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This paper considers the global practical output tracking problem by at least continuously differentiable (𝐶1) state feedback for a
class of uncertain nonlinear systems whose linearization around the origin may contain uncontrollable modes. Based on utilizing
the homogeneous domination approach, we not only propose conditions of constructing a global continuously differentiable (𝐶1)
controller, but also provide explicit design schemes for such systems. Finally, a numerical example demonstrates the effectiveness
of the result.

1. Introduction

The problem of global output tracking control of nonlinear
systems is one of the most important and challenging prob-
lems in the field of nonlinear control. One of recent focuses
in the nonlinear control research is the global practical output
tracking problem for a class of inherently nonlinear systems,
described by the following equations:

𝑧̇
𝑖
= 𝑧
𝑝𝑖

𝑖+1 +𝑓
𝑖
(𝑡, 𝑧, 𝑢) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑧̇
𝑛
= 𝑢
𝑝𝑛 +𝑓
𝑛
(𝑡, 𝑧, 𝑢) ,

𝑦 = 𝑧1,

(1)

where 𝑧 = (𝑧1, . . . , 𝑧𝑛)
T
∈ 𝑅
𝑛 and 𝑢 ∈ 𝑅 are the system state

and the control input, respectively. For 𝑖 = 1, . . . , 𝑛, 𝑓
𝑖
(𝑡, 𝑧, 𝑢)

are unknown continuous (𝐶0) nonlinear functions of the
states and the control input and the power 𝑝

𝑖
∈ 𝑅
+

odd (𝑖 =

1, . . . , 𝑛 − 1) is a positive odd integer or a positive ratio of odd
integers with 𝑝

𝑛
:= 1.

The uncertain system (1) represents a general class of
nonlinear systems considered in the nonlinear control lit-
erature. When 𝑝

𝑖
= 1, 𝑖 = 1, . . . , 𝑛, system (1) reduces

to the well-known feedback linearizable form, for which
numerous design methodologies are developed; see [1–5]
and the references therein. For the case that any one of
the powers 𝑝

𝑖
(𝑖 = 1, 2, . . . , 𝑛) is greater than 1, system (1)

is known as the power integrator system whose Jacobian
linearization is uncontrollable. In recent years, the problem
of global practical output tracking control of the power
integrator systems in form (1) has been studied extensively
with various restrictions on the integrator powers and the
additive functions 𝑓

𝑖
(𝑡, 𝑧, 𝑢)’s, which directly influence the

availability of smooth or nonsmooth controllers; see [6–10]
and the references therein. For details, in [6], practical output
tracking via state feedback for high-order (𝑝

𝑖
≥ 1, 𝑖 =

1, . . . , 𝑛) nonlinear systems was considered. Further, in [8,
9], the practical output feedback tracking problem was also
investigated for a class of nonlinear systems with higher-
order growing unmeasurable states, extending the results on
stabilization in [11, 12].

For the more general nonlinear systems with arbitrary
𝑝
𝑖
(> 0)’s, existing results toward the global output tracking

problem for system (1) can be found in the literature. The
global stabilization problem of system (1) for 𝑝

𝑖
> 0

(not restricted to be larger than or equal to one) has been
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studied for nonlinear systems in [13, 14]. In [13], a continuous
controller under a certain nonlinear growth condition is
studied.

The techniques from [11, 14] were recently extended in
[10, 15] to the practical output tracking problem for non-
linear systems (1) by a continuous state feedback controller.
However, from the practical point of view, the smoothness
of the controllers is always desired because controllers at
least 𝐶1 avoid the infinity controller gains around the origin
and guarantee the uniqueness of the solution [16, 17]. Initial
efforts were made in [18] to obtain 𝐶

1 or smooth controllers
by upgrading the unified homogeneous degree to a set of
decreasing homogeneous degrees to solve the global stabi-
lization problem of system (1) for 𝑝

𝑖
> 0. It was shown

that these monotone degrees gave us much flexibility in the
controller design, which will lead to some nicer features for
the controlled system.

In this paper, we will further generalize the results in [18]
to solve the practical output tracking problem.This work will
develop a detailed recursive design method which constructs
a series of integral Lyapunov functions as well as the explicit
formula of the continuously differentiable controllers.

Throughout this study we use the following notations.

Notations. 𝑅+ denotes the set of all the nonnegative real
numbers and 𝑅

𝑛 denotes the real 𝑛-dimensional space. A
function 𝑓 : 𝑅

𝑛
→ 𝑅 is said to be 𝐶𝑘-function, if its partial

derivatives exist and are continuous up to order 𝑘, 1 ≤ 𝑘 <

∞. A 𝐶
0 function means it is continuous. A 𝐶

∞ function
means it is smooth; that is, it has continuous partial derivatives
of any order. The arguments of functions (or functionals) are
sometimes omitted or simplified; for instance, we sometimes
denote a function 𝑓(𝑥(𝑡)) by 𝑓(𝑥), 𝑓(⋅), or 𝑓.

2. Problem Statement and Preliminaries

The purpose of this paper is to solve the problem of global
practical output tracking by state feedback. Let 𝑦

𝑟
(𝑡) be a

time-varying 𝐶
1-bounded on 𝑡 ∈ [0, +∞) reference signal

and, for any given tolerance 𝜀 > 0, design a continuously
differentiable state feedback controller of the form

𝑢 = 𝑢 (𝑧, 𝑦
𝑟
(𝑡)) , (2)

such that

(i) all the states of the closed-loop system (1)-(2) are well-
defined on 𝑡 ∈ [0, +∞) and globally bounded;

(ii) for any initial condition 𝑧(0) ∈ 𝑅
𝑛 there is a finite time

𝑇 > 0, such that
󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦

𝑟
(𝑡)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑧1 (𝑡) − 𝑦

𝑟
(𝑡)

󵄨󵄨󵄨󵄨 < 𝜀, ∀𝑡 ≥ 𝑇 > 0. (3)

To construct a global practical output tracking 𝐶1 controller
for nonlinear system (1), we introduce the following assump-
tions.

Assumption 1. For 𝑖 = 1, . . . , 𝑛, there are decreasing constants
𝜏
𝑖
= 𝑞
𝑖
/𝑑
𝑖
, with an even integer 𝑞

𝑖
and an odd integer 𝑑

𝑖
(𝜏1 ≥

𝜏2 ≥ ⋅ ⋅ ⋅ ≥ 𝜏
𝑛
≥ 0), such that

(i) the following holds:
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥1, . . . , 𝑥𝑖)

󵄨󵄨󵄨󵄨

≤ 𝑏
𝑖
(𝑥
1
, . . . , 𝑥

𝑖
) (

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝑟1
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝑟𝑖
) ,

(4)

where 𝑏
𝑖
(𝑥
1
, . . . , 𝑥

𝑖
) > 0 are smooth functions and 𝑟

𝑖
’s

are defined as

𝑟1 = 1,

𝑟
𝑖+1𝑝𝑖 = 𝑟

𝑖
+ 𝜏
𝑖
, 𝑖 = 1, . . . , 𝑛;

(5)

(ii) the 𝑟
𝑖
’s defined by (i) satisfy the following condition:

𝑟
𝑛
+ 𝜏
𝑛
≥ max

1≤𝑖≤𝑛
{𝑟
𝑖
} . (6)

Assumption 2. The reference signal 𝑦
𝑟
(𝑡) is continuously

differentiable. Moreover, there is a known constant 𝑀 > 0,
such that

󵄨󵄨󵄨󵄨𝑦𝑟 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨 ̇𝑦
𝑟
(𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀, ∀𝑡 ∈ [0,∞) . (7)

This section cites some definitions and technical lemmas
which are used in the main body of this investigation.

Next, we will present several useful lemmas borrowed
from [4, 13, 14, 19], which will play an important role in our
later controller design.

Lemma 3. For all 𝑥, 𝑦 ∈ 𝑅 and a constant 𝑝 ≥ 1, the following
inequalities hold:

(i) |𝑥+𝑦|𝑝 ≤ 2
𝑝−1

|𝑥
𝑝
+𝑦
𝑝
|, (|𝑥|+|𝑦|)1/𝑝 ≤ |𝑥|

1/𝑝
+|𝑦|
1/𝑝

≤

2
(𝑝−1)/𝑝

(|𝑥| + |𝑦|)
1/𝑝;

if 𝑝 ∈ 𝑅
≥1

𝑜𝑑𝑑
then

(ii) |𝑥 − 𝑦|
𝑝
≤ 2
𝑝−1

|𝑥
𝑝
− 𝑦
𝑝
|, |𝑥1/𝑝 − 𝑦

1/𝑝
| ≤ 2
(𝑝−1)/𝑝

|𝑥 −

𝑦|
1/𝑝.

Lemma 4. For given positive real numbers𝑚, 𝑛 and a positive
function 𝑎(𝑥, 𝑦), there exists a positive function 𝑐(𝑥, 𝑦), such
that

𝑎 (𝑥, 𝑦) |𝑥|
𝑚 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑛

≤ 𝑐 (𝑥, 𝑦) |𝑥|
𝑚+𝑛

+
𝑛

𝑛 + 𝑚
(

𝑚

(𝑚 + 𝑛) 𝑐 (𝑥, 𝑦)
)

𝑚/𝑛

⋅ 𝑎 (𝑥, 𝑦)
(𝑚+𝑛)/𝑛 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨

𝑚+𝑛

.

(8)

Lemma 5. For any positive real numbers 𝑥, 𝑦 and 𝑚 ≥ 1, the
following inequality holds:

𝑥 ≤ 𝑦+(
𝑥

𝑚
)

𝑚

(
(𝑚 − 1)

𝑦
)

𝑚−1

. (9)

Lemma 6. Let 𝑥
1
, . . . , 𝑥

𝑛
, 𝑝 > 0 be real numbers. Then, the

following inequality holds:

(𝑥1 + ⋅ ⋅ ⋅ + 𝑥
𝑛
)
𝑝

≤ max (𝑛𝑝−1, 1) ⋅ (𝑥𝑝1 + ⋅ ⋅ ⋅ + 𝑥
𝑝

𝑛
) . (10)
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3. Continuously Differentiable State Feedback
Controller Design

In this section, we will construct a continuously differentiable
state feedback tracking controller which is addressed in a
step-by-step manner for system (1).

Theorem 7. Under Assumptions 1–2, the global practical
output tracking problem of system (1) can be solved by a
continuously differentiable (𝐶1) state feedback controller of
form (2).

Proof. Let 𝜌 ∈ 𝑅
+

odd be a constant satisfying 𝜌 ≥ max
1≤𝑖≤𝑛

{𝑟
𝑖
+

𝜏
𝑖
}, where 𝜏

𝑖
and 𝑟
𝑖
are defined by Assumption 1.

Let 𝑥
1
= 𝑧
1
− 𝑦
𝑟
and given 𝑥

𝑖
= 𝑧
𝑖
, 𝑖 = 2, . . . , 𝑛. Then we

have

𝑥̇1 = 𝑥
𝑝1
2 +𝑓1 (𝑥1 +𝑦

𝑟
) − ̇𝑦
𝑟
(𝑡) ,

𝑥̇
𝑗
= 𝑥
𝑝𝑗

𝑗+1 +𝑓
𝑗
(𝑥1 +𝑦

𝑟
, 𝑥2, . . . , 𝑥𝑗) ,

𝑗 = 2, . . . , 𝑛 − 1,

𝑥̇
𝑛
= 𝑢+𝑓

𝑛−1 (𝑥1 +𝑦
𝑟
, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛) ,

𝑦 = 𝑥1 +𝑦
𝑟
.

(11)

Initial Step. Choose

𝑉1 (𝑥1) = ∫

𝑥1

0
(𝑠
(𝑟𝑛+𝜏𝑛)/𝑟1 − 0)

(2𝜌−𝑟1−𝜏1)/(𝑟𝑛+𝜏𝑛)
𝑑𝑠

=
𝑟1

2𝜌 − 𝜏1
𝑥
(2𝜌−𝜏1)/𝑟1
1

(12)

which is positive definite, proper, and 𝐶
1 due to the fact that

2𝜌 − 𝜏
1
≥ 2𝑟
1
+ 𝜏
1
. Then, the time derivative of 𝑉

1
(𝑥
1
) along

the trajectory of (1) is

𝑉̇1 (𝑥1) = 𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 [𝑥

𝑝1
2 +𝑓1 (𝑥1 +𝑦

𝑟
) − ̇𝑦
𝑟
] . (13)

Further, it follows from Assumptions 1(ii) and 2 and Lemmas
3–5 that

𝑉̇1 (𝑥1) ≤ 𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 𝑥

∗𝑝1
2

+𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 (𝑥

𝑝1
2 −𝑥
∗𝑝1
2 )

+ 𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 𝑏1 (𝑥1 +𝑦

𝑟
)
󵄨󵄨󵄨󵄨𝑥1 +𝑦

𝑟

󵄨󵄨󵄨󵄨

(𝜏1+𝑟1)/𝑟1

+𝑀𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1

≤ 𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 𝑥

∗𝑝1
2

+𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 (𝑥

𝑝1
2 −𝑥
∗𝑝1
2 )

+ 2𝜏1/𝑟1𝑥2𝜌/𝑟11 𝑏̃1 (𝑥1) + 𝐵1 (𝑥1) 𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1

≤ 𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 𝑥

∗𝑝1
2

+𝑥
(2𝜌−𝜏1−𝑟1)/𝑟1
1 (𝑥

𝑝1
2 −𝑥
∗𝑝1
2 )

+ (2𝜏1/𝑟1 𝑏̃1 (𝑥1) + 𝐵1 (𝑥1)) 𝑥
2𝜌/𝑟1
1 + 𝛿,

(14)

where 𝐵
1
(𝑥
1
) = [𝐵

1
(𝑥
1
)]
2𝜌/(2𝜌−𝜏1−𝑟1)/𝛿

(𝜏1+𝑟1)/(2𝜌−𝜏1−𝑟1),
𝐵
1
(𝑥
1
) ≥ (2

𝜏1/𝑟1𝑏
1
(𝑥
1
+ 𝑦
𝑟
)𝑀
(𝜏1+𝑟1)/𝑟1 + 𝑀), and 𝛿 > 0 is any

real constant.
Since 𝑏

1
(⋅) is smooth function and 𝑦

𝑟
(𝑡) is bounded, we

can choose 𝑏̃
1
(𝑥
1
) ≥ 𝑏
1
(𝑥
1
+ 𝑦
𝑟
).

Design the virtual controller 𝑥∗𝑝1
2

as

𝑥
∗𝑝1
2 = −𝑥

(𝜏1+𝑟1)/𝑟1
1 𝛽1 (𝑥1)

= − (𝑥
(𝜏𝑛+𝑟𝑛)/𝑟1
1 )

(𝜏1+𝑟1)/(𝜏𝑛+𝑟𝑛)
𝛽1 (𝑥1)

= − 𝜉
𝑟2𝑝1/(𝜏𝑛+𝑟𝑛)
1 𝛽1 (𝑥1)

(15)

with a smooth function 𝛽
1
(𝑥
1
) = 𝑛+2

𝜏1/𝑟1 𝑏̃
1
(𝑥
1
)+𝐵
1
(𝑥
1
), and

then we have

𝑉̇1 (𝑥1) ≤ − 𝑛𝑥
2𝜌/𝑟1
1 +𝑥

(2𝜌−𝜏1−𝑟1)/𝑟1
1 (𝑥

𝑝1
2 −𝑥
∗𝑝1
2 ) + 𝛿. (16)

Inductive Step. Suppose, at step (𝑘 − 1), there exist a series of
smooth functions 𝛽

𝑖
(𝑥
1
, . . . , 𝑥

𝑖
) > 0, 𝑖 = 1, . . . , 𝑘 − 1, with the

following virtual controllers:

𝑥
∗

1 = 0,

𝑥
∗𝑝1
2 = − 𝜉

𝑟2𝑝1/(𝑟𝑛+𝜏𝑛)
1 𝛽1 (𝑥1) ,

.

.

.

𝑥
∗𝑝𝑘−1
𝑘

= − 𝜉
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)

𝑘−1 𝛽
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1) ,

𝜉1 = 𝑥
(𝑟𝑛+𝜏𝑛)/𝑟1
1 −𝑥

∗(𝑟𝑛+𝜏𝑛)/𝑟1
1

𝜉2 = 𝑥
(𝑟𝑛+𝜏𝑛)/𝑟2
2 −𝑥

∗(𝑟𝑛+𝜏𝑛)/𝑟2
2

.

.

.

𝜉
𝑘
= 𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
−𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
,

(17)

such that

𝑉̇
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

≤ − (𝑛 − 𝑘 + 2) (𝜉2𝜌/(𝑟𝑛+𝜏𝑛)1 + ⋅ ⋅ ⋅ + 𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 )

+ 𝜉
(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 (𝑥

𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

)

+ (𝑘 − 1) 𝛿.

(18)
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We claim that (18) also holds at step k. To prove this claim,
consider the Lyapunov function

𝑉
𝑘
(𝑥1, . . . , 𝑥𝑘)

= 𝑉
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1) +𝑊

𝑘
(𝑥1, . . . , 𝑥𝑘)

= 𝑉
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

+∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
(𝑟𝑛+𝜏𝑛)/𝑟𝑘 −𝑥

∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)

𝑑𝑠.

(19)

The function𝑉
𝑘
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) can be shown to be𝐶1, proper,

and positive definite with the following property: for 𝑖 =

1, . . . , 𝑘 − 1,

𝜕𝑊
𝑘

𝜕𝑥
𝑖

= −
2𝜌 − 𝑟

𝑘
− 𝜏
𝑘

(𝑟
𝑛
+ 𝜏
𝑛
)

⋅ ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
(𝑟𝑛+𝜏𝑛)/𝑟𝑘 −𝑥

∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)−1

𝑑𝑠

⋅

𝜕 (𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)

𝜕𝑥
𝑖

,

𝜕𝑊
𝑘

𝜕𝑥
𝑘

= (𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘 −𝑥

∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)

= 𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

(20)

and there is a known constant 𝐿 > 0 such that

𝑊
𝑘
≥ 𝐿 (𝑥

𝑘
−𝑥
∗

𝑘
)
(2𝜌−𝑟𝑘−𝜏𝑘)/𝑟𝑘

. (21)

Proofs of these properties proceed just in the same way as
in the proofs for [20, Propositions 1 and 2] and [21], where
the set of positive odd integers is considered instead of 𝑅odd
which is used in this paper.

With these properties, we obtain

𝑉̇
𝑘
(𝑥1, . . . , 𝑥𝑘) ≤ − (𝑛 − 𝑘 + 2) (𝜉2𝜌/(𝑟𝑛+𝜏𝑛)1 + ⋅ ⋅ ⋅

+ 𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 ) + 𝜉

(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 (𝑥

𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

)

+ (𝑘 − 1) 𝛿 + 𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

(𝑥
∗𝑝𝑘

𝑘+1

+𝑓
𝑘
(𝑥1 +𝑦

𝑟
, 𝑥2, . . . , 𝑥𝑘)) +

𝑘−1
∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

𝑥̇
𝑖

+ 𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

(𝑥
𝑝𝑘

𝑘+1 −𝑥
∗𝑝𝑘

𝑘+1)

(22)

for a virtual controller 𝑥∗𝑝𝑘
𝑘+1

to be determined later. In order
to proceed further, a bounding estimate for each term in the
right hand side of (22) is needed. The terms in (22) can be
estimated using Propositions A.1–A.3 in the appendix.

Substituting the results of Propositions A.1–A.3 into (22),
we arrive at

𝑉̇
𝑘
(𝑥1, . . . , 𝑥𝑘)

≤ − (𝑛 − 𝑘 + 1) (𝜉2𝜌/(𝑟𝑛+𝜏𝑛)1 + ⋅ ⋅ ⋅ + 𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 )

+ 𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

𝑥
∗𝑝𝑘

𝑘+1

+ 𝜅
𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

+ 𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

(𝑥
𝑝𝑘

𝑘+1 −𝑥
∗𝑝𝑘

𝑘+1) + 𝑘𝛿,

(23)

where
𝜅
𝑘
(𝑥1, . . . , 𝑥𝑘) (≥ 𝑔

𝑘
(𝑥1, . . . , 𝑥𝑘) + ℎ

𝑘
(𝑥1, . . . , 𝑥𝑘)

+ 𝑙
𝑘
(𝑥1, . . . , 𝑥𝑘))

(24)

is a smooth positive function.
Therefore, if we take the virtual control 𝑥∗

𝑘+1
as

𝑥
∗𝑝𝑘

𝑘+1 = − 𝜉
𝑟𝑘+1𝑝𝑘/(𝑟𝑛+𝜏𝑛)

𝑘
{(𝑛 − 𝑘 + 1) + 𝜅

𝑘
(𝑥1, . . . , 𝑥𝑘)}

=: − 𝜉
𝑟𝑘+1𝑝𝑘/(𝑟𝑛+𝜏𝑛)

𝑘
𝛽
𝑘
(𝑥1, 𝑥2 . . . , 𝑥𝑘) ,

(25)

then we obtain

𝑉̇
𝑘
(𝑥1, 𝑥2, . . . , 𝑥𝑘) ≤ − (𝑛 − 𝑘 + 1)

⋅ (𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
1 + ⋅ ⋅ ⋅ + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

)

+ 𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

(𝑥
𝑝𝑘

𝑘+1 −𝑥
∗𝑝𝑘

𝑘+1) + 𝑘𝛿

(26)

which proves the inductive argument.
At the 𝑛th step, by applying the feedback control

𝑢 = 𝑥
𝑛+1 = − 𝜉

𝑛
𝛽
𝑛
(𝑥1, 𝑥2 . . . , 𝑥𝑛) = −𝛽

𝑛
(⋅) (𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑛

𝑛

+𝛽
𝑛−1 (⋅) (𝑥

(𝑟𝑛+𝜏𝑛)/𝑟𝑛−1
𝑛−1 + ⋅ ⋅ ⋅

+ 𝛽2 (⋅) (𝑥
(𝑟𝑛+𝜏𝑛)/𝑟2
2 +𝛽1 (⋅) 𝑥

(𝑟𝑛+𝜏𝑛)/𝑟1) ⋅ ⋅ ⋅))

(27)

with the 𝐶1, proper, and positive definite Lyapunov function
𝑉
𝑛
(𝑥
1
, 𝑥
2
. . . , 𝑥
𝑛
) constructed via the inductive procedure, we

arrive at

𝑉̇
𝑛
(𝑥1, 𝑥2, . . . , 𝑥𝑛)

≤ − (𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
1 + ⋅ ⋅ ⋅ + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑛−1 + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑛

)

+ 𝑛𝛿.

(28)

Recall that 𝑉(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = ∑

𝑛

𝑘=1
𝑊
𝑘
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
),

where𝑊
𝑘
’s are defined in (19).Then, it follows fromLemma 6

that, for any 𝜎 > 0,

𝑉
𝜎
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ 𝑐

𝑛

∑

𝑘=1
𝑊
𝜎

𝑘
(𝑥1, 𝑥2, . . . , 𝑥𝑘) ,

∀ (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑅
𝑛
,

(29)

where 𝑐 := max(1, 𝑛𝜎−1).
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Moreover, we have

𝑊
𝑘
(𝑥1, 𝑥2, . . . , 𝑥𝑘)

≤
󵄨󵄨󵄨󵄨𝑥𝑘 −𝑥

∗

𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
−𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

󵄨󵄨󵄨󵄨󵄨

(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)

≤ 21−𝑟𝑘/(𝑟𝑛+𝜏𝑛) 󵄨󵄨󵄨󵄨󵄨𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
−𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑟𝑘/(𝑟𝑛+𝜏𝑛)

⋅
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
−𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

󵄨󵄨󵄨󵄨󵄨

(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)

≤ 2 󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

(2𝜌−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
= 2 (󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

2𝜌/(𝑟𝑛+𝜏𝑛)
)
𝛼

,

(30)

where 𝛼 = (2𝜌 − 𝜏
𝑘
)/2𝜌. Therefore,

𝑉̇
𝑛
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ −

1
2
𝑉

1/𝛼
𝑛

(𝑥1, 𝑥2, . . . , 𝑥𝑛) + 𝑛𝛿

= −(
𝑉
𝑛
(𝑥1, 𝑥2, . . . , 𝑥𝑛)

2𝛼
)

1/𝛼

+ 𝑛𝛿.

(31)

Inequality (31) will show that the state 𝑥(𝑡) of closed-loop
system (11)–(27) is well-defined on [0, +∞) and globally
bounded. To prove this, first introduce the following set:

Ψ = {𝑥 (𝑡) ∈ 𝑅
𝑛
| 𝑉
𝑛
(𝑥) ≥ (4𝑛𝛿)𝛼} , (32)

and let 𝑥(𝑡) be the trajectory of (11) with an initial state 𝑥(0).
If 𝑥(𝑡) ∈ Ψ, then it follows from (32) that

𝑉̇
𝑛
(𝑥 (𝑡)) ≤ −

1
2
𝑉

1/𝛼
𝑛

(𝑥 (𝑡)) + 𝑛𝛿 ≤ − 𝑛𝛿 < 0. (33)

This implies that as long as 𝑥(𝑡) ∈ Ψ, 𝑉
𝑛
(𝑥(𝑡)) is strictly

decreasing with time 𝑡, and hence 𝑥(𝑡) must enter the
complement set 𝑅𝑛 − Ψ in a finite time 𝑇 ≥ 0 and stay there
forever. Therefore, (33) leads to

𝑉
𝑛
(𝑥 (𝑡)) −𝑉

𝑛
(𝑥 (0)) = ∫

𝑡

0
𝑉̇
𝑛
(𝑥 (𝑡)) 𝑑𝑡 < 0,

𝑡 ∈ [0, 𝑇) ,

𝑉
𝑛
(𝑥 (𝑡)) < (4𝑛𝛿)𝛼 , 𝑡 ∈ [𝑇,∞) ,

(34)

which shows 𝑉
𝑛
∈ 𝐿
∞ and so do 𝑥

1
and𝑊

𝑘
. By 𝑧
1
= 𝑥
1
+ 𝑦
𝑟

and 𝑦
𝑟
∈ 𝐿
∞, we conclude that 𝑥

1
∈ 𝐿
∞ as well. Noting

𝑥
∗𝑝1
2 = −𝑥

(𝑟1+𝜏1)/𝑟1
1 (𝑛 + 𝜅1 (𝑥1)) = − 𝑥

(𝑟1+𝜏1)/𝑟1
1 𝛽1 (𝑥1) (35)

and 𝜅
1
(𝑥
1
) is smooth function of 𝑥

1
, we have 𝑥∗𝑝1

2
∈ 𝐿
∞.

Since 𝑊
2
∈ 𝐿
∞ and the inequality (21) holds, we have

(𝑥
2
− 𝑥
∗

2
) ∈ 𝐿
∞ and 𝑥

2
∈ 𝐿
∞. Inductively, we can prove 𝑥

𝑖
∈

𝐿
∞, 𝑖 = 3, 4, . . . , 𝑛 and so do 𝑥(𝑡).
Thus, the solution 𝑥(𝑡) of system (11) is well-defined and

globally bounded on [0, +∞).
Next, it will be shown that
󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦

𝑟
(𝑡)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑧1 (𝑡) − 𝑦

𝑟
(𝑡)

󵄨󵄨󵄨󵄨 < 𝜀, ∀𝑡 ≥ 𝑇 > 0. (36)

This is easily shown from (21) and (34) and by tuning the
parameter 𝛿 as follows:

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦
𝑟
(𝑡)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑥1 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑉
𝑛
(𝑥 (𝑡)) ≤ (4𝑛𝛿)

𝛼
< 𝜀. (37)

Therefore, for any 𝜀 > 0, there is globally practical output
tracking such that (36) holds.

This completes the proof of Theorem 7.

4. An Illustrative Example

In this section, we give a simple numerical example to
illustrate the correctness and effectiveness of the theoretical
results by considering the following nonlinear system:

𝑧̇1 = 𝑧
7/3
2 +𝜆1 (𝑡) 𝑧

2
1 ,

𝑧̇2 = 𝑢+𝜆2 (𝑡) 𝑧
5/7
2 sin 𝑧1,

𝑦 = 𝑧1,

󵄨󵄨󵄨󵄨𝜆1 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 2,

󵄨󵄨󵄨󵄨𝜆2 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 3,

(38)

where𝑝
1
= 7/3,𝑝

2
= 1 and𝜆

1
(𝑡), 𝜆
2
(𝑡) represent anunknown

bounded time-varying function and parameter, respectively.
Our objective is to design a practical continuously differ-

entiable (𝐶1) output tracking controller such that the output
of system (38) tracks a desired reference signal 𝑦

𝑟
, and all the

states of system (38) are globally bounded.
Clearly, the system is of form (1). It is worth pointing

out that although system (38) is simple, it cannot solve the
global practical tracking problem using the design method
presented in [6, 10]. Choose 𝑟

1
= 1,𝜏
1
= 2/3, then 𝑟

2
= 5/7,

and 𝜏
2
= 4/7. By Lemma 4, it is easy to obtain

󵄨󵄨󵄨󵄨𝑓1 (⋅)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝜆
1
𝑧
2

1

󵄨󵄨󵄨󵄨󵄨
≤ (1+ 𝑧

2

1
)
󵄨󵄨󵄨󵄨𝑧1

󵄨󵄨󵄨󵄨

5/3
,

󵄨󵄨󵄨󵄨𝑓2 (⋅)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝜆
2
(𝑡) 𝑧
4/5

2
𝑧
2

1

󵄨󵄨󵄨󵄨󵄨

≤ 3 (1 + (1 + 𝑧
2

1
)
2

+ 𝑧
2

2
) (

󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨

9/7

+
󵄨󵄨󵄨󵄨𝑧2

󵄨󵄨󵄨󵄨

9/5

) .

(39)

Clearly, Assumption 1 holds with 𝑏(𝑧
1
) = (1 + 𝑧

2

1
), 𝑏(𝑧
1
, 𝑧
2
) =

3(1 + (1 + 𝑧
2

1
)
2
+ 𝑧
2

2
); according to the design procedure

proposed in Section 3, we can obtain a continuously differ-
entiable (𝐶1) tracking controller:

𝑢 = − 16 (𝑧
9/5

2
+𝛽
1
(𝑧
1
−𝑦
𝑟
)
3

) [1

+ 16 (1 + (𝑧
1
−𝑦
𝑟
)
2

)
4

𝛽
4

1

+
4096

𝛿27/43
(1 + (𝑧

1
−𝑦
𝑟
)
2

)
15

𝛽
6

1
+ 3𝑏
2
(𝑧
1
−𝑦
2
, 𝑧
2
)

+ 54𝛽
2

1
𝑏
2

2
(𝑧
1
−𝑦
2
, 𝑧
2
) +

36

𝛿27/43
𝑏
2

2
(𝑧
1
−𝑦
2
, 𝑧
2
)] ,

(40)
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Figure 1: (a) Tracking error 𝑧
1
−𝑦
𝑟
for 𝛿 = 0.00225 which result about error 0.1. (b)The trajectories of 𝑧

1
and 𝑦

𝑟
for 𝛿 = 0.00225. (c) Trajectory

of state 𝑧
2
.

where

𝛽
1
= 2+ 2 (1 + (𝑧

1
−𝑦
𝑟
)
2

)

+
1

4𝛿
(3 + 2 (𝑧

1
−𝑦
𝑟
)
2

)
2

,

𝑏
2
(𝑧
1
−𝑦
𝑟
, 𝑧
2
) = 3 (1 + (1 + (𝑧

1
−𝑦
𝑟
)
2

)
2

+ 𝑧
2

2
) .

(41)

In the simulation, by choosing the initial values as 𝑧
1
(0) =

4, 𝑧
2
(0) = −3, and 𝑦

𝑟
= sin 𝑡, 𝜆

1
(𝑡) = 2 sin 𝑡, 𝜆2(𝑡) = 3. Then,

we have the following:

(i) When the parameter 𝛿 is set as 𝛿 = 0.00225, the
tracking error obtained is about 0.1 as shown in
Figures 1(a), 1(b), and 1(c).

(ii) When parameter 𝛿 is increased to 𝛿 = 0.0000225,
then the tracking error reduces to about 0.025 as
shown in Figures 2(a), 2(b), and 2(c).

5. Conclusion

This paper has developed a systematic approach to construct
a continuously differentiable (𝐶1) practical output tracking
controller for a class of inherently nonlinear systems, whose
chained integrator part has the power of positive odd rational
numbers. Such a controller guarantees that the states of
the closed-loop system are globally bounded, while the
tracking error can be bounded by any given positive number
after a finite time. Further, a simple numerical example
was performed to illustrate the effectiveness of the result
obtained.
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Figure 2: (a) Tracking error 𝑧
1
− 𝑦
𝑟
for 𝛿 = 0.0000225 which result about error 0.025. (b) The trajectories of 𝑧

1
and 𝑦

𝑟
for 𝛿 = 0.0000225. (c)

Trajectory of state 𝑧
2
.

Appendix

Proposition A.1. There exist positive smooth functions
𝑔
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) such that

𝜉
(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 (𝑥

𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

)

≤
1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 +𝑔

𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

.

(A.1)

Proof. First, whenever 𝑟
𝑘
𝑝
𝑘−1

/(𝑟
𝑛
+ 𝜏
𝑛
) ≤ 1 it follows from

Lemma 3 that

(𝑥
𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

) ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)

− (𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 21−𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛) 󵄨󵄨󵄨󵄨󵄨𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

−𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)

≤ 21−𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛) 󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)
= 𝑔
𝑘
(𝑥1, . . . , 𝑥𝑘)

⋅
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)
.

(A.2)

By the utilization of Lemma 4 and noting that 𝑟
𝑘
𝑝
𝑘−1

= 𝑟
𝑘−1

+

𝜏
𝑘−1

, it can be seen that

𝜉
(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 (𝑥

𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

)

≤ 𝜉
(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 𝑔

𝑘
(𝑥1, . . . , 𝑥𝑘)

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)

≤
1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 +𝑔

𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

(A.3)

for a smooth function 𝑔
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) > 0. However, if

𝑟
𝑘
𝑝
𝑘−1

/(𝑟
𝑛
+ 𝜏
𝑛
) ≥ 1, by the Mean ValueTheorem,

(𝑥
𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

) ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)

− (𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘



8 Mathematical Problems in Engineering

−𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

󵄨󵄨󵄨󵄨󵄨
((𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)−1

− (𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘
)
𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)−1

) = 𝑔
𝑘
(𝑥1, . . . , 𝑥𝑘)

⋅
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)−1
+
󵄨󵄨󵄨󵄨𝜉𝑘−1

󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)−1
) .

(A.4)

Finally, by Lemma 4 and again noting that 𝑟
𝑘
𝑝
𝑘−1

= 𝑟
𝑘−1

+

𝜏
𝑘−1

, it is apparent that

𝜉
(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 (𝑥

𝑝𝑘−1
𝑘

−𝑥
∗𝑝𝑘−1
𝑘

)

≤ 𝜉
(2𝜌−𝑟𝑘−1−𝜏𝑘−1)/(𝑟𝑛+𝜏𝑛)
𝑘−1 𝑔

𝑘
(𝑥1, . . . , 𝑥𝑘)

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

⋅ (
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)−1
+
󵄨󵄨󵄨󵄨𝜉𝑘−1

󵄨󵄨󵄨󵄨

𝑟𝑘𝑝𝑘−1/(𝑟𝑛+𝜏𝑛)−1
)

≤
1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 +𝑔

𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

(A.5)

for a smooth function 𝑔
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) > 0.

Proposition A.2. There exist positive smooth functions
ℎ
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) and any real number 𝛿 > 0 such that

𝜉
(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)
𝑘

𝑓
𝑘
(𝑥1 +𝑦

𝑟
, 𝑥2, . . . , 𝑥𝑘)

≤
1
2
(𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
1 + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
2 + ⋅ ⋅ ⋅ + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−2 )

+
1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 + ℎ

𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

+
1
2
𝛿.

(A.6)

Proof. Using Lemma 3, Assumptions 1–2 can be rewritten as
(for 𝑙 = 2, . . . , 𝑘)

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑥1 +𝑦
𝑟
, 𝑥2, . . . , 𝑥𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝑏
𝑘
(𝑥1 +𝑦

𝑟
, 𝑥2, . . . , 𝑥𝑘)

⋅ (
󵄨󵄨󵄨󵄨𝑥1 +𝑦

𝑟

󵄨󵄨󵄨󵄨

(𝑟1+𝜏1)/𝑟1

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

(𝑟2+𝜏2)/𝑟2
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

(𝑟𝑘+𝜏𝑘)/𝑟𝑘
)

≤ 𝑏̃
𝑘
(𝑥1, . . . , 𝑥𝑘) ⋅ (

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)

+
󵄨󵄨󵄨󵄨󵄨
𝜉2 −𝛽1𝜉1

󵄨󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+ ⋅ ⋅ ⋅

+
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑘
−𝛽
𝑘−1𝜉𝑘−1

󵄨󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+𝑀
𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛))

≤ 𝑏
𝑘
(𝑥1, . . . , 𝑥𝑘) (

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+
󵄨󵄨󵄨󵄨𝜉2

󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+𝑀
𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛))

(A.7)

for smooth, positive nonzero functions 𝛽
𝑖
(𝑥1, . . . , 𝑥𝑖) =

𝛽
(𝑟𝑛+𝜏𝑛)/𝑟𝑙+1𝑝𝑙
𝑖

(𝑥1, . . . , 𝑥𝑖), 𝑖 = 1, 2, . . . , 𝑙, and 𝑏
𝑘
(𝑥1, . . . , 𝑥𝑘).

By Lemmas 4–5 and (A.7), with (2𝜌 − 𝑟
𝑙
− 𝜏
𝑙
)/(𝑟
𝑛
+ 𝜏
𝑛
) +

𝑟
𝑙+1𝑝𝑙/(𝑟𝑛 + 𝜏

𝑛
) = 2𝜌/(𝑟

𝑛
+ 𝜏
𝑛
),

𝜉
(2𝜌−𝑟𝑙−𝜏𝑙)/(𝑟𝑛+𝜏𝑛)
𝑙

𝑓
𝑙
(𝑥1 +𝑦

𝑟
, 𝑥2, . . . , 𝑥𝑙)

≤
󵄨󵄨󵄨󵄨𝜉𝑙
󵄨󵄨󵄨󵄨

(2𝜌−𝑟𝑙−𝜏𝑙)/(𝑟𝑛+𝜏𝑛)
𝑏
𝑘
(𝑥1, . . . , 𝑥𝑘)

⋅ (
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+
󵄨󵄨󵄨󵄨𝜉2

󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+ ⋅ ⋅ ⋅

+
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+𝑀
𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)) ≤

1
2
(𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
1

+ 𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
2 + ⋅ ⋅ ⋅ + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−2 ) +

1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1

+ (𝑏̂
𝑘
(𝑥1, . . . , 𝑥𝑘) + 𝐵

𝑘
(𝑥1, . . . , 𝑥𝑘)) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

+
1
2
𝛿

(A.8)

for a smooth function ℎ
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) ≥ 𝑏̂

𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) +

𝐵
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) > 0 and any real number 𝛿 > 0.

Proposition A.3. There exist positive smooth functions
𝑙
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) and any real number 𝛿 > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘−1
∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

𝑥̇
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1
2
(𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
1 + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
2 + ⋅ ⋅ ⋅ + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−2 )

+
1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 + 𝑙

𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

+
1
2
𝛿.

(A.9)

Proof. Consider

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑊
𝑘

𝜕𝑥
𝑙

𝑥̇
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄨󵄨󵄨󵄨𝑥 − 𝑥

∗

𝑘

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

(2𝜌−𝑟𝑘−𝜏𝑘)/(𝑟𝑛+𝜏𝑛)−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑥
∗(𝑟𝑘+𝜏𝑘)/𝑟𝑘

𝑘

𝜕𝑥
𝑙

𝑥̇
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

(2𝜌−𝜏𝑘−𝑟𝑛−𝜏𝑛)/(𝑟𝑛+𝜏𝑛)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑥
∗(𝑟𝑘+𝜏𝑘)/𝑟𝑘

𝑘

𝜕𝑥
𝑙

𝑥̇
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(A.10)

where the last inequality is from Lemma 3 with 𝑝 = (𝑟
𝑛
+

𝜏
𝑛
)/𝑟
𝑘
≥ 1.
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By definition of 𝑥∗
𝑘
and Lemma 4, we have

𝜕𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

𝜕𝑥
𝑙

=

𝜕 (𝛽
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1) 𝜉𝑘−1)

𝜕𝑥
𝑙

= 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

𝜕 (𝑥
(𝑟𝑛+𝜏𝑛)/𝑟𝑙

𝑙
)

𝜕𝑥
𝑙

= 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1) 𝑥

(𝑟𝑛+𝜏𝑛−𝑟𝑙)/𝑟𝑙

𝑙

= 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

⋅ (𝜉
𝑙
+𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑙

𝑙
)
(𝑟𝑛+𝜏𝑛−𝑟𝑙)/(𝑟𝑛+𝜏𝑛)

= 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1) (𝜉𝑙 +𝛽

𝑙−1𝜉𝑙−1)
(𝑟𝑛+𝜏𝑛−𝑟𝑙)/(𝑟𝑛+𝜏𝑛)

≤ 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

𝑙

∑

𝑖=𝑙−1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛−𝑟𝑙)/(𝑟𝑛+𝜏𝑛)

.

(A.11)

Thus, it follows from (A.7) giving 𝑟
𝑙+1

𝑝
𝑙
= 𝑟
𝑙
+ 𝜏
𝑙
that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

𝜕𝑥
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

⋅

𝑙

∑

𝑖=𝑙−1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛−𝑟𝑙)/(𝑟𝑛+𝜏𝑛)

⋅ (
󵄨󵄨󵄨󵄨𝑥𝑙+1

󵄨󵄨󵄨󵄨

𝑝𝑙

+

𝑙

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+𝑀
𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛))

≤ 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

𝑙

∑

𝑖=𝑙−1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛−𝑟𝑙)/(𝑟𝑛+𝜏𝑛)

⋅ (
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑙+1 +𝑥

∗(𝑟𝑛+𝜏𝑛)/𝑟𝑙+1
𝑙+1

󵄨󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)

+

𝑙

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+𝑀
𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛))

≤ 𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

𝑙

∑

𝑖=𝑙−1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛−𝑟𝑙)/(𝑟𝑛+𝜏𝑛)

⋅ (
󵄨󵄨󵄨󵄨𝜉𝑙+1

󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+
󵄨󵄨󵄨󵄨𝜉𝑙
󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)

+

𝑙

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)
+𝑀
𝑟𝑙+1𝑝𝑙/(𝑟𝑛+𝜏𝑛)) .

(A.12)

Further, it follows from Lemma 4 and the above fact that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑥
∗(𝑟𝑛+𝜏𝑛)/𝑟𝑘

𝑘

𝜕𝑥
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵱰𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

⋅ (

𝑙+1
∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛−𝑟𝑙+𝑟𝑙+1𝑝𝑙)/(𝑟𝑛+𝜏𝑛)

+𝑀
(𝑟𝑛+𝜏𝑛−𝑟𝑙+𝑟𝑙+1𝑝𝑙)/(𝑟𝑛+𝜏𝑛)) = 󵱰𝑐

𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

⋅ (

𝑙+1
∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛+𝜏𝑙)/(𝑟𝑛+𝜏𝑛)

+𝑀
(𝑟𝑛+𝜏𝑛+𝜏𝑙)/(𝑟𝑛+𝜏𝑛)) .

(A.13)

Under the realization that 𝜏
𝑙
≥ 𝜏
𝑘
, ∀𝑙 = 1, . . . , 𝑘, the following

inequalities can be obtained from Lemmas 4–5:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑊
𝑘

𝜕𝑥
𝑖

𝑥̇
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵱰𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

(2𝜌−𝜏𝑘−𝑟𝑛−𝜏𝑛)/(𝑟𝑛+𝜏𝑛)

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑥
∗(𝑟𝑘+𝜏𝑘)/𝑟𝑘

𝑘

𝜕𝑥
𝑙

𝑥̇
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵱰𝑐
𝑘−1 (𝑥1, . . . , 𝑥𝑘−1)

⋅
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

(2𝜌−𝜏𝑘−𝑟𝑛−𝜏𝑛)/(𝑟𝑛+𝜏𝑛)

⋅ (

𝑙+1
∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨

(𝑟𝑛+𝜏𝑛+𝜏𝑙)/(𝑟𝑛+𝜏𝑛)

+𝑀
(𝑟𝑛+𝜏𝑛+𝜏𝑙)/(𝑟𝑛+𝜏𝑛))

≤
1
2
(𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
1 + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
2 + ⋅ ⋅ ⋅ + 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−2 )

+
1
3
𝜉
2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘−1 + 𝑙

𝑘
(𝑥1, . . . , 𝑥𝑘) 𝜉

2𝜌/(𝑟𝑛+𝜏𝑛)
𝑘

+
1
2
𝛿

(A.14)

for smooth, strictly positive functions 𝑙
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) and any

real number 𝛿 > 0.
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