝑙 ‖𝑄‖1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
−1󵄩󵄩

󵄩
󵄩
󵄩1)

2𝑛
∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

= − ( min
1≤𝑖≤2𝑛

{𝛿
𝑖
} − 𝑙 ‖𝑄‖1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
−1󵄩󵄩

󵄩
󵄩
󵄩1)𝑉 (𝑡, 𝑍 (𝑡)) .

(28)

Hence, if 𝑙 < min1≤𝑖≤2𝑛{𝛿𝑖}/‖𝑄‖1‖𝑄
−1

‖1, inequality (8)
can be satisfied almost everywhere. Therefore, according to
Lemma 8, when the multiagent system (19) with the control
input (21) meets the conditions of Theorem 13, system (26) is
Mittag-Leffler stable at the equilibrium point 𝑍

𝑘
(𝑡) = 0 (𝑘 =

0, 1). It follows from (
𝑌0(𝑡)
𝑌1(𝑡)

) = 𝑄𝑍(𝑡) that lim
𝑡→+∞

𝑌
𝑘
(𝑡) =

0 (𝑘 = 0, 1). This implies that lim
𝑡→+∞

|𝑥
𝑖0(𝑡) − 𝑥

𝑟0(𝑡)| = 0
and lim

𝑡→+∞
|𝑥
𝑖1(𝑡) − 𝑥

𝑟1(𝑡)| = 0 because 𝑦
𝑖0(𝑡) = 𝑥

𝑖0(𝑡) −

𝑥
𝑟0(𝑡), 𝑦𝑖1(𝑡) = 𝑥

𝑖1(𝑡) − 𝑥
𝑟1(𝑡), 𝑖 = 1, 2, . . . , 𝑛. Therefore,

system (21) realizes the second-order leader-following con-
sensus.

The proof of Theorem 13 is completed.

5. Numerical Simulations

Several numerical simulations are presented to verify the
results of Theorem 11 proposed in Section 3 and Theorem 13
proposed in Section 4. We consider a group of 7 followers
and a leader with an interaction graph given in Figure 1. Note
that the interaction graph is connected. The corresponding
Laplacian matrix is chosen as 𝑎

𝑖𝑗
= 1, if (V

𝑗
, V
𝑖
) ∈ W, and

𝑎
𝑖𝑗

= 0 otherwise. It can be computed that the eigenvalues
of the matrix𝐻 are 0.07, 0.382, 0.6767, 1.4080, 2.6180, 3.2982,
and 4.5472, respectively, and ‖𝑃‖1 = 2.4835, ‖𝑃−1‖1 = 2.3669.
Let 𝑏
𝑖
= 1, if 𝑖 = 3, and 𝑏

𝑖
= 0 otherwise.

Suppose that the nonlinear intrinsic dynamics of
each agent in system (10) is described by 𝑓(𝑡, 𝑥

𝑖
(𝑡)) =

(1/6)sin(𝑥
𝑖
(𝑡)). Let the initial states of system (10) be

𝑥(0) = [−5, 8, −9, 2, 10, −3, 0]𝑇, where 𝑥(0) = [𝑥1(0),
𝑥2(0), . . . , 𝑥7(0)]

𝑇. The nonlinear intrinsic dynamics of the
virtual leader is given by 𝑓(𝑡, 𝑥

𝑟
(𝑡)) = (1/6)sin(𝑥

𝑟
(𝑡)). Let the

initial states of system (11) be 𝑥
𝑟
(0) = 12. We choose 𝛼 = 0.9

and 𝛽 = 15 to satisfy the conditions of Theorem 11.
Figure 2 shows the trajectories of the virtual leader in

system (11) and the followers in system (10). It is easy to see
from Figure 2 that the leader-following consensus is achieved
in system (10).

We next present the simulation results to demonstrate
Theorem 13 in Section 4. Suppose that the nonlinear intrinsic
dynamics of each agent in system (19) is described by
𝑓(𝑡, 𝑥

𝑖0(𝑡), 𝑥𝑖1(𝑡)) = (1/50)sin(𝑥
𝑖0(𝑡)) + (1/50)cos(𝑥

𝑖1(𝑡)).
Let the initial states of system (19) be 𝑋0(𝑡) =

[−5, 8, −9, 2, 10, −3, 0]𝑇, 𝑋1(𝑡) = [5, −9, 2, −3, −7, 1, −4]𝑇.
The nonlinear intrinsic dynamics of the virtual
leader in system (20) is given by 𝑓(𝑡, 𝑥

𝑟0(𝑡), 𝑥𝑟1(𝑡)) =

(1/50)sin(𝑥
𝑟0(𝑡)) + (1/50)cos(𝑥r1(𝑡)). Let the initial states of

system (20) be 𝑥
𝑟0(0) = 12, 𝑥

𝑟1(0) = 6. We choose 𝛼 = 0.9
and 𝛽 = 15 to satisfy the conditions of Theorem 13.

Figures 3 and 4 show the states of the virtual leader in
system (20) and the followers in system (19). Figures 5 and 6
are trajectories of the leader and the followers from 𝑡 = 0 to
𝑡 = 3. It is easy to see from Figures 3 and 4 that the second-
order leader-following consensus is achieved in system (19).

6. Conclusion

In this paper, the leader-following consensus of fractional
nonlinear multiagent systems is investigated via an undi-
rected fixed interaction graph.Mittag-Leffler stability and the
fractional Lyapunov direct method are firstly introduced into
fractional multiagent systems to derive the main results. The
control protocols are provided to extend the leader-following
consensus for integer-order dynamics to fractional dynamics.
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Figure 3: The states 𝑥
𝑖1(𝑡) (𝑖 = 0, 1, . . . , 7) of all agents in system

(22) and system (21) with 𝛼 = 0.9.
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Figure 4: The states 𝑥
𝑖0(𝑡) (𝑖 = 0, 1, . . . , 7) of all agents in system

(22) and system (21) with 𝛼 = 0.9.

The sufficient conditions are obtained such that the leader-
following consensus can be achieved in the systems with both
single-integrator dynamics and double-integrator dynamics
over a combination of the tools of Lyapunov method, matrix
theory, and fractional calculus theory.

An effective and systematic approach to investigate the
leader-following consensus problem of fractional systems
is provided in this paper. Because most of the real-world
complex networks are directed networks, such as World
Wide Web and mobile communication network, we will
study the leader-following consensus of fractional nonlinear
multiagent systems in directed networks of agents in the
future.
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Figure 5: The states 𝑥
𝑖1(𝑡) (𝑖 = 0, 1, . . . , 7) of all agents in system

(22) and system (21) with 𝛼 = 0.9.
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Figure 6: The states 𝑥
𝑖0(𝑡) (𝑖 = 0, 1, . . . , 7) of all agents in system

(22) and system (21) with 𝛼 = 0.9.
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