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A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the
indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed
to guarantee the stability of the systemwith the uncertainty and external disturbance.Moreover, themodified generalized projection
synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order
system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented
to show the effectiveness of the theoretical results.

1. Introduction

Though the concept of fractional calculus has been estab-
lished more than three hundred years, its potential appli-
cations are fully carried out in recent decades, especially
in the fields of control, engineering, and physics; see [1–
3] and reference therein. It has been found that many
systems in nature display fractional phenomena, such as
electromagnetic waves, dielectric polarization, the chemotaxi
behavior, quantitative finance, and evolution in complex
media. Especially, the memristor, which was predicted as
the missing circuit element [4], is more likely to be linked
to fractional calculus due to its inherent features. Therefore,
it is of considerable importance to study some aspects of
fractional calculus.

The stability of fractional differential equation (FDE) is
one of the most important aspects in FDE’s application of
control process [5, 6], and Lyapunov stability method pro-
vides an efficient way to analyze the stability of FDE without
explicitly solving the differential equations [7]. There are
two approaches with respect to Lyapunov stability, namely,
direct one and indirect one. The former one is intuitive
and specific, while the latter is based on the continuous
frequency distribution theory, which appears more abstract

but effective.Meanwhile, in order to stabilize the chaotic FDE,
many control mechanisms are presented so far, among which
sliding mode control (SMC) technique is extensively adopted
as it can be utilized to improve the control performance
criteria such as the robustness and fast time response [8–10].

Another important aspect of FDE’s application of control
process lies in synchronization of fractional-order chaotic
systems [11, 12], which attracts increasing attention in recent
years due to its potential applications in secure communica-
tion.There aremany synchronizationmethods for fractional-
order chaotic systems, including the Pecora and Carroll
method, the one-way coupling method, feedback control
method, the active control method, and the active sliding
mode control method. Amongst these methods, it is worth
mentioning that feedback control method serves as a good
tool to synchronize the master (drive) and slave (response)
systems up to a constant scaling factor, which is known as
projective synchronization (PC) [13]. This synchronization
scheme can be applied to secure communication easily
because it can obtain faster communication with its pro-
portional characteristics. Based on this, recently, Wu et al.
proposed the modified generalized projective synchroniza-
tion (MGPS) where the drive and response systems could
be synchronized to a constant scaling matrix [14]. Compared
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with PC, the unpredictability of the scaling matrix in MGPS
can greatly strengthen the security of communications.

Motivated by the above discussions, in this paper, we
are dedicated to the study of SMC of a new fractional-order
chaotic system, together with its MGPS. The main purpose
of this work is the integrated applications of the continuous
frequency distribution theory and adaptive SMC technique
to investigate indirect Lyapunov stability of a new fractional-
order chaotic system. Moreover, the MGPS of the fractional-
order chaotic systems is discussed based on the stability
theory of fractional-order system, which may provide poten-
tial applications in secure communication. The remainder
of this paper is organized as follows. In Section 2, some
basic definitions and lemmas are given. In Section 3, a new
fractional-order chaotic system is presented and the stability
of sliding mode dynamics of this system is studied based
on the continuous frequency distribution theory. Adaptive
sliding mode control of the fractional-order chaotic system
with the model uncertainty and external disturbance is also
investigated. In Section 4, MGPS of the fractional-order
chaotic systems is discussed under the framework of stability
theory of FDE. In Section 5, three numerical examples are
given to show the effectiveness of the theoretical results.
Finally, some concluding remarks are drawn in Section 6.

2. Preliminaries

In this section, we present some basic definitions and lemmas
which will be useful throughout this paper.

The commonly-used Riemann-Liouville definition of the
𝛼th-order derivative is given by

𝐷
𝛼

𝑥 (𝑡) = (

𝑑

𝑑𝑡

)

𝑛

𝐽
𝑛−𝛼

𝑥 (𝑡) , 𝛼 > 0, (1)

where 𝑛 is the first integer which is not less than 𝛼, 𝐽𝛽 is the
𝛽th-order Riemann-Liouville integral operator as described
by

𝐽
𝛽

𝑥 (𝑡) =

1

Γ (𝛽)

∫

𝑡

0

𝑥 (𝜏)

(𝑡 − 𝜏)
1−𝛽

𝑑𝜏, 0 < 𝛽 ≤ 1, (2)

where Γ(𝛽) = ∫

∞

0

𝑡
𝛽−1

𝑒
−𝑡

𝑑𝑡 is the gamma function.
Correspondingly, the Riemann-Liouville definition of the

𝛼th-order integral is given by

𝐷
−𝛼

𝑥 (𝑡) =

1

Γ (𝛼)

∫

𝑡

0

𝑥 (𝜏)

(𝑡 − 𝜏)
1−𝛼

𝑑𝜏, 𝛼 > 0. (3)

Besides the definitions of fractional calculus presented
above, the following lemmas provided in [7] are necessary for
the analysis in the next sections.

Lemma 1. Let ℎ(𝑡) be the impulse response of a linear system
and let 𝜇(𝜔) be the diffusive representation (or frequency
weighting function) of the impulse response ℎ(𝑡), ℎ(𝑡) and 𝜇(𝜔)
verify the pseudo-Laplace transform definition

ℎ (𝑡) = ∫

∞

0

𝜇 (𝜔) 𝑒
−𝜔𝑡

𝑑𝜔. (4)

Lemma2. Consider the nonlinear fractional-order differential
equation (FDE) 𝐷

𝛼

(𝑥) = 𝑓(𝑥). Owing to the continuous
frequency distributed model of the fractional integrator, the
nonlinear system can be expressed as

𝜕𝑧 (𝜔, 𝑡)

𝜕𝑡

= −𝜔𝑧 (𝜔, 𝑡) + 𝑓 (𝑥 (𝑡)) ,

𝑥 (𝑡) = ∫

∞

0

𝜇 (𝜔) 𝑧 (𝜔, 𝑡) 𝑑𝜔

(5)

with

𝜇 (𝜔) =

sin𝛼𝜋
𝜋

𝜔
−𝑛

. (6)

3. Sliding Mode Control of the New
Fractional-Order Chaotic System

A new fractional-order chaotic system is described by

𝐷
𝑞
1
𝑥 (𝑡) = 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝐷
𝑞
2
𝑦 (𝑡) = 𝑏𝑦 (𝑡) + 𝑒𝑥 (𝑡) 𝑧 (𝑡) + ℎ𝑧 (𝑡) ,

𝐷
𝑞
3
𝑧 (𝑡) = 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) ,

(7)

where 𝑞
𝑖
denotes fractional-order and 0 < 𝑞

𝑖
< 1, (𝑖 =

1, 2, 3), 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ ∈ 𝑅 are parameters. If one of its
Lyapunov exponents is positive, then the system exhibits
chaotic dynamical behavior. Specially, system (7) is chaotic
when 𝑎 = −3, 𝑏 = 5, 𝑐 = −10, 𝑑 = 1, 𝑒 = −1, 𝑓 = 1, 𝑔 = 1,
ℎ = 16, 𝑞

1
= 0.995, 𝑞

2
= 0.997, 𝑞

3
= 0.998, as illustrated

in Figure 1. When 𝑞
1
= 𝑞
2
= 𝑞
3
= 1, the corresponding

integer-order differential equation has been proposed and its
dynamics have been studied in [15].

In order to apply the nonlinear feedback control, we con-
sider the controlled system described by

𝐷
𝑞
1
𝑥 (𝑡) = 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝐷
𝑞
2
𝑦 (𝑡) = 𝑏𝑦 (𝑡) + 𝑒𝑥 (𝑡) 𝑧 (𝑡) + ℎ𝑧 (𝑡) + 𝑢 (𝑡) ,

𝐷
𝑞
3
𝑧 (𝑡) = 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) .

(8)

Choose the switching surface 𝑠(𝑡) as

𝑠 (𝑡) = 𝐷
𝑞
2
−1

𝑦 (𝑡) + ∫

𝑡

0

𝜙 (𝜏) 𝑑𝜏, (9)

where 𝜙(𝑡) is described by 𝜙(𝑡) = (𝑑 + 𝑓)𝑥𝑧 + 𝑔𝑥𝑦 − (𝑏 − 𝑘)𝑦

with 𝑘 > 0.
When reaching the switching surface, we have

𝑠 (𝑡) = 𝐷
𝑞
2
−1

𝑦 (𝑡) + ∫

𝑡

0

𝜙 (𝜏) 𝑑𝜏 = 0,

̇𝑠 (𝑡) = 𝐷
𝑞
2
𝑦 (𝑡) + 𝜙 (𝑡) = 0.

(10)

Thus the corresponding control law is obtained

𝑢 (𝑡) = − (𝑑 + 𝑒 + 𝑓) 𝑥𝑧 − 𝑔𝑥𝑦 − ℎ𝑧 − 𝑘𝑦. (11)
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Figure 1: Chaotic attractor of system (7). (a–c) Time responses of 𝑥, 𝑦, and 𝑧. (d) Phase portrait.

Hence we have

𝐷
𝑞
1
𝑥 (𝑡) = 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝐷
𝑞
2
𝑦 (𝑡) = (𝑏 − 𝑘) 𝑦 (𝑡) − (𝑑 + 𝑓) 𝑥 (𝑡) 𝑧 (𝑡) − 𝑔𝑥 (𝑡) 𝑦 (𝑡) ,

𝐷
𝑞
3
𝑧 (𝑡) = 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) .

(12)

Theorem 3. The FDE sliding mode dynamics described in (12)
are globally asymptotically stable if 𝑎 < 0, 𝑏 − 𝑘 < 0, 𝑐 < 0.

Proof. Owing to the continuous frequency distributed model
of the fractional integrator, the nonlinear system can be
rewritten as

𝜕𝑧
1
(𝜔, 𝑡)

𝜕𝑡

= −𝜔𝑧
1
(𝜔, 𝑡) + 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝑥 (𝑡) = ∫

∞

0

𝜇
1
(𝜔) 𝑧
1
(𝜔, 𝑡) 𝑑𝜔,

𝜕𝑧
2
(𝜔, 𝑡)

𝜕𝑡

= −𝜔𝑧
2
(𝜔, 𝑡) + (𝑏 − 𝑘) 𝑦 (𝑡)

− (𝑑 + 𝑓) 𝑥 (𝑡) 𝑧 (𝑡) − 𝑔𝑥 (𝑡) 𝑦 (𝑡) ,

𝑦 (𝑡) = ∫

∞

0

𝜇
2
(𝜔) 𝑧
2
(𝜔, 𝑡) 𝑑𝜔,

𝜕𝑧
3
(𝜔, 𝑡)

𝜕𝑡

= −𝜔𝑧
3
(𝜔, 𝑡) + 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) ,

𝑧 (𝑡) = ∫

∞

0

𝜇
3
(𝜔) 𝑧
3
(𝜔, 𝑡) 𝑑𝜔,

(13)

where 𝜇
𝑖
(𝜔) = (sin 𝑞

𝑖
𝜋/𝜋)𝜔

−𝑞
𝑖 , 𝑖 = 1, 2, 3.

Let us define two Lyapunov functions as follows.

(1) V
𝑖
(𝜔, 𝑡) (𝑖 = 1, 2, 3) are the monochromatic Lyapunov

functions corresponding to the elementary frequency
𝜔.
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(2) 𝑉
𝑖
(𝑡) (𝑖 = 1, 2, 3) are the Lyapunov functions summing

all the monochromatic V
𝑖
(𝜔, 𝑡) with the weighting

function 𝜇
𝑖
(𝜔).

Let V
𝑖
(𝜔, 𝑡) = (1/2)𝑧

2

𝑖
(𝜔, 𝑡) and let 𝑉

𝑖
(𝑡) = ∫

∞

0

𝜇
𝑖
(𝜔)𝑧
𝑖
(𝜔,

𝑡)𝑑𝜔, 𝑖 = 1, 2, 3. Note that V
𝑖
(𝜔, 𝑡) (𝑖 = 1, 2, 3) are positive, and

𝜇
𝑖
(𝜔) (𝑖 = 1, 2, 3) are positive for all 𝜔. Thus 𝑉

𝑖
(𝑡) (𝑖 = 1, 2, 3)

are positive Lyapunov functions. The time derivative of 𝑉
𝑖
(𝑡)

yields

𝑑𝑉
𝑖
(𝑡)

𝑑𝑡

= ∫

∞

0

𝜇
𝑖
(𝜔)

𝜕V
𝑖
(𝜔, 𝑡)

𝜕𝑡

𝑑𝜔 = ∫

∞

0

𝜇
𝑖
(𝜔) 𝑧
𝑖

𝜕𝑧
𝑖

𝜕𝑡

𝑑𝜔,

𝑖 = 1, 2, 3.

(14)

Combining (13) with (14), we have

𝑑𝑉
1
(𝑡)

𝑑𝑡

= ∫

∞

0

𝜇
1
(𝜔)

𝜕V
1
(𝜔, 𝑡)

𝜕𝑡

𝑑𝜔

= ∫

∞

0

𝜇
1
(𝜔) 𝑧
1
[−𝜔𝑧
1
+ 𝑎𝑥 + 𝑑𝑦𝑧 + 𝑔𝑦

2

] 𝑑𝜔

= −∫

∞

0

𝜔𝜇
1
(𝜔) 𝑧
2

1
𝑑𝜔 + 𝑥 (𝑎𝑥 + 𝑑𝑦𝑧 + 𝑔𝑦

2

) ,

𝑑𝑉
2
(𝑡)

𝑑𝑡

= ∫

∞

0

𝜇
2
(𝜔)

𝜕V
2
(𝜔, 𝑡)

𝜕𝑡

𝑑𝜔

= ∫

∞

0

𝜇
2
(𝜔) 𝑧
2
[−𝜔𝑧
2
+ (𝑏 − 𝑘) 𝑦

− (𝑑 + 𝑓) 𝑥𝑧 − 𝑔𝑥𝑦] 𝑑𝜔

= −∫

∞

0

𝜔𝜇
2
(𝜔) 𝑧
2

2
𝑑𝜔

+ 𝑦 [(𝑏 − 𝑘) 𝑦 − (𝑑 + 𝑓) 𝑥𝑧 − 𝑔𝑥𝑦] ,

𝑑𝑉
3
(𝑡)

𝑑𝑡

= ∫

∞

0

𝜇
3
(𝜔)

𝜕V
3
(𝜔, 𝑡)

𝜕𝑡

𝑑𝜔

= ∫

∞

0

𝜇
3
(𝜔) 𝑧
3
[−𝜔𝑧
3
+ 𝑐𝑧 + 𝑓𝑥𝑦] 𝑑𝜔

= −∫

∞

0

𝜔𝜇
3
(𝜔) 𝑧
2

3
𝑑𝜔 + 𝑧 (𝑐𝑧 + 𝑓𝑥𝑦) .

(15)

Let us define 𝑉(𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡); then

𝑑𝑉 (𝑡)

𝑑𝑡

=

3

∑

𝑖=1

𝑑𝑉
𝑖
(𝑡)

𝑑𝑡

= −

3

∑

𝑖=1

∫

∞

0

𝜔𝜇
𝑖
(𝜔) 𝑧
2

𝑖
𝑑𝜔

+ [𝑎𝑥
2

+ (𝑏 − 𝑘) 𝑦
2

+ 𝑐𝑧
2

] .

(16)

Denote by 𝑊
𝑖
= −∫

∞

0

𝜔𝜇
𝑖
(𝜔)𝑧
2

𝑖
𝑑𝜔 (𝑖 = 1, 2, 3) and 𝑊 =

∑
3

𝑖=1
𝑊
𝑖
. The frequency discretization of𝑊

𝑖
gives

𝑊
𝑖
= −

𝐽

∑

𝑗=1

𝜔
𝑖𝑗
𝜇
𝑖
(𝜔
𝑖𝑗
) 𝑧
2

𝑖
(𝜔
𝑖𝑗
, 𝑡) Δ𝜔

𝑖𝑗
=

𝐽

∑

𝑗=1

𝜔
𝑖𝑗
𝑐
𝑖𝑗
𝑧
2

𝑖
(𝜔
𝑖𝑗
, 𝑡) ,

(17)

where 𝑐
𝑖𝑗

= −𝜇
𝑖
(𝜔
𝑖𝑗
)Δ𝜔
𝑖𝑗

< 0. Hence 𝑊
𝑖
< 0 and 𝑊 =

∑
3

𝑖=1
𝑊
𝑖
< 0. On the other hand, if 𝑎 < 0, 𝑏 − 𝑘 < 0, 𝑐 < 0,

then 𝑎𝑥
2

+ (𝑏 − 𝑘)𝑦
2

+ 𝑐𝑧
2

< 0. According to the above
analysis we have 𝑑𝑉(𝑡)/𝑑𝑡 < 0, which implies that system (12)
is asymptotically stable.

It is to be noted that the above slide mode control of
the fractional-order chaotic system is conducted under the
condition that no model uncertainty or external disturbance
exists. But in reality, these factors are ubiquitous. In view of
this, in what follows we consider this fractional-order chaotic
system with the model uncertainty and external disturbance
described by

𝐷
𝑞
1
𝑥 (𝑡) = 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝐷
𝑞
2
𝑦 (𝑡) = 𝑏𝑦 (𝑡) + 𝑒𝑥 (𝑡) 𝑧 (𝑡) + ℎ𝑧 (𝑡)

+ Δℎ (𝑥, 𝑦, 𝑧) + Δ𝑤 (𝑡) + 𝑢 (𝑡) ,

𝐷
𝑞
3
𝑧 (𝑡) = 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) ,

(18)

where Δℎ(𝑥, 𝑦, 𝑧), Δ𝑤(𝑡) are the model uncertainty and the
external disturbance, respectively. Note that they are often
bounded. Therefore we give the following assumption.

Assumption 4. The model uncertainty and the external dis-
turbance are assumed to be bounded; that is, there exist
unknown positive constants 𝜓, 𝜔 such that |Δℎ(𝑥, 𝑦, 𝑧)| < 𝜓,
|Δ𝑤(𝑡)| < 𝜔.

In order to give an estimation of the two constants 𝜓 and
𝜔, we present the adaptive rules defined as follows:

̇
�̃� = 𝜆

1
|𝑠| ,

̇
�̃� = 𝜆

2
|𝑠| , (19)

where �̃�, �̃� are estimations for 𝜓, 𝜔, respectively, and 𝜆
1
, 𝜆
2

are positive constants.
The controller is designed as follows:

𝑢 (𝑡) = − (𝑑 + 𝑒 + 𝑓) 𝑥𝑧 − 𝑔𝑥𝑦 − ℎ𝑧

− 𝑘𝑦 − 𝜌 sign (𝑠) − (�̃� + �̃�) sign (𝑠) ,
(20)

where 𝜌 is a positive constant. Then we reach the following
theorem.

Theorem 5. The FDE with the unknown bounded uncertainty
and the external disturbance described in (18) will converge to
the sliding surface 𝑠(𝑡) = 0 under the controller (20).
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Proof. Selecting a Lyapunov candidate as 𝑉(𝑡) = (1/2)𝑠
2

+

(1/2𝜆
1
)(�̃� − 𝜓)

2

+ (1/2𝜆
2
)(�̃� − 𝜔)

2 and taking the time
derivative of both sides, one obtains

�̇� = 𝑠 ̇𝑠 +

1

𝜆
1

(�̃� − 𝜓)
̇

�̃� +

1

𝜆
2

(�̃� − 𝜔)
̇

�̃�

= 𝑠 (Δℎ (𝑥, 𝑦, 𝑧) + Δ𝑤 (𝑡))

− 𝑠 (�̃� + �̃�) sign (𝑠) − 𝑠𝜌 sign (𝑠)

+ (�̃� − 𝜓) |𝑠| + (�̃� − 𝜔) |𝑠|

≤ |𝑠| (𝜓 + 𝜔) − |𝑠| (�̃� + �̃�) − 𝜌 |𝑠|

+ (�̃� − 𝜓) |𝑠| + (�̃� − 𝜔) |𝑠|

= −𝜌 |𝑠| ≤ 0.

(21)

Integrating (21) from zero to 𝑡 yields

∫

𝑡

0

𝜌 |𝑠| 𝑑𝑡 ≤ 𝑉 (0) − 𝑉 (𝑡) , (22)

which implies lim
𝑡→∞

𝑠 = 0.

4. MGPS of the New Fractional-Order
Chaotic Systems

In this section, we investigate MGPS of the new fractional-
order chaotic systems. First of all, it is necessary to give the
definition of MGPS [14].

Definition 6. The drive system 𝐷
𝛼

(𝑋
𝑚
) = 𝐹(𝑋

𝑚
) and the

response system 𝐷
𝛼

(𝑋
𝑠
) = 𝐹(𝑋

𝑠
) + 𝑈 are said to achieve

modified general projection synchronization (MGPS) if there
exists a controller 𝑈 such that lim

𝑡→∞
‖𝑋
𝑠
− Λ𝑋

𝑚
‖ = 0,

where Λ = diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
), 𝑑
𝑖

̸= 0, 𝑖 = 1, 2, . . . , 𝑛 and
𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑈 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
).

We consider the drive and the response fractional-order
chaotic systems described as follows:

(

𝐷
𝛼

𝑥
𝑚

𝐷
𝛼

𝑦
𝑚

𝐷
𝛼

𝑧
𝑚

) =
[

[

[

𝑎 0 0

0 𝑏 ℎ

0 0 𝑐

]

]

]

(

𝑥
𝑚

𝑦
𝑚

𝑧
𝑚

)+(

𝑑𝑦
𝑚
𝑧
𝑚
+ 𝑔𝑦
2

𝑚

𝑒𝑥
𝑚
𝑧
𝑚

𝑓𝑥
𝑚
𝑦
𝑚

),

(

𝐷
𝛼

𝑥
𝑠

𝐷
𝛼

𝑦
𝑠

𝐷
𝛼

𝑧
𝑠

) =
[

[

[

𝑎 0 0

0 𝑏 ℎ

0 0 𝑐

]

]

]

(

𝑥
𝑠

𝑦
𝑠

𝑧
𝑠

)

+(

𝑑𝑦
𝑠
𝑧
𝑠
+ 𝑔𝑦
2

𝑠

𝑒𝑥
𝑠
𝑧
𝑠

𝑓𝑥
𝑠
𝑦
𝑠

)+(

𝑢
1

𝑢
2

𝑢
3

).

(23)

Define the synchronization errors by

𝑒
1
= 𝑥
𝑠
− 𝑑
1
𝑥
𝑚
,

𝑒
2
= 𝑦
𝑠
− 𝑑
2
𝑦
𝑚
,

𝑒
3
= 𝑧
𝑠
− 𝑑
3
𝑧
𝑚
,

(24)

where Λ = (𝑑
1
, 𝑑
2
, 𝑑
3
) and 𝑑

𝑖
(𝑖 = 1, 2, 3) are the nonzero

scaling factors.
Then the error dynamics are obtained

𝐷
𝛼

𝑒
1
= 𝑎𝑒
1
+ 𝑑𝑦
𝑠
𝑧
𝑠
+ 𝑔𝑦
2

𝑠
− 𝑑
1
𝑑𝑦
𝑚
𝑧
𝑚
− 𝑑
1
𝑔𝑦
2

𝑚
+ 𝑢
1
,

𝐷
𝛼

𝑒
2
= 𝑏𝑒
2
+ ℎ𝑧
𝑠
+ 𝑒𝑥
𝑠
𝑧
𝑠
− 𝑑
2
ℎ𝑧
𝑚
− 𝑑
2
𝑒𝑥
𝑚
𝑧
𝑚
+ 𝑢
2
,

𝐷
𝛼

𝑒
3
= 𝑐𝑒
3
+ 𝑓𝑥
𝑠
𝑦
𝑠
− 𝑑
3
𝑓𝑥
𝑚
𝑦
𝑚
+ 𝑢
3
.

(25)

We design the controllers 𝑢
𝑖
(𝑖 = 1, 2, 3) for the response

system as follows:

𝑢
1
= −𝑑𝑦

𝑠
𝑧
𝑠
− 𝑔𝑦
2

𝑠
+ 𝑑
1
𝑑𝑦
𝑚
𝑧
𝑚
+ 𝑑
1
𝑔𝑦
2

𝑚
− 𝑘
1
𝑒
1
,

𝑢
2
= −ℎ𝑧

𝑠
− 𝑒𝑥
𝑠
𝑧
𝑠
+ 𝑑
2
ℎ𝑧
𝑚
+ 𝑑
2
𝑒𝑥
𝑚
𝑧
𝑚
− 𝑘
2
𝑒
2
,

𝑢
3
= −𝑓𝑥

𝑠
𝑦
𝑠
+ 𝑑
3
𝑓𝑥
𝑚
𝑦
𝑚
− 𝑘
3
𝑒
3
,

(26)

where the control gains matrix𝐾 = diag(𝑘
1
, 𝑘
2
, 𝑘
3
).

Thus the fractional-order error dynamics can be rewritten
as follows:

(

𝐷
𝛼

𝑒
1

𝐷
𝛼

𝑒
2

𝐷
𝛼

𝑒
3

) = (

𝑎 − 𝑘
1

0 0

0 𝑏 − 𝑘
2

0

0 0 𝑐 − 𝑘
3

)(

𝑒
1

𝑒
2

𝑒
3

) = 𝐴𝑒, (27)

where

𝐴 = (

𝑎 − 𝑘
1

0 0

0 𝑏 − 𝑘
2

0

0 0 𝑐 − 𝑘
3

). (28)

According the stability theory of fractional-order system
[16], straightforwardly we have the following theorem.

Theorem 7. Consider the drive and the response system
described in (23), if the controllers in (26) are employed and
| arg(𝜆(𝐴))| > 𝛼𝜋/2 is satisfied, where 𝜆(𝐴) denotes the
eigenvalue of the matrix 𝐴 given in (28), then MGPS between
the drive system and the response system is achieved.

It is worth mentioning that the above MGPS can be
easily utilized in secure communication. More specifically,
the original signal can be modulated into the chaotic signal
generated by the new fractional-order chaotic system and
then forms a combined signal. The combined signal can be
injected into one of three variables. The receiver can obtain
anddecode the combined signal via theMGPS and the scaling
factor, respectively.

5. Three Illustrative Examples

In this section, we will perform some numerical examples to
verify the theoretical analysis.
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Figure 2: Sliding mode dynamics of system (12) are globally stable. (a–c) Time responses of 𝑥, 𝑦, and 𝑧. (d) Phase portrait.

Example 1. Consider the following FDE:

𝐷
𝑞
1
𝑥 (𝑡) = 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝐷
𝑞
2
𝑦 (𝑡) = 𝑏𝑦 (𝑡) + 𝑒𝑥 (𝑡) 𝑧 (𝑡) + ℎ𝑧 (𝑡) + 𝑢 (𝑡) ,

𝐷
𝑞
3
𝑧 (𝑡) = 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) ,

(29)

with 𝑎 = −3, 𝑏 = 5, 𝑐 = −10, 𝑑 = 1, 𝑒 = −1, 𝑓 = 1, 𝑔 = 1,
ℎ = 16, 𝑞

1
= 0.995, 𝑞

2
= 0.997, 𝑞

3
= 0.998. If we choose the

controller 𝑢(𝑡) = −𝑥𝑧−𝑥𝑦−16𝑧−6𝑦, then fromTheorem 3we
know that system (29) is asymptotically stable, as illustrated
in Figure 2.

Example 2. Consider the following FDE with the model
uncertainty and the external disturbance:

𝐷
𝑞
1
𝑥 (𝑡) = 𝑎𝑥 (𝑡) + 𝑑𝑦 (𝑡) 𝑧 (𝑡) + 𝑔𝑦

2

(𝑡) ,

𝐷
𝑞
2
𝑦 (𝑡) = 𝑏𝑦 (𝑡) + 𝑒𝑥 (𝑡) 𝑧 (𝑡) + ℎ𝑧 (𝑡)

+ Δℎ (𝑥, 𝑦, 𝑧) + Δ𝑤 (𝑡) + 𝑢 (𝑡) ,

𝐷
𝑞
3
𝑧 (𝑡) = 𝑐𝑧 (𝑡) + 𝑓𝑥 (𝑡) 𝑦 (𝑡) ,

(30)

where 𝑎 = −3, 𝑏 = 5, 𝑐 = −10, 𝑑 = 1, 𝑒 = −1, 𝑓 = 1,
𝑔 = 1, ℎ = 16, 𝑞

1
= 0.995, 𝑞

2
= 0.997, 𝑞

3
= 0.998,

Δℎ(𝑥, 𝑦, 𝑧) = 0.1 sin(𝑦), Δ𝑤(𝑡) = 0.1 sin(𝑡). If we choose the
controller 𝑢(𝑡) = −𝑥𝑧−𝑥𝑦−16𝑧−𝑦−2 sign(𝑠)−(�̃�+�̃�) sign(𝑠)
with the adaptive laws ̇

�̃� = 1.12|𝑠|, ̇
�̃� = 0.52|𝑠| and the

switching surface 𝑠(𝑡) = 𝐷
𝑞
2
−1

𝑦 + ∫

𝑡

0

[2𝑥𝑧 + 𝑥𝑦 − 4𝑦]𝑑𝜏, then
according to Theorem 5 we know that system (30) converges
to the sliding surface 𝑠 = 0, which is illustrated in Figure 3.

Example 3. Consider the drive and the response system given
by

(

𝐷
𝛼

𝑥
𝑚

𝐷
𝛼

𝑦
𝑚

𝐷
𝛼

𝑧
𝑚

) =
[

[

[

𝑎 0 0

0 𝑏 ℎ

0 0 𝑐

]

]

]

(

𝑥
𝑚

𝑦
𝑚

𝑧
𝑚

)+(

𝑑𝑦
𝑚
𝑧
𝑚
+ 𝑔𝑦
2

𝑚

𝑒𝑥
𝑚
𝑧
𝑚

𝑓𝑥
𝑚
𝑦
𝑚

),

(

𝐷
𝛼

𝑥
𝑠

𝐷
𝛼

𝑦
𝑠

𝐷
𝛼

𝑧
𝑠

) =
[

[

[

𝑎 0 0

0 𝑏 ℎ

0 0 𝑐

]

]

]

(

𝑥
𝑠

𝑦
𝑠

𝑧
𝑠

)
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Figure 3: Adaptive sliding mode control of system (30). (a) Time responses of 𝑥, 𝑦, and 𝑧. (b) Phase portrait. (c) Time response of 𝑠(𝑡). (d)
Time response of 𝑢(𝑡).

+(

𝑑𝑦
𝑠
𝑧
𝑠
+ 𝑔𝑦
2

𝑠

𝑒𝑥
𝑠
𝑧
𝑠

𝑓𝑥
𝑠
𝑦
𝑠

)+(

𝑢
1

𝑢
2

𝑢
3

),

(31)

where 𝑎 = −3, 𝑏 = 5, 𝑐 = −10, 𝑑 = 1, 𝑒 = −1, 𝑓 = 1,
𝑔 = 1, ℎ = −16, 𝛼 = 0.995, 𝑑

1
= 0.5, 𝑑

2
= −1.2, 𝑑

3
= 3. The

controllers𝑢
𝑖
(𝑖 = 1, 2, 3) for the response system are designed

as follows:

𝑢
1
= −𝑦
𝑠
𝑧
𝑠
− 𝑦
2

𝑠
+ 0.5𝑑𝑦

𝑚
𝑧
𝑚
+ 0.5𝑔𝑦

2

𝑚
− 𝑘
1
𝑒
1
,

𝑢
2
= 16𝑧

𝑠
+ 𝑥
𝑠
𝑧
𝑠
+ 19.2𝑧

𝑚
+ 1.2𝑥

𝑚
𝑧
𝑚
− 𝑘
2
𝑒
2
,

𝑢
3
= −𝑥
𝑠
𝑦
𝑠
+ 3𝑥
𝑚
𝑦
𝑚
− 𝑘
3
𝑒
3
,

(32)

where the control gains matrix 𝐾 = diag(𝑘
1
, 𝑘
2
, 𝑘
3
) =

(0, 6, 0). According to Theorem 7 we know that MGPS
between the drive system and the response system in (31) is
achieved, as shown in Figure 4.

6. Concluding Remarks

A new fractional-order chaotic system has been addressed in
this paper. The indirect Lyapunov stability of this system has
been studied based on sliding mode control technique. Fur-
thermore, the adaptive laws have been designed to guarantee
the stability of this system with the uncertainty and external
disturbance. By applying the stability theory of fractional-
order system, MGPS of this chaotic systems has also been
investigated, which may provide potential applications in
secure communication. Finally, three illustrative numerical
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Figure 4: MGPS of system (31). (a–c) Time responses of 𝑥
𝑚
and 𝑥

𝑠
, 𝑦
𝑚
and 𝑦

𝑠
, and 𝑧

𝑚
and 𝑧

𝑠
. (d) Time response of synchronization errors.

examples have been presented to verify the effectiveness of
the theoretical results.
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