
Research Article
Cascading Failures in Weighted Complex Networks of
Transit Systems Based on Coupled Map Lattices

Ailing Huang,1,2 H. Michael Zhang,2 Wei Guan,1 Yang Yang,1 and Gaoqin Zong1

1MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University,
Beijing 100044, China
2Department of Civil and Environment Engineering, University of California, Davis, CA 95616, USA

Correspondence should be addressed to H. Michael Zhang; hmzhang@ucdavis.edu

Received 24 April 2014; Revised 4 July 2014; Accepted 4 July 2014

Academic Editor: José R. C. Piqueira
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Study on the vulnerability and robustness of urban public transit networks (PTNs) has great implications for PTNs planning and
emergency management, particularly considering passengers’ dynamic behaviors. We made a complex weighted network analysis
based on passenger flow for Beijing’s bus stop network and multimodal transit network coupled with bus and urban rail systems.
The analysis shows that there are small-world or scale-free properties in these two networks, which make them display different
robustness under link or node failures.With consideration of the dynamic flow redistribution, we propose amodel based on coupled
map lattices to analyze the cascading failures of these two weighted networks. We find that the dynamic flow redistribution can
significantly improve the tolerance of small-world or scale-free PTN against random faults. Because of the coupling of bus and rail
systems, the multimodal network with scale-free topology and flow distribution structures displays an increasing tolerance even
against intentional attack; however, its cascade is also much more intense once the failure is triggered. We find some thresholds of
topological and flow coupling strength in the spreading process, which can be exploited to develop strategies to control cascade
failures.

1. Introduction

In the last few years, the error tolerance and attack vul-
nerability of real networks have attracted the attention of
many researchers, since the discovery of the ubiquitous
small-world [1] and scale-free properties [2]. A scale-free
network displays a property of heterogeneity with a power-
law degree distribution 𝑝(𝑘) ∼ 𝑘

−𝛾 [2], where 𝑘 is the
degree of a randomly chosen node and 𝛾 is the scale-free
exponent, while a small-world network, compared to the
former, is more homogeneous with an exponential degree
distribution, a greater clustering coefficient, and a shorter
average distance [1]. Some empirical studies report that many
real networks’ topological structures, including public transit
networks (PTNs), are found to be scale-free or small-world,
for example, the Boston subway network [3, 4], the Indian
railway network [5], the Chinese railway network [6], and
the public transport systems in Poland [7], in Germany, and
in France [8]. The scale-free networks become “robust yet

fragile” [9, 10]; that is, these networks are very sensitive to
the intentional removal of central nodes but become robust
to the random removal of some other nodes.There have been
a few recent empirical studies on the structural robustness
of many real complex networks, for example, the protein
network [11], the food webs [12], the email network [13],
the internet network [14, 15], the computer network [16],
the cyber-physical network [17], and the uncertain system
[18, 19].

In addition, there exists the physical flow (also defined
as load) in real-world networks, such as the data transmit-
ted in communication networks, the electrical currents in
power grids, the vehicles in transportation networks, and the
passenger flow in PTNs. As the physical flow is dynamic,
the failure of one or a few nodes/edges could lead to the
failures of other nodes/edges by the coupling relationship
between nodes/edges and the redistribution of flow over the
whole networks, triggering chain reactions that lead to the
collapse of a few or all nodes/edges in the network. This
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phenomenon is called cascading failure [20, 21]. The largest
blackout event in the northeastern US power grid in August
2003, for example, is due to cascading failure.

Urban PTN, composed of routes, stops, and the passenger
flow traveling in network, is a complicated giant system. In
a PTN, if one or some key stations or routes are destroyed
by natural disasters or their carrying capacity is in short
supply due to sudden increases of passenger flow (such as
a large number of people coming from stadiums or theaters
after matches or concerts), one part of, or even the whole,
network may be overloaded and out of operation. A case
like this occurred on July 21, 2012, when the heaviest rain
in the last 60 years in Beijing shut down a metro line
and caused 100 bus routes to detour, dump stop, or stop
operation completely. This resulted in more than 200 bus
routes extending their service hours to transport passengers.
Another example occurred on January 3, 2010, when heavy
snow caused more than 60 bus routes to detour or be taken
out of operation. These failures greatly impacted passenger
travel and severely disrupted the social/economic activities of
the city. These events motivated us to study the dependence
of avalanches and dynamic robustness in PTNs on the initial
perturbation, network structure, and flow behavior.

Some models and empirical research on cascading fail-
ures in different networks have been reported in the recent
literature, and many of them showed that a network’s struc-
ture has great impact on its function. They include the
empirical studies on theUS power grid [22] and ecoindustrial
symbiosis network considering the load redistribution, the
cascading dynamics in small-world network [23, 24], scale-
free network [25], weighted complex network [26], and
independent network [27]. For PTNs, however, the majority
of the research focuses on the (static) robustness of network
topology based on the idea of Albert et al. [9], by removing
one or some nodes or edges in the network. A typical example
is the analysis of attack vulnerability of 14 PTNs in the L-
and P-spaces (explained in Figure 1) [28, 29], respectively.
Topological vulnerability of other PTN networks, such as the
railway network of Switzerland [30], the subway network of
Shanghai [31], the air flight network of China [32], is also
studied.

The research on the dynamic robustness of PTNs, how-
ever, is still limited. Although Wu et al. [33, 34] and Zheng
et al. [35] have studied the cascading behavior in scale-free
networks based on the traffic dynamics theory and Yang et
al. [36] have simulated the epidemic dynamic behaviors in
PTNs based on the SIS spreadmodel, the cascading dynamics
in weighted PTNs considering the dynamical passenger flow
has not yet been reported. Also, the empirical studies on
the dynamical characteristics of weighted PTNs based on
passenger’s travel behavior are not given adequate consid-
eration. As far as we know, only the studies of the Seoul
subway system [37], Singapore public transportation system
[38], and Beijing bus routes system [39] considered passenger
flow in their analysis.The former two studies constructed the
complex network according to passengers’ travel routes, but
the underlying physical structure is not considered.

In light of the review, several questions remain open in the
study of PTNs considering flow dynamics. For example, what

is the structure of a real PTN measured in the P-space [4]
or L-space [5]? How robust are these PTNs against random
fault or intentional attack when considering passenger flow
redistribution in the network? What are the thresholds for
cascading failures and spreading dynamics in different real-
world PTN structures? In seeking answers to these questions,
we were able to identify the threshold to avoid cascading
failures in PTNs and find the strategies to avoid such failures,
which provides an important theoretical basis for protecting
real PTNs and improving their robustness.

In this paper, we propose a model to explore the
dynamic robustness in actual PTNs of Beijing considering
passenger flow behavior. Here, we study not only the bus
stop network (BSN), but also the multimodal public transit
network (MPTN) coupled with bus and urban rail transit
systems, which will help us compare the PTNs’ robustness
with different weighted structures. The paper is organized
as follows. In the next section, we will make an analysis of
the statistical properties of the weighted complex network
of Beijing’s BSN and MPTN in L-space. In Section 3, a
cascading failure analysis model for weighted network based
on coupled map lattices is proposed, and, in Sections 4 and
5, the dynamic robustness of BSN and MPTN in Beijing is
studied, respectively. Conclusions and outlook are given in
Section 6.

2. Statistical Properties of Weighted
Complex Network Derived from Beijing
Public Transit System in L-Space

2.1. Data Processing and Networks Generation. In this work,
the weighted complex network for public transit stops in
Beijing’s bus and rail transit networks is built to explore
the impact of connectivity between stops on passenger flow
distribution. Here, we use the L-space method [5] to describe
the network; that is, nodes represent bus, trolley bus, or
rail stops, and a link between two nodes exists if they are
consecutive stops on a route. The weight 𝑤

𝑖𝑗

between node
𝑖 and node 𝑗 is represented by the sectional passenger flow 𝑃

𝑖𝑗

that represents the number of passengers through the section
between stop 𝑖 and adjacent stop 𝑗 in a weekday. Although
the passenger flow is directed, in general, the daily flow is
bidirectionally balanced for a whole day. For simplicity, we
make the assumption that passenger flow is undirected (𝑤

𝑖𝑗

=

𝑤
𝑗𝑖

) by averaging the in and out edge weights.
In Beijing’s bus transit network, a flat fare system is

applied in most of bus routes, which means commuters only
swipe the smart card one time when they board the buses,
so it is difficult to capture the exact data about sectional
occupational passengers through the intelligent card (IC)
system. A good way to acquire this information is by the
ride check. We obtained the ride-check data of 100 routes in
a weekday from Beijing Public Transportation Corporation.
These routes are so typical that they were selected to investi-
gate, and, on each route, the occupational passengers of bus
in each section along the route for more than 200 bus trips
per day were counted. According to data of 100 routes, stops,
and sectional passengers in Beijing, we develop a weighted
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Figure 1: Explanation of L-space (a) and P-space (b). Refer to [7].

bus stops network in the L-space with 1,388 nodes and 1,555
edges.

In theMPTN both for bus and rail stops, based on follow-
ing methodology, the sectional passenger flow between two
adjacent rail stops will be calculated in terms of passengers in
and out of rail stops that are recorded by the IC system.

Firstly, we use the gravitymodel to estimate the origin and
destination (OD) flow 𝑞

𝑖𝑗

from stop 𝑖 to 𝑗:

𝑞
𝑖𝑗

= 𝑎𝑂
𝑖

𝐷
𝑗

𝑓 (𝑥
𝑖𝑗

) , (1)

where 𝑎 is the trip generation coefficient;𝑂
𝑖

is the passengers
going into stop 𝑖; 𝐷

𝑗

is the passengers out from stop 𝑗; 𝑓(𝑥
𝑖𝑗

)

denotes an impedance function from stop 𝑖 to stop 𝑗; 𝑥
𝑖𝑗

is an impedance parameter. As a flat fare is also applied
in the whole urban rail network without any transfer fee,
here, 𝑥

𝑖𝑗

is represented by the travel times between stops 𝑖
and 𝑗, composed of the train running time, dwell time in
stops, and transfer time in transfer stations.The train running
time is estimated based on the distance between stops and
average train running velocity; the dwell time and transfer
time are obtained by historical data and field investigations,
respectively.

Secondly, considering the travel times to be the
impedance, we assign the OD flow between stops into
the rail network by all-or-nothing assignment through the
TransCAD (TransCAD is a commercial software package
that performs various types of traffic assignment) software,
and then the sectional passenger flow between adjacent stops
is calculated. Thus, based on the topology and flow data of 13
rail lines and 100 bus routes, the weighted complex MPTN in
the L-space is established with 1,504 nodes and 1,728 edges.

2.2. Degree Distribution. In the L-space, the degree 𝑘 of a
node represents the number of its consecutive neighbor stops
it is linked to. It is calculated that the degree interval ofMPTN
in Beijing is 𝑘

𝐵+𝑅

∈ [1, 10], which is wider than that of
BSN 𝑘

𝐵

∈ [1, 8], although their average degrees are quite
similar, ⟨𝑘

𝐵

⟩ = 2.24 and ⟨𝑘
𝐵+𝑅

⟩ = 2.29, indicating that the
connectivity of MPTN has been improved in part because of
the addition of the rail system. As shown in Figure 2(a), the
degree distribution of BSN appears exponentially distributed
𝑝(𝑘) ∼ 0.4636𝑒

−0.3286𝑘 and thus is small-world, which is

consistent with Sui’s PTN analysis [40] and similar to the
degree distribution exponent of the North American power
grid; that is, 𝛾 ≈ 0.5 [4]. However, for the MPTN (shown in
Figure 2(b)), its degree distribution plot is nearly a straight
line on a log-log scale (red dots) and follows a power-law
distribution 𝑝(𝑘) ∼ 10.67𝑘

−4.042. So, the MPTN is scale-
free after the bus stops network is coupled with the rail
network. It shows that the topology of Beijing’s MPTN is
much more heterogeneous than BSN, and some nodes are
highly concentrated due to the limit of two-dimensional
geographic space. This can be explained by the fact that the
“rich get richer” phenomenon exists in PTNs just because bus
routes tend to connect with rail stops.

2.3. Strength Distribution. The strength 𝑠
𝑖

of node 𝑖 is defined
as 𝑠
𝑖

= ∑
𝑗

𝑤
𝑖𝑗

[41]; thus, a stop’s strength in a PTN represents
the average daily passenger flow passing the sections between
this stop and its connected neighboring stops. Likewise,
because of the rail system, the MPTN possesses wider node’s
strength interval 𝑠

𝐵+𝑅

∈ [80, 1.056343e + 06] and higher
average strength ⟨𝑠

𝐵+𝑅

⟩ = 39500 than that of BSN; 𝑠
𝐵

∈

[64, 60918] and ⟨𝑠
𝐵

⟩ = 9320. As shown in Figure 3, there are
long tails for strength distribution (blue dots) in both BSN
andMPTN, especially in the latter, indicating that some stops
transport quite large volume of passengers every day, which
is muchmore than that of most stops. It is noted that the stop
with large traffic may differ from the one with large degree.
Not considering some stops with very small strengths in the
BSN, both the strength distributions of BSN and MPTN on
log-log scales are nearly linear and appear to follow power-
law distributions 𝑝(𝑠) ∼ 𝑐𝑠−𝛾 with 𝛾 = 1.42 and 𝛾 = 1.209,
respectively.TheMPTN’s power-law exponent is smaller than
that of BSN, which reveals that the heterogeneity of MPTN
has been enhanced when the bus network is coupled with
the rail network.The strong heterogeneity ofMPTN indicates
that there are a few nodes called hubs in the network that
have higher strength than other nodes and play a dominant
role in preserving connections and serving traffic of the
overall network. Such heterogeneity makes the scale-free
network more robust to random failures but more vulnerable
to deliberate attacks [9].

In summary, we find that both the topology and flow
distribution structures of MPTN show the scale-free features
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Figure 2: Node degree distribution for Beijing’s BSN and MPTN.
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Figure 3: Node’s strength distribution of Beijing’s weekday weighted BSN and MPTN and their log-log scale plot.

while the BSN is coupled with small-world topology and
scale-free flow distribution, which could make them display
different tolerance and robustness under random fault or
intentional attack, so they will be further studied in the
following sections.

3. A Cascading Failure Analysis Based on
Coupled Map Lattices

3.1. ACMLsModel forWeightedComplexNetwork. Acoupled
map lattice (CML) is a dynamical system that models the
behavior of nonlinear systems (especially partial differential
equations) [42].They are predominantly used to qualitatively
study the chaotic dynamics of spatially extended systems.

Studied systems include populations, convection, fluid flow,
chemical reactions, and biological networks. More recently,
CMLs have been applied to computational networks iden-
tifying detrimental attack methods and cascading failures.
However, the current literature of cascading failure in CMLs
is almost based on topological network [43–48], and there
is few research on static weighted network [49, 50], not to
mention ones in view of dynamic weight. In fact, in the
real world, not only topology but also the flow distribution
influences the cascading failure of the network. It is often
to see that when the flow is beyond the carrying capacity,
cascading failures occur, for example, in the urban trans-
portation network, the Internet, and the power grid network.
There are also similar cascading failures in a PTN; namely,
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the redistribution of passenger flow caused by failures in
one or a few stops or sections could lead to overload or
outage of other nodes and then result in the whole network’s
failure. In a PTN, failures may be triggered by the change of
network’s topology or the redistribution of passenger flow,
whereas, when failures occur, the topology and passenger
flow are affected at the same time, so the occurrence and
spread of cascading failures are based on the network coupled
with “topological structure” and “flow distribution structure.”
Therefore, when the passenger flow is loaded on a topological
PTN as the weight, it is significant to study the cascading
failures and their dynamical behaviors in the weighted PTN
which is represented by the coupling function between
“topological structure” and “flow distribution structure” in
different strength.

Here, we propose a model to describe the cascading fail-
ures in weighted networks based on a CML model presented
by Wang and Xu [43, 44]. The model is demonstrated as
follows:

𝑥
𝑖

(𝑡 + 1) =



(1 − 𝜀
1

− 𝜀
2

) 𝑓 (𝑥
𝑖

(𝑡)) + 𝜀
1

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

𝑓 (𝑥
𝑗

(𝑡))

𝑘
𝑖

+𝜀
2

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑤
𝑖𝑗

𝑓 (𝑥
𝑗

(𝑡))

𝑠
𝑖



, 𝑖 = 1, 2, . . . , 𝑁,

(2)

where 𝑥
𝑖

(𝑡) is a state variable of the 𝑖th node at the 𝑡th time
step.The connection information among𝑁 nodes is given by
the adjacencymatrix𝐴 = (𝑎

𝑖𝑗

)
𝑁×𝑁

. If there is an edge between
node 𝑖 and node 𝑗, 𝑎

𝑖𝑗

= 𝑎
𝑗𝑖

= 1; otherwise, 𝑎
𝑖𝑗

= 𝑎
𝑗𝑖

= 0.
𝑘
𝑖

denotes the degree of node 𝑖; 𝑤
𝑖𝑗

represents the weight of
edge between node 𝑖 and node 𝑗; 𝑠

𝑖

is the strength of node 𝑖.
𝜀
1

means the coupling strength of topological structure and
𝜀
2

represents that of weighted network which is loaded by
passenger flow, respectively, where 𝜀

1

, 𝜀
2

∈ (0, 1), 𝜀
1

+ 𝜀
2

< 1.
The function 𝑓 demonstrates the local dynamic behaviors
which is chosen in this work as the chaotic logistic map,
𝑓(𝑥) = 4𝑥(1 − 𝑥). When 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑓(𝑥) ≤ 1, we
use absolute value notation in (2) to guarantee that the state
of each node is always nonnegative.

Here, the nonlinear function 𝑓 can be defined as the
evolution rule of node 𝑖’s capacity. According to the mapping
method of L-space, node 𝑖 is said to be in a normal state
and its flow is smaller than its capacity at the 𝑙th time step
if 0 < 𝑥

𝑖

(𝑡) < 1, 𝑡 ≤ 𝑙. In contrast, if 𝑥
𝑖

(𝑙) ≥ 1, it means
that the flow is overloaded on node 𝑖 at the 𝑙th time step and
then node 𝑖 is said to be failed, and we assume in this case
that 𝑥

𝑖

(𝑡) ≡ 0, 𝑡 > 𝑙. The state of a node evolves in accordance
with the function, if the initial states of all 𝑁 nodes in the
network are in the interval (0, 1) and there is not any external
perturbation or the flow surges, then all nodes in the network
will be in a normal state forever, and the PTN will operate
normally.

3.2. Methods for Analysis of Dynamic Robustness Based on
CML Model. In order to show how an initial shock at a

i

k

j
wij

wjk → wjk + Δwjk

Figure 4: The adjustment rule of 𝑤
𝑖𝑗

after node 𝑖 is failed.

single node triggers cascading failures, we add an external
perturbation 𝑅 ≥ 1 to node 𝑖 at the𝑚th time step as follows:

𝑥
𝑖

(𝑚) = 𝑅 +



(1 − 𝜀
1

− 𝜀
2

) 𝑓 (𝑥
𝑖

(𝑚 − 1)) +𝜀
1

+𝜀
1

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑎
𝑖𝑗

𝑓 (𝑥
𝑗

(𝑚 − 1))

𝑘
𝑖

+𝜀
2

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑤
𝑖𝑗

𝑓 (𝑥
𝑗

(𝑚 − 1))

𝑠
𝑖



.

(3)

In this case, node 𝑖 will be failed at the 𝑚th time
step; namely, stop 𝑖 of a PTN is out of operation due to
natural events or other emergencies and then the topological
structure will change accordingly and the passenger flow will
be redistributed. Therefore, we have 𝑥

𝑖

(𝑡) ≡ 0 for all 𝑡 > 𝑚.
At the (𝑚 + 1)th time step, the states of those nodes directly
connected with node 𝑖 will be affected by 𝑥

𝑖

(𝑚) according to
(2), and their states may also be larger than 1 and thus may
lead to a new round of nodes’ failures. Nodes’ failures will lead
to a redistribution of the flow and spread out with a continued
process.

The rule of flow redistribution is like this: when node 𝑖
failed, node 𝑖 and the edges connected with it will be excluded
from the network, as shown in Figure 4, and𝑤

𝑖𝑗

, the weight of
edge linkedwith node 𝑗 and the failed node 𝑖, will be shared by
other edges connected with node 𝑗, so their original weights
will be changed:𝑤

𝑗𝑘

→ 𝑤
𝑗𝑘

+Δ𝑤
𝑗𝑘

; these edges share the flow
according to theirweights:Δ𝑤

𝑗𝑘

= 𝑤
𝑖𝑗

∗𝑤
𝑗𝑘

/𝑠
𝑗

. Generally, this
rule exists in real PTNs because passengers would be much
more likely to choose the nearby transit services to escape
from the confusion and accident as soon as possible when a
stop or route suffers from disaster or attack.

During the spreading process of cascading failures, the
problem needed to be studied is as follows: what is the
relationship between the scale of cascading failures and the
strength of external perturbation in real weighted PTNs? Is
there any threshold to avoid the cascading failures? What is
the relationship between the spread of cascading failures and
different coupling strength of topology and flow distribution
structures under different attacks? And what are the similar-
ities and dissimilarities of the cascading failures in different
PTN structures?

Before following simulations, the initial states of nodes
are all chosen randomly from the interval (0, 1). A pertur-
bation with 𝑅 ≥ 1 is added to a node 𝑐. 𝐼(𝑡) is defined as
the total number of failed nodes in the network before the
𝑡th time step, and failure proportion is the ratio of 𝐼(𝑡) to
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the network’s scale 𝑁. The failed nodes and failed edges are
excluded from the network and flow is redistributed in terms
of rule of Figure 4; then the spreading process of failures can
be observed in the network. When there are no failures, 𝐼
is defined as the scale of the failures in the network, 𝐼 ≡
lim
𝑡→∞

𝐼(𝑡).

4. Analysis of Cascading Failures in
Beijing’s Weighted BSN

In Sections 4 and 5, we will take Beijing’s BSN and MPTN
systems as cases, with consideration ofmodes of random fault
and intentional attack, to analyze their tolerance and robust-
ness with the above CMLs model for weighted network. In
the followingmode of random fault, all simulation results are
averages over 50 random realizations.

4.1. Threshold for Cascading Failure

4.1.1. When a Randomly Chosen Node Fails. Here, under
random fault, the thresholds to trigger global cascading
failures in Beijing’s BSN are studied with and without flow
redistribution, respectively, based on ourCMLsmodel. Given
𝜀
1

= 𝜀
2

= 0.25, a perturbation is added to a randomly
selected node. As shown in Figure 5(a), considering flow
redistribution based on the rule shown in Figure 4, when
𝑅 > 𝑅

𝑅

𝐵1

= 3, failures start to be triggered in the
network; however, when not considering flow redistribution,
the threshold 𝑅𝑅

𝐵2

= 2 becomes smaller (Figure 5(b)). It
reflects that the passengers’ travel behaviors with autonomy
and flexibility can reduce the risk of cascade failure in the
BSN. At the same time, we find that since the topology of
Beijing’s BSN is small-world and the weighted one is scale-
free, the thresholds 𝑅𝑅

𝐵1

, 𝑅𝑅
𝐵2

are both relatively small, which
is in accordance with the results of [43, 44] that cascading
failures are much easier to occur in small-world and scale-
free topological CMLs than in global CMLs.

As shown in Figure 6, we find that there is a normal
distribution relation between the scale and time step of
cascading failures. When considering flow redistribution
(Figure 6(a)), no matter how much 𝑅 changes, the failure is
triggered earlier, peak times are concentrated in a smaller
range 15 < 𝑡

𝑝1

< 25, and nodes are all failed in an
earlier time step 𝑡𝑅

1

(𝑒) = 80, comparing with that without
flow redistribution (Figure 6(b)). It implies that the flow
redistribution has the potential to enhance the ability of
synchronization in bus transit system.

4.1.2. When a Specified Node Is Intentionally Attacked. Here,
an intentional perturbation is added to nodes with the largest
degree or strength, respectively; namely, the most important
stations are intentionally attacked in the BSN, which are
Guang’anmennei station with 𝑘 = 8 and Military Museum
station with 𝑠 = 60918. Similarly, we set 𝜀

1

= 𝜀
2

= 0.25. When
the stop with the largest degree is attacked (Figure 7(a)),
considering flow redistribution, the threshold of failure is
𝑅
𝐾

𝐵

= 2, which is smaller than that of the stop with the largest

strength, 𝑅𝑆
𝐵

= 3 (Figure 8(a)), indicating that the topology
is more vulnerable than the flow distribution structure. The
threshold is less than or equal to that of random fault; namely,
𝑅
𝐾

𝐵

< 𝑅
𝑅

𝐵1

, but 𝑅𝑆
𝐵

= 𝑅
𝑅

𝐵1

, revealing that topological structure
is more vulnerable against intentional attack, but that of
the flow distribution structure surprisingly keeps the same
robustness against random fault or intentional attack. We
also find that the thresholds of degree-based and strength-
based attacks are the same with those of the case without
considering flow redistribution, respectively (Figures 7(b)
and 8(b)), which reflects that when the most central nodes in
the network are intentionally attacked, though passengers can
change their travel routes, the flow changes in a small scope
are not sufficient to reduce the impact of failures because the
damage is very huge and failures spread much faster.

The further analysis of Figure 7(a) presents that when the
degree-based attack occurs and 𝑅 > 𝑅𝐾

𝐵

, there is a diversity
for the failure proportion distribution and peak time with
the change of 𝑅. When the perturbation is small, that is,
𝑅 = 3, 4, the failures do not spread very quickly at first until
𝑡 = 20 and there is a turning point that the failures increase
sharply, before which there could be a good opportunity to
control failure to spread further; but when 𝑅 ≥ 5, it seems
that the spreading processes are synchronized with different
𝑅, and the peak proportions are all 𝑝

𝑘

≈ 0.07 at a similar
peak time 𝑡

𝑝𝑘

= 12. However, when the strength-based
attack triggers failures (Figure 8(a)), the spreading speeds are
similar for different 𝑅 values, and the peak proportions are
𝑝
𝑠

∈ (0.06, 0.07) in a quite small time interval 𝑡
𝑝

𝑠

∈ [12, 18],
indicating that once failure is triggered, the perturbation
strength has little effect on the failure spreading process for
the weighted BSN.

4.2. Effect of Flow Coupling Coefficient 𝜀
2

. The following will
study the impacts of different flow coupling coefficients 𝜀

2

on the robustness of Beijing’s BSN. Firstly, a perturbation
𝑅 = 5 > 𝑅

𝑅

𝐵1

is added to a randomly selected node with
𝜀
1

= 0.25 and 𝜀
2

taking the values of 0.15, 0.25, 0.35, 0.45,
and 0.55, respectively. Both Figures 9(a) and 9(b) show that,
on the whole, with 𝜀

2

increasing, the failures occur earlier and
spread faster with and without flow redistribution. However,
when considering passengers change their travel routes, 𝜀

2

has less influence on spreading processes of failures (shown in
Figure 9(a)) comparing with that without flow redistribution
(shown in Figure 9(b)), and there is less diversity between the
initial occurrence times or spreading speeds of failures with
different 𝜀

2

. In addition, as shown in Figure 9(a), the failures
spread faster. These characteristics imply that, because of the
flow redistribution in network, it is equivalent to increasing
the coupling strength further between other stops and then
promoting the spread of failure. It is important to note that
when 𝜀

2

≤ 𝜀
1

, the peak proportion with flow redistribution
is smaller than that of without it, indicating that flexibility
of passengers’ travel behaviors will be likely to alleviate the
damage of perturbation under a small flow coupling strength.

For the case of intentional attack, with the same param-
eter set as the above, a perturbation 𝑅 = 5 > 𝑅

𝐾

𝐵

and
𝑅
𝑆

𝐵

is added to the node with the largest degree or strength,
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Figure 5: When 𝜀
1

= 𝜀
2

, a randomly chosen node fails, the spreading process of cascading failure with different perturbations 𝑅 in Beijing’s
weighted BSN.
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Figure 6: When 𝜀
1

= 𝜀
2

, a randomly chosen node fails, the relationship between failure scale and time step with different perturbations 𝑅 in
Beijing’s weighted BSN.

respectively. The simulations (shown in Figure 10) show that
whether the stop with the largest degree or strength is
intentionally attacked, the spreading processes of failures are
almost synchronized for different 𝜀

2

; that is, the peak times
all occur in a small range 𝑡

𝑝

𝑘

≈ 𝑡
𝑝

𝑠

∈ [12, 16], and their
failure proportions are 𝑝

𝑘

∈ [0.07, 0.08] and 𝑝
𝑠

∈ [0.06, 0.07],
respectively, which reflects that although the topological
network is small-world and the flow distribution is scale-
free, the flow dynamic behaviors may nearly eliminate the
cascading difference between these two structures. The time

step that all of nodes are failed is 𝑡
𝑘

(𝑒) = 74 when the largest
degree stop is attacked, which is later than that of the largest
strength one; that is, 𝑡

𝑠

(𝑒) = 69, but they are both earlier than
that in the mode of random fault 𝑡(𝑒) = 82, revealing that
the spreading process is the most intense when the largest
strength node is intentionally attacked.

4.3. Effect of Topological Coupling Coefficient 𝜀
1

. Here, we
study the impacts of different topological coupling coeffi-
cients 𝜀

1

on the network. Assume that 𝑅 = 5, 𝜀
2

= 0.25 and 𝜀
1
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Figure 7: When 𝜀
1

= 𝜀
2

, the node with the largest degree is intentionally attacked, the relationship between failure scale and time step with
different perturbations 𝑅 in Beijing’s weighted BSN.
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Figure 8: When 𝜀
1

= 𝜀
2

, the node with the largest strength is intentionally attacked, the relationship between failure scale and time step with
different perturbations 𝑅 in Beijing’s weighted BSN.

takes the values of 0.15, 0.25, 0.35, 0.45, and 0.55, respectively.
When a perturbation is added to a randomly selected node,
according to Figure 11, we find that when considering flow
redistribution, the spreading process of failures is much
consistent and less diverse compared with that without flow
redistribution, and both the failure peak times 𝑡

𝑝

𝑟

∈ [18, 20]

and proportions 𝑝
𝑟

∈ [0.07, 0.09] occur in a small range. It
shows that, in random fault mode, because of the coupling
function by flow redistribution, the impact of topological

coupling strength on the spreading process of failure has been
mitigated.

When the node with the largest degree or strength is
intentionally attacked, as shown in Figure 12, if 𝜀

1

< 𝜀
2

, the
failures spread more slowly correspondingly, and there are
some fluctuations for failure proportion at certain time steps,
unlike other cases which failures always increase before the
peak; and the time 𝑡

𝑝

𝑘

= 33 that reaches the failure peak
under the degree-based attack (Figure 12(a)) is later than that
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Figure 9: When a randomly chosen node fails, the relationship between failure scale and time step with different flow coupling coefficients
𝜀
2

in Beijing’s weighted BSN.
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Figure 10: When a specified node is intentionally attacked, considering flow redistribution, the relationship between failure scale and time
step with different flow coupling coefficients 𝜀

2

in Beijing’s weighted BSN.

of strength-based attack, 𝑡
𝑝

𝑠

= 22 (Figure 12(b)). However,
when 𝜀

1

> 𝜀
2

and 𝜀
1

+ 𝜀
2

> 0.5, the spreading processes
are nearly consistent for these two attacks; that is, the peak
times are 𝑡

𝑝

𝑘

≈ 𝑡
𝑝

𝑠

≈ 15 and the peak proportion for degree-
based attack is 𝑝

𝑘

∈ [0.07, 0.08] and for strength-based is
𝑝
𝑠

∈ [0.06, 0.07]; the times when all nodes fail are 𝑡
𝑘

(𝑒) = 74

and 𝑡
𝑠

(𝑒) = 69, respectively, which are also earlier than that
of random fault mode. To sum up, when 𝜀

1

< 𝜀
2

, intentional

attack to the most central node in weighted BSN (strength-
based attack) will trigger a more intense spreading process of
failure than that in the topology (degree-based attack); but
when 𝜀

1

> 𝜀
2

, hardly does 𝜀
1

influence the failure occurrence
time, spreading speed, and scale, implying that, in this case,
to optimize the flow distribution structure, for example, by
making it more homogenous or evacuating the passengers
in the most central stop, maybe is much more significant
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Figure 11: When a randomly chosen node fails, the relationship between failure scale and time step with different topological coupling
coefficients 𝜀

1

in Beijing’s weighted BSN.
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Figure 12: When a specified node is intentionally attacked, considering flow redistribution, the relationship between failure scale and time
step with different topological coupling coefficients 𝜀

1

in Beijing’s weighted BSN.

since the topological coupling strength has little impact on
the cascade while the flow redistribution can influence the
spread of failure.

5. Analysis of Cascading Failures in
Beijing’s Weighted MPTN

5.1. Threshold for Cascading Failure. Here, the thresholds for
cascading failures in MPTN are studied with consideration

of flow redistribution, and the parameters are set the same
as those in Section 4.1. As shown in Figure 13, in the random
fault mode, when 𝑅 > 𝑅𝑅

𝐵+𝑅

= 2, failures start to be triggered
in the network, representing the fact that the threshold of
MPTN 𝑅𝑅

𝐵+𝑅

= 2 is smaller than that of BSN 𝑅𝑅
𝐵1

= 3.
It reveals that the MPTN is more vulnerable than that of
BSN under random fault, because both the topology and
flow distribution of MPTN display much more heterogeneity
according to our analysis in Sections 2.2 and 2.3, which is
consistent with earlier works on cascading failures [21, 44],



Mathematical Problems in Engineering 11

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time step

Cu
m

ul
at

iv
e f

ai
lu

re
 p

ro
po

rt
io

n
𝜀1 = 𝜀2 = 0.25

R = 2

R = 3

R = 4

R = 5

R = 6

(a) Spreading process of failures

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time step

R = 2

R = 3

R = 4

R = 5

R = 6

𝜀1 = 𝜀2 = 0.25

Fa
ilu

re
 p

ro
po

rt
io

n
(b) Relationship between failure scale and time step

Figure 13: When 𝜀
1

= 𝜀
2

and a randomly chosen node fails, considering flow redistribution, the threshold for cascading failure with different
perturbations 𝑅 in Beijing’s weighted MPTN.
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Figure 14: When 𝜀
1

= 𝜀
2

, a specified node is intentionally attacked, considering flow redistribution, the relationship between failure scale
and time step with different perturbations 𝑅 in Beijing’s weighted MPTN.

where it has been shown that large-scale cascading failures
are much less likely to happen in a homogeneous network
than in a heterogeneous network. In addition, as shown in
Figure 13(b), when 𝑅 > 𝑅

𝑅

𝐵+𝑅

, the initial occurrence time
of failure becomes earlier while peak proportion could be
smaller with the increase of 𝑅; for example, 𝑅 = 4 or 5,
indicating that the perturbation strength is not linear with the
peak failure.

When the node with the largest degree or strength is
attacked, respectively (Figure 14), that is, Sanyuanqiao station
with 𝑘 = 10 and Jianguomen station with 𝑠 = 1056343,
the thresholds of failures in MPTN are the same as 𝑅𝐾

𝐵+𝑅

=

𝑅
𝑆

𝐵+𝑅

= 3. Also, they are the same with BSN under strength-
based attack 𝑅𝑆

𝐵

= 3, larger than BSN under degree-based
attack 𝑅𝐾

𝐵

= 2, and even larger than itself under random
fault 𝑅𝑅

𝐵+𝑅

= 2, which implies that, because of the flow
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Figure 15:When a randomly chosen node fails, considering flow redistribution, the spreading process of cascading failure with different flow
coupling coefficients 𝜀

2

in Beijing’s weighted MPTN.

redistribution and the coupling function with two transit
modes of bus and rail, though the most important station is
attacked, the ability of MPTN to resist perturbation can be
surprisingly improved. At the same time, we find that, unlike
BSN, since both topology and flow structures of MPTN
are more heterogeneous, whether the node with the largest
degree or strength is attacked, the initial failure is muchmore
easily triggered with the increase of 𝑅, and failure spreads
faster than that of random fault mode. It also shows that the
spreading process under strength-based attack is much faster
and more intense than that under degree-based attack, as the
flow distribution ofMPTN ismuchmore heterogeneous than
the topology.

5.2. Effect of Flow Coupling Coefficient 𝜀
2

. As shown in
Figure 15, a perturbation𝑅 = 5 is added to a randomly chosen
node. When 𝜀

2

= 0.35, failure spreads more slowly than
those with other values of 𝜀

2

, and the peak comes later; its
proportion 𝑝𝑅

𝐵+𝑅

(𝜀
2

= 0.35) = 0.034 is smaller or equal to
thosewith other values of 𝜀

2

(𝑝𝑅
𝐵+𝑅

∈ [0.034, 0.05]), indicating
there could be an opportunity to control the cascading failure.
We also find that, unlike BSN, there is no trend showing that
𝜀
2

is linearly correlated with time step and failure proportion
in the MPTN, and when 𝜀

2

increases, the dynamic flow
redistribution in the network even can delay the failure initial
time and reduce the peak scale because of the heterogeneity
of MPTN.

When the node with the largest degree is attacked (shown
in Figure 16(a)), as 𝜀

1

is being kept at the same value, there is
a threshold 𝜀𝐾

∗

2

= 0.4, which means that when 𝜀
2

∈ (0, 0.4] or
𝜀
2

∈ (0.4, 1), no matter how much 𝜀
2

changes, the spreading
processes of failures present two synchronous curves, and

the spreading processes with 𝜀
2

∈ (0, 0.4] and those with
𝜀
2

∈ (0.4, 1) are spectacularly consistent; at the same time,
Figure 16(a) indicates that the failure initial times are earlier
and the average peaks of failures are larger with 𝜀

2

∈ (0.4, 1)

than those with 𝜀
2

∈ (0, 0.4].
This weak sensitivity of effect on cascading failure from 𝜀

2

becomes more prominent when the largest strength node is
attacked. As shown in Figure 16(b), the spreading processes
are always the same and totally not affected by 𝜀

2

values.
According to the relationship between failure scale and time
step, under strength-based attack, the cascading failure is
much more intense than that under degree-based attack, and
the failure peak occurs much earlier; that is, 𝑡

𝑝

𝑠

= 12 < 𝑡
𝑝

𝑘

=

29 (when 𝜀
2

∈ (0, 0.4]) or 21 (when 𝜀
2

∈ (0.4, 1)), with higher
peak value 𝑝

𝑠

= 0.086 > 𝑝
𝑘

= 0.06 (when 𝜀
2

∈ (0, 0.4]) or
0.072 (when 𝜀

2

∈ (0.4, 1)); the time of network failed globally
is also earlier: 𝑡

𝑠

(𝑒) = 63 < 𝑡
𝑘

(𝑒) = 78, which is also earlier
than the time 𝑡(𝑒) = 92 in random fault.

5.3. Effect of Topological Coupling Coefficient 𝜀
1

. In random
fault mode, as shown in Figure 17, similar to BSN, with
consideration of flow redistribution, 𝜀

1

has less effect on
the spreading processes of failures in MPTN with different
values, and the peak times and peak proportions of failures
appear in a small range; that is, 𝑡𝑅

𝐵+𝑅

∈ [14, 24] and 𝑝𝑅
𝐵+𝑅

∈

[0.062, 0.078]. Notably, as shown in Figure 17(b), when a large
value of 𝜀

1

is set as 𝜀
1

= 0.55, the failure peak time is relatively
late and its proportion is the smallest, indicating that the flow
redistribution in a topology with high coupling strength may
play a role to relieve the impact of cascading failure.

Figure 18 plots the spreading process of cascading failure
when the node with the largest degree is intentionally
attacked with different 𝜀

1

and 𝜀
2

= 0.15 or 𝜀
2

= 0.25. We
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(a) Node with the largest degree is intentionally attacked
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(b) Node with the largest strength is intentionally attacked

Figure 16: When a specified node is intentionally attacked, considering flow redistribution, the spreading process of cascading failures with
different flow coupling coefficients 𝜀

2

in the Beijing’s weighted MPTN.
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Figure 17: When a randomly chosen node fails, considering flow redistribution, the spreading process of cascading failure with different
topological coupling coefficients 𝜀

1

in Beijing’s weighted MPTN.

find that there is a threshold of 𝜀𝐾
∗

1

= 0.45, namely, when 𝜀
1

≥

0.45, whatever 𝜀
1

increases, the spreading processes reach a
synchronization;meanwhile, when 𝜀

1

≥ 0.45, the initial times
of failures are earlier than those when 𝜀

1

< 0.45, and the
average peak proportion is also relatively larger. Likewise,
under strength-based attack (shown in Figure 19), there is
also a synchronization for spreading process with a threshold

𝜀
𝑆

∗

1

= 0.25 and when 𝜀
1

≥ 0.25, the initial and peak times of
failures are earlier and the peak value is larger.

Similarly, we find that, no matter how topological cou-
pling strength 𝜀

1

changes, the spreading process of cascading
failure is the most intense when the node with the largest
strength is attacked; the threshold 𝜀𝑆

∗

1

= 0.25 in the case
that the synchronization of cascade occurs is smaller than
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Figure 18:When the nodewith the largest degree is intentionally attacked, considering flow redistribution, the spreading process of cascading
failure with different topological coupling coefficients 𝜀

1

in Beijing’s weighted MPTN.
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Figure 19: When the node with the largest strength is intentionally
attacked, considering flow redistribution, the spreading process of
cascading failures with different topological coupling coefficients 𝜀

1

in the Beijing’s weighted MPTN.

that of 𝜀𝐾
∗

1

= 0.45 when the largest degree one is attacked;
after occurrence of synchronization, the peak time 𝑡

𝑝

𝑠

= 12

under strength-based attack is earlier than that of 𝑡
𝑝

𝑘

= 17

under degree-based attack, and the peak proportion is higher:
𝑝
𝑠

= 0.085 > 𝑝
𝑘

= 0.072. It reveals that when the most
important station in a weighted network is attacked, even
though the topology is not coupled so much, the MPTN will

suffer much heavier damage, as both of its topology and flow
distribution structures are scale-free, which is consistent with
the conclusions of [2, 43, 44].

6. Conclusions

In summary, we find that both weighted BSN and MPTN
in Beijing are scale-free networks while the topology of the
former is small-world and that of the latter is scale-free, which
make them show different robustness against different kind
of faults or attacks. According to the thresholds for cascading
failures, we find that when considering the dynamic flow
behavior, the network displays a higher tolerance against ran-
dom fault than that without flow redistribution. Particularly,
in the weighted PTN based on passenger flow as a scale-
free network, even the station with the largest strength is
intentionally attacked; because of the dynamic flow redis-
tribution, the network displays a surprisingly increasing
degree of robustness comparedwith topological networkwith
small-world structure against intentional attack, or even with
scale-free one against random fault. This should encourage
the development of multimodal transit networks in large
metropolitan areas. It is the passengers’ choice behaviors that
play an important role to improve the robustness of PTN. It
can explain why real PTNs rarely suffer complete breakdowns
despite frequent disruptions from natural and man-made
disasters.

However, once cascading failures are triggered in the
network, we find that when the station with the largest
strength is intentionally attacked, the damage to the network
is much heavier than that of the largest degree-based attack,
also, heavier than that of a randomly chosen node failed.This
reminds us that we should pay more attention to the most
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central node (station), that is, the onewith the largest strength
in a weighted network to control the cascading failure, since
the control window is short when cascading failure occurs.
As the weighted PTN in Beijing is a scale-free network,
these characteristics of vulnerability are consistent with the
discoveries of Motter [21].

In essence, the flow redistribution has the ability to
promote the synchronization during the spread of failure.
Under intentional attack, although there is a certain degree of
diversity for the spreading process with different topological
coupling strength 𝜀

1

, some synchronizations tend to occur.
However, the flow coupling strength 𝜀

2

has little impact on the
failure spread, especially for strength-based attack, and the
synchronizations are much more likely to appear, indicating
that when the most important station in the weighted PTN
is attacked, the dynamic changes and redistribution of pas-
senger flow can intensify the spreading process of cascading
failure, no matter how much the initial flow is coupled.
Fortunately, we can find some key thresholds of 𝜀

1

and 𝜀
2

that lead to synchronizations ormake the cascading failure be
triggered later or spread more slowly, which will help us find
strategies to contain the spreading and avoid further damage.

The flow redistribution behavior adopted in this work
is still primitive. More realistic behavior adaptations of
major failures in transportation systems, such as the global
redistribution of OD flows, should be explored. In addition,
we only considered failures in nodes, while in the real world,
failures in links also exist.When a route or route link that goes
through a node fails, the node (and all connecting edges) does
not necessarily have to be excluded from the network but only
the failed links. Link failures in transportation system will be
explored in our future study. Last but not least, further studies
to better understand the complicated intrinsic properties
of cascading failures and the essence of synchronization in
weighted complex public transit networks are also worth
pursuing.
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