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A novel self-repairing control scheme is proposed for a helicopter with unknown disturbance. Firstly, a disturbance observer
is introduced to observe the disturbance of the system, which can produce corresponding control signals according to the
disturbance signals. Secondly, an integral sliding mode controller is designed to compensate the unobserved disturbance and
uncertainties. All of the closed-loop poles can be arbitrarily placed and the output errors converge to zero effectively through the
controller. Besides, a robust closed-loop system against disturbance and parameter uncertainties is achieved. In addition, quantum
information technique is used to increase the self-repairing control accuracy of helicopter. Finally, simulation results demonstrate
the effectiveness and feasibility of the proposed self-repairing control scheme.

1. Introduction

A helicopter is a complicated aircraft and its performance
is seriously influenced by environmental changes. Because
of its nonlinearity, heavy coupling, varying parameters, and
model uncertainty, a helicopter is very difficult to control.
We can classify the characteristics of the helicopter into
three categories: nonlinearity, uncertainty, and instability.The
control of the helicopter, therefore, represents a challenge for
control system design [1–3]. In recent years, lots of helicopter
flight control schemes have been proposed, such as adaptive
neural network control [4], fuzzy control [5], robust control
[6], and adaptive back-stepping control.

Fuzzy control is a nonlinear control method, essentially.
By using linguistic information, it possesses several advan-
tages such as model-free, robustness, rule-based algorithm,
and universal approximation theorem. It is also easy to use,
simple to design, and strong in the anti-interference function.
Recently, fuzzy control has been successfully and widely
applied to many nonlinear systems [7–10].

Sliding mode control (SMC) is a robust method that is
used to control nonlinear and uncertain systems. The SMC
does not rely on an accurate aircraft mathematical model,

and it can overcome model uncertainties and disturbance in
the system, allowing the system track reference model with
high precision. It also can stabilize some complex nonlinear
systems which are difficult to be stabilized by the state
feedback laws [11–15]. Integral slidingmode control (ISMC) is
presented in [16], and it not only makes the uncertainties and
disturbance rejected, but also achieves zero steady state error.
Moreover, ISMC is more robust than conventional SMC in
the application of electrohydraulic servo control systems.

Considering the existence of disturbance, quantum infor-
mation technique is introduced in this paper. The study
of quantum information technique [17, 18] has been a hot
research topic; therefore, the scope of the applied research on
quantum information technique is very wide [19, 20]. In this
paper, quantum information technique is used to increase the
self-repairing control accuracy of the helicopter and improve
the ability of anti-interference.

It is such a challenge to control a helicopter with its
nonlinearity, heavy coupling, varying parameters, andmodel
uncertainty. The main content of this paper is to design a
direct self-repairing flight control system for the helicopter.
The purpose of the system is to eliminate the influence of
the parameter uncertainties and external disturbance. In this
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paper, an integrative method is proposed by combining fuzzy
control, sliding mode control, and quantum information
technique together, which therefore possesses the advantages
of all three techniques. This method is both effective and
feasible, which will be verified by simulation.

The proposed method can achieve the following superi-
orities.

(i) All of the closed-loop poles can be arbitrarily
assigned.

(ii) The control system can be asymptotically stable and
the output errors can converge to zero effectively.

(iii) Robust system [21, 22] against system parame-
ter uncertainties and external disturbance can be
achieved.

This paper not only theoretically proves the stability of
the proposed method, but also verifies the effectiveness of
this method through the simulation of the helicopter control
system. Simulation results show that the proposed method
provides a feasible method for the actual design of the
helicopter control system.

This paper is organized as follows. Firstly, a disturbance
observer is introduced to observe the disturbance of the
system, which can produce control signals according to
the disturbance signals. Secondly, ISMC with fuzzy tuning
is designed. All of the closed-loop poles can be arbitrar-
ily placed, and the design procedure includes the sliding
function definition, the control law formulation, and the
stability proof for the system. The sliding function involves
the integral of the state as well as the output errors, so the
output errors can converge to zero effectively. An additional
fuzzy tuning control here is introduced to accelerate the
reaching time and reduce chattering by utilizing fuzzy logic
judge. Furthermore, quantum information technique is used
to increase the self-repairing control accuracy of helicopter.

2. Description of Mathematical Model

The helicopter is a nonlinear system with strong coupling.
In this paper, the linear model which is linearized about
equilibrium point is only considered. The state equation of
the model is as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅

𝑛 and 𝑦(𝑡) ∈ 𝑅

𝑟 are the state and the output
of the system, respectively. 𝑢(𝑡) ∈ 𝑅

𝑟 is the control vector.
𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈ 𝑅

𝑛×𝑟, and𝐶 ∈ 𝑅

𝑟×𝑛 are the parameter matrices.
Some assumptions have beenmade to achieve themethod

which is applied in the flight control system.

(1) The pair (𝐴, 𝐵) is completely controllable and (𝐴, 𝐶)

is completely observable.

(2) The disturbance 𝑛(𝑡) is unknown and bounded.

(3) Denote 𝐺
𝑖
as the 𝑖th row of the matrix 𝐺 in (17). Let

Γ = diag{𝛾
1
, 𝛾

2
, . . . , 𝛾

𝑟
}, where 𝛾

𝑖
> 0, 𝑖 = 1, . . . ,

𝑟. For the disturbance 𝑛(𝑡, 𝑥) = [𝑛

1
(𝑡, 𝑥), 𝑛

2
(𝑡, 𝑥), . . . ,

𝑛

𝑛
(𝑡, 𝑥)]

T, the following conditions are satisfied:
‖𝐺

𝑖
𝑛(𝑡, 𝑥)‖ ≤ 𝛾

𝑖
‖𝑥‖, 𝑖 = 1, . . . , 𝑟.

3. Quantum Information Technique

Quantum information is a new discipline, which is combined
by quantum mechanics and information science. In recent
years, based on the incomparable advantages on data trans-
mission security, sensor measurement sensitivity and accu-
racy, and quantum computing parallelism, it has attracted
widespread attention and development. Currently, the central
issue of quantum information technique applied research is
quantum cryptography, quantum communication, quantum
computation, quantum simulation, quantum metrology, the
physical basis of quantum information, and so on. By using
quantum information technique, the researchers can simplify
the modeling pattern so that the problems would be much
easier.

In quantum computation, |0⟩ and |1⟩ denote the two basic
states of microparticles, which are named as quantum bit
(qubit). Arbitrary single-qubit state can be expressed as the
linear combination of two basic states. The state of qubit is
not only |0⟩ and |1⟩, but also a linear combination of the state,
usually called as superposition state; namely,

󵄨

󵄨

󵄨

󵄨

𝜑⟩ = 𝛼 ⋅ |0⟩ + 𝛽 ⋅ |1⟩ , (2)

where 𝛼 and 𝛽 are a pair of complex, called the probability
amplitude of quantum state; namely, themeasurement results
in quantum state |𝜑⟩ collapsing |0⟩ with a probability of |𝛼|2
or collapsing |1⟩ with a probability of |𝛽|2 and satisfying

|𝛼|
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2

= 1.
(3)

Therefore, quantum state can be also denoted by the probabil-
ity amplitude of quantum state in the form of |𝜑⟩ = [𝛼, 𝛽]

T.
Obviously, if 𝛼 = 1, 𝛽 = 0, |𝜑⟩ is the basic state |0⟩, which
can be described by |𝜑⟩ = [1, 0]

T, then 𝛼 = 0, 𝛽 = 1, |𝜑⟩ is
the basic state |1⟩, which can be described by |𝜑⟩ = [0, 1]

T.
Generally speaking, quantum state is the unit vector of two-
dimensional complex vector space.

Due to the collapse of quantum states caused by obser-
vation, there is a continuous state between the quantum bits
|0⟩ and |1⟩, until it has been observed. The existence of
continuous state qubit and behavior has been confirmed by
a large number of experiments. And there are many different
physical systems that can be used to realize quantum bits.

Similar to the single-qubit state, double-quantum-bit
state can be expressed as
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𝜑⟩ = 𝛼

00
⋅ | 00⟩ + 𝛼

01
⋅ | 01⟩ + 𝛼

10
⋅ | 10⟩ + 𝛼

11
⋅ | 11⟩ (4)

with the probability amplitude satisfying
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(5)
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Similarly, three-qubit state can be expressed as

󵄨

󵄨

󵄨

󵄨

𝜙⟩ = 𝛼

000
⋅ | 000⟩ + 𝛼

001
⋅ | 001⟩

+ 𝛼

010
⋅ | 010⟩ + 𝛼

011
⋅ | 011⟩

+ 𝛼

100
⋅ | 100⟩ + 𝛼

101
⋅ | 101⟩

+ 𝛼

110
⋅ | 110⟩ + 𝛼

111
⋅ | 111⟩ .

(6)

And the probability amplitude satisfying
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(7)

To increase the self-repairing control accuracy of heli-
copter, quantum information technique is added in the
approach.The probability amplitudes of two quantum bits for
the module can be seen in Table 1.

4. Disturbance Observer

The helicopter is more or less subjected to disturbance, and
it will affect the system performance. Hence, the disturbance
observer [23] is designed so that the disturbance can be
suppressed. The structure of the system is expressed as
Figure 1.

Suppose the system has subjected to unknown external
disturbance, the helicopter can be expressed as the following
form:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑛 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(8)

where 𝑛(𝑡) ∈ 𝑅

𝑛 is the external disturbance. Let 𝑛 be the value
estimated of the disturbance and define:

𝑛 = 𝑛 − 𝑛 (9)

to be the observed error of the observer. 𝐿(𝑥) is the gain of
the observer and 𝑝(𝑥) is a function that needs to be designed.

Then, we obtain the form of the disturbance observer as
follows:

𝑛 = 𝑧 + 𝑝 (𝑥) ,

𝑧̇ = −𝐿 (𝑥) + 𝐿 (𝑥) ⋅ [−𝑝 (𝑥) − 𝐴 (𝑥) − 𝐵𝑢] ,

(10)

where 𝐿(𝑥) and 𝑝(𝑥) should satisfy the following equation:

𝐿 (𝑥) 𝑥̇ =

𝑑𝑝 (𝑥)

𝑑𝑡

.
(11)

The error dynamic of the observer can be expressed as

̇

𝑛̃ = ̇𝑛 −

̇

𝑛̂ = −𝑧̇ −
̇

𝑝

= 𝐿 (𝑧 + 𝑝) − 𝐿 (𝑥̇ − 𝐴𝑥 − 𝐵𝑢)

= 𝐿𝑛 − 𝐿𝑛 = −𝐿𝑛.

(12)

Table 1: Two quantum bit probability amplitude for quantum con-
trol module.

Probability amplitude Input Output
Yes\no Yes\no

𝛼

00
No No

𝛼

01
No Yes

𝛼

10
Yes No

𝛼

11
Yes Yes

Reference model

Quantum 
module

The controlled
model of helicopter

Disturbance 
observer

The gain
adjust model

Integral fuzzy sliding
mode controller

yd

n

y

x

ur(t)

un

uc + uf

n̂

Figure 1: Integral sliding mode control for the helicopter via quan-
tum information techniques and disturbance observer.

Select 𝐿(𝑥) = 𝑏, 𝑏 > 0, and 𝑝(𝑥) is then designed as
follows:

𝑝 (𝑥) = 𝑏𝑥 (13)

and then the observed error of the disturbance observer will
be exponential convergence. The output of the observer is
then converted into the corresponding input signal, which is
expressed as

𝑢

𝑛
= 𝐵

−1

𝑛. (14)

Remark 1. The disturbance observer is introduced to observe
the disturbance of the system, which can produce control
signals according to the disturbance signals. By selecting the
appropriate design parameters, the disturbance observer can
be exponential convergence. The disturbance observer can
reduce the burden of the controller, and the unobserved
disturbance can be compensated by the ISMC.The simulation
results verify that the disturbance observer can improve the
tracking accuracy of the corresponding output.

5. Integral Sliding Mode Control with
Fuzzy Tuning

The purpose here is to place all of the closed-loop poles and
to eliminate the steady state errors.

The control function can be expressed as

𝑢 = 𝑢

𝑐
+ 𝑢

𝑓
, (15)

where 𝑢

𝑐
represents the ISMC and 𝑢

𝑓
represents the fuzzy

tuning control.
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Reference output 𝑦
𝑑
= [𝑦

1𝑑
, 𝑦

2𝑑
, . . . , 𝑦

𝑟𝑑
]

T, which is gen-
erated from the reference model, and define output error as
𝑒 = 𝑦 − 𝑦

𝑑
. The sliding function 𝜎 is defined as

𝜎 = [𝜎

1
, 𝜎

2
, . . . , 𝜎

𝑟
]

T
= −𝐺𝑥 + 𝐻∫

𝑡

0

𝑒 𝑑𝜏

= −𝐺𝑥 + 𝐻∫

𝑡

0

(𝑦 − 𝑦

𝑑
) 𝑑𝜏,

(16)

where the matrix 𝐻 ∈ 𝑅

𝑟×𝑟 is selected to be full ranked and
𝐺 ∈ 𝑅

𝑟×𝑛 is selected such that 𝐺𝐵 is nonsingular.

Theorem 2. Consider the system in (2) and (3) and the sliding
function defined in (16). 𝐺 can be selected as

𝐺 = 𝐻𝐶𝐴

𝑑

−1

, (17)

where the matrix 𝐴
𝑑
∈ 𝑅

𝑛×𝑛 is the desired nonsingular closed-
loop system matrix. Then, in the sliding mode, the closed-loop
poles are exactly the eigenvalues of the desired system matrix
𝐴

𝑑
.

Proof of the theorem is as [13].
In the sliding mode, the linear equivalent control is

generated by setting 𝜎̇ = 0, which yields

𝑢eq = − (𝐺𝐵)

−1

(𝐺𝐴𝑥 − 𝐻𝑒 + 𝐺𝑛) . (18)

The control law be designed and expressed as

𝑢

𝑐
= Λ𝑥 + Ψ𝑒 + Φ sgn (𝜎) . (19)

To satisfy the sliding condition,

𝜎

𝑖
𝜎̇

𝑖
< 0, (20)

where

Λ = − (𝐺𝐵)

−1

𝐺𝐴,

Ψ = (𝐺𝐵)

−1

𝐻,

Φ = (𝐺𝐵)

−1

Γ ‖𝑥‖ .

(21)

By taking the derivative of both sides of (16) and applying it
to (19)–(21), we can get

𝜎̇ = −Γ ‖𝑥‖ sgn (𝜎) − 𝐺𝑛 (22)

for 𝑖 = 1, . . . , 𝑖:

𝜎̇

𝑖
= −𝛾

𝑖
‖𝑥‖ sgn (𝜎

𝑖
) − 𝐺

𝑖
𝑛

≤ − (𝛾

𝑖
‖𝑥‖ −

󵄩

󵄩

󵄩

󵄩

𝐺

𝑖
𝑛

󵄩

󵄩

󵄩

󵄩

sgn (𝜎
𝑖
)) sgn (𝜎

𝑖
) .

(23)

Because the sum of the terms in the above brackets
is larger than zero, the sliding condition (20) is therefore
satisfied with the sliding function definition (16) and the
control law (19).The control law given by (19) guarantees that
the sliding model will be reached and sustained.

As we know, the discontinuous switching control signal
sgn(𝑠) often leads to chattering,which excites undesired high-
frequency unmodeled dynamics. An additional fuzzy tuning
control [24] here is introduced to accelerate the reaching time
and to reduce chattering by utilizing fuzzy logic judge.

The fuzzy rules for continuously adjusting 𝑢

𝑓
are as

follows:

if 𝜎 is negative large, then 𝑢

𝑓
is positive large;

if 𝜎 is negative small, then 𝑢

𝑓
is positive small;

if 𝜎 is positive large, then 𝑢

𝑓
is negative large;

if 𝜎 is positive small, then 𝑢

𝑓
is negative small.

The sigmoidal membership functions are chosen as

𝜇

𝜎-large =
exp (𝜎/𝜆) − exp (−𝜎/𝜆)
exp (𝜎/𝜆) + exp (−𝜎/𝜆)

,

𝜇

𝜎-small = 1 − 𝜇

𝜎-large,

(24)

where 𝜆 is a positive constant.
The singletons chosen asmembership functions for 𝑢

𝑓
are

as follows:

𝜇

𝑢𝑓-large = {

1, 𝑢

𝑓
= −],

0, 𝑢

𝑓
̸= −],

𝜇

𝑢𝑓-small = {

1, 𝑢

𝑓
= 0,

0, 𝑢

𝑓
̸= 0,

(25)

where ] is a scaling constant.
When 𝑠 > 0, we get the fuzzy tuning control 𝑢

𝑓
as follows:

𝑢

𝑓
=

𝜇

𝜎-large ⋅ (−]) + 𝜇

𝜎-small ⋅ (0)

𝜇

𝜎-large + 𝜇

𝜎-small

= −]𝜇
𝜎-large.

(26)

Similarly, we can get the same expression for the fuzzy
tuning control 𝑢

𝑓
when 𝑠 < 0.

Remark 3. The resulting control system has the following
advantages:

(1) all of the closed-loop poles can be arbitrarily placed;
(2) the output errors can converge to zero effectively;
(3) the system performance is robust.

6. Simulation Analysis

In this section, an example of a helicopter model is given
to demonstrate the effectiveness and feasibility of the pro-
posed control approach. Considering the helicopter system
described by the form of (1), where 𝑥(𝑡) = [𝑢, 𝑤, 𝑞, 𝜃]

T is the
state variable, 𝑢, 𝑤, 𝑞, and 𝜃 are the horizontal component,
the vertical component, the pitch rate, and the pitch angle,
respectively. 𝑢(𝑡) = [𝑢col, 𝑢lon]

T is the control vector, and its
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Figure 2: Control performance of the helicopter.

variables are the total distance variable and the longitudinal
periodic variable. 𝑦 = [𝑢, 𝑤]

T is the output vector. Consider

𝐴 =

[

[

[

[

−0.036 0.0271 0.0188 −0.4555

0.0482 −1.010 0.0024 −4.0208

0.1002 0.06635 −0.7070 0.1198

0 0 1 0

]

]

]

]

,

𝐵 =

[

[

[

[

0.4422 0.1761

0.9775 −7.5922

−5.522 4.490

0 0

]

]

]

]

, 𝐶 = [

1 0 0 0

0 1 0 0

] .

(27)

The control system is unstable by analysis. So to make
the control system stable and obtain better dynamic perfor-
mance, we assume that the desired closed-loop pole is 𝑃 =

[−1 + 𝑖, −1 − 𝑖, −5, −30], and then we can get the feedback
matrix:

𝐾 =

[

[

[

[

−7.5146 −0.1165 2.333 4.794

3.89 −4.7539 −0.6862 −2.035

76.3833 4.7302 −24.7311 −57.3561

0 0 1 0

]

]

]

]

. (28)

The desired system matrix is

𝐴

𝑑
= 𝐴 − 𝐵𝐾. (29)

Then,wedesign the sliding surface.Assume theweighting
matrix𝐻 is a unitmatrix, and then according to (11) and (15)–
(17), we can get the following matrices:

𝐺 = [

−0.9404 −0.0533 −0.0767 0.2602

−0.2254 −0.216 −0.0112 0.1012

] ,

Λ = [

0.3803 0.6124 4.9437 11.3918

0.0633 −0.0379 0.7272 1.2042

] ,

Ψ = [

−16.276 −1.1081

−2.6159 0.4672

] ,

Φ = [

−16.276 −1.1081

−2.6159 0.4672

] [

0.005

0.001

] ‖𝑥‖ .

(30)

And the disturbance 𝑛(𝑡) is as follows:

𝑛 (𝑡) = {

[0, 0, 0, 0]

T
, 0 ≤ 𝑡 < 10,

[0.5, 1, 0, 0]

T
, 10 ≤ 𝑡 < 40.

(31)

The responses of the horizontal speed and vertical speed
are shown in Figures 2 and 3. The reference input is 𝑟(𝑡) =

[5; 5]. The disturbance is supposed to occur at 𝑡 = 10 s.
In Figure 2, curve 1 indicates the desired output; curve

2 indicates the output using the proposed method without
disturbance; and curve 3 indicates the output using the
proposed method with disturbance. From the simulation
results, we can see that the control system has a stronger self-
repairing and anti-interference capability.

In Figure 3, curve 1 indicates the desired output; curve 2
indicates the output using the ISMC with fuzzy tuning via
quantum information techniques and disturbance observer
proposed in this paper; curve 3 indicates the output using
the ISMCwith fuzzy tuning; and curve 4 indicates the output
using the ISMC.

From the simulation results, we can see that the control
quality of the helicopter flight control system using the ISMC
is not so good. There are steady output errors; that is, the
method cannot make sure that the outputs of the controlled
system follow the desired outputs. With the ISMC with fuzzy
tuning, the helicopter control system can track the desired
outputs. With the proposed approach, the output tracking is



6 Mathematical Problems in Engineering

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
Horizontal speed

1
3

4
2

t (s)

u
(m

/s
)

(a) Horizontal speed

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6
Vertical speed

1
2

3
4

−0.1

−0.2

t (s)

w
(m

/s
)

(b) Vertical speed

Figure 3: Control performance of the horizontal speed and vertical speed.

fast and accurate. When the disturbances occur, the system
has the ability to drive back to the desired path quickly and
the steady output errors converge to zero. It has stronger self-
repairing and anti-interference capabilities.

In order to make full validation of the proposed method,
the method has been applied to semiphysical simulation
platform of the actual flight control system. Compared with
the above mathematical simulation, semiphysical simulation
is closer to the actual system, and it can more fully reflect the
helicopter flight process. Semiphysical simulation requires
higher accuracy, reliability, and real time [25].

The 3-DOF helicopter is shown in Figure 4. It mainly
consists of helicopter body, base, position sensors, propeller
motors, balance block, and slip ring. The base is as the
fulcrum to the balance bar. Propeller and balance blocks
are installed at both ends of the balance bar. The lift force
generated by the propeller can make the balance bar do
pitching movements. The speed difference generated by
the two propellers can make the balance bar do rotating
movements.

The semiphysical simulation results verify that the 3-DOF
helicopter can run safely with disturbance using the method
proposed in this paper. By analyzing the simulation results,
we can find that they meet the technical requirements of
the flying qualities. The proposed method has the practical
significance.

7. Conclusion

In this paper, a self-repairing control scheme is proposed for
the helicopter flight control system with unknown distur-
bance.The process of the disturbance observer design and the
ISMCwith fuzzy tuning are introduced. In addition, quantum

Figure 4: The 3-DOF helicopter system.

information technique is briefly introduced, which is used to
increase the self-repairing control accuracy of helicopter and
improve the ability of anti-interference. Simulation results
show that the proposed method provides an effective and
feasible approach for the actual design of the helicopter
control system.
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