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The global quasi-minimal residual (QMR) method is a popular iterative method for the solution of linear systems with multiple
right-hand sides. In this paper, we consider the application of the global QMRmethod to classical ill-posed problems arising from
image restoration. Since the scale of the problem is usually very large, the computations with the blurring matrix can be very
expensive. In this regard, we use a Kronecker product approximation of the blurring matrix to benefit the computation. In order to
reduce the disturbance of noise to the solution, the Tikhonov regularization technique is adopted to produce better approximation
of the desired solution. Numerical results show that the global QMRmethod outperforms the classic CGLS method and the global
GMRES method.

1. Introduction

In the area of remote sensing, materials science, medical and
astronomical imaging, and so on, image restoration plays
an important role in preprocessing and postprocessing the
image [1]. Many image restoration tasks can be posed as
problems of the form

∬
Ω

ℎ (𝑥, 𝑦; 𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 = 𝑔 (𝑥, 𝑦) , (1)

where the functions 𝑓, 𝑔 represent the original and blurred
images, respectively. The kernel ℎ is a point spread function
(PSF) which is a function that specifies the degree of blurring.
PSFs are often classified as either spatially variant or spatially
invariant [2, 3]. For simplicity, we take into account spatially
variant PSF in this paper. Bymeans of discretizationmethods
such as the Galerkin method or quadrature method [4], (1)
can be discretized to the following linear equations:

𝐴𝑥 = 𝑏̃, 𝐴 ∈ R
𝑛
2
×𝑛
2 , 𝑥, 𝑏̃ ∈ R

𝑛
2 , (2)

where 𝑥 is a vector representing the true image and 𝑏̃
is a vector representing the blurred image, which are the
discretized versions of𝑓 and 𝑔 in (1), respectively.Thematrix

𝐴 is the blurring matrix constructed from the discretized
version of the PSF ℎ. It should be noted that the PSF is
assumed to be known here. In fact, if the PSF is unknown,
there are a variety of means of techniques available for
estimating it [5, 6]. In real applications, the right-hand side
error-free vector 𝑏̃ is not accessible. Instead, the vector

𝑏 = 𝑏̃ + 𝜂 (3)

is known, where the vector 𝜂 represents the additive noise.
That is, the observed image is not only blurred but also
contaminated with noise. Commonly, 𝜂 is assumed to be
the white Gaussian noise, and its Euclidean vector norm is
considered to be a priori but the noise vector itself is not.

In this work, we aim to obtain an approximation of the
original image 𝑥 by computing a solution of the linear system
of equations

𝐴𝑥 = 𝑏, 𝐴 ∈ R
𝑛
2
×𝑛
2 , 𝑥, 𝑏 ∈ R

𝑛
2 . (4)

If the observed image array has dimension 𝑛 × 𝑛, then 𝑓 and
𝑔 are vectors of length 𝑛2, and 𝐴 is an 𝑛2 × 𝑛2 matrix. Typical
values of 𝑛 are 256, 512, and 1024, so the dimensions of the
matrix 𝐴 can be extremely large [7]. Then the computations
with 𝐴 can be very expensive.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 943072, 8 pages
http://dx.doi.org/10.1155/2015/943072



2 Mathematical Problems in Engineering

Fortunately, the matrix 𝐴 has a special structure when
an appropriate boundary condition is imposed. Then the
computational cost of matrix-vector multiplication can be
alleviated to some extent. For large-scale problems, such as
image restoration problems, the direct regularizationmethod
cannot always obtain good solutions, but the iterativemethod
is a better choice. Krylov subspace iterative methods are the
most commonly used approaches that can be employed for
solving (4). In [8], the authors proposed to employ the well
known BiCG and QMRmethods for image restoration. They
also considered using a popular iterative method GMRES
which was first proposed by Saad and Schultz for image
restoration in [9].

Equation (4) can be replaced by new ones involving
matrix equations, if the matrix 𝐴 can be decomposed as
Kronecker products, and then the computations with 𝐴 can
be reduced. In [10], the authors first proposed the global
Krylov subspace methods to solve the matrix equations. The
methods were proved to be very effective for large-scale
matrix equations. Later in [11], Bouhamidi and Jbilou applied
the global GMRES method to image restoration problems.
Their numerical tests demonstrated that the global GMRES
method was better than the GMRES method.

Due to the error in the right-hand side and the severe
ill-conditioning property of the matrix 𝐴, the straightfor-
ward solution of (4) typically does not yield a meaningful
approximation [4, 12, 13]. Therefore, instead of solving the
system (4) directly, we replace it by a nearby linear system
with a less ill-conditionedmatrix and solve the corresponding
new linear system.This replacement is commonly referred to
as regularization [9]. Probably the most renowned regular-
ization approach to overcome ill-conditioning dates back to
Tikhonov and Arsenin [14].

In this paper, we consider the implementation of the
global quasi-minimal residual (QMR) method for image
restoration problems. The approach discussed here can be
considered as an extension and a specific real application of
the method introduced in [15] where the authors applied this
method to solve the general Sylvester equation.This approach
is motivated by the work of Bouhamidi and Jbilou in [11].The
numerical experiments show that the global QMRmethod is
very effective compared with the global-GMRESmethod and
the classic conjugate gradientmethod for least square (CGLS)
problem.

The outline of this paper is as follows. In the next section,
we give some notations and definitions that will be used
throughout this paper. Section 3 introduces the global QMR
method for image restoration problems. We present some
numerical experiments to show the efficiency of the global
QMR method in Section 4. Finally concluding remarks can
be found in Section 5.

2. Preliminaries

As shown in [7], some blurring operators (e.g., Gaussian) are
separable and therefore can be factored as Kronecker product
of two matrices. The computation for the solution of (4) can
be reduced if the Kronecker product approximation of 𝐴 is
employed.

Suppose that 𝑃 ∈ R𝑛×𝑛 is the discretized PSF. If the PSF is
separable, that is, 𝑃 can be decomposed as

𝑃 = ab𝑇, (5)

where a and b are 𝑛 × 1 vectors, the matrix 𝐴 constructed
from 𝑃 has block structure of the form

𝐴 = 𝐴
𝑟
⊗ 𝐴
𝑐
= (

𝑎𝑟
11
𝐴
𝑐
𝑎𝑟
12
𝐴
𝑐
⋅ ⋅ ⋅ 𝑎𝑟
1𝑛
𝐴
𝑐𝑎𝑟

21
𝐴
𝑐
𝑎𝑟
22
𝐴
𝑐
⋅ ⋅ ⋅ 𝑎𝑟
2𝑛
𝐴
𝑐... ... ...

𝑎𝑟
𝑛1
𝐴
𝑐
𝑎𝑟
𝑛2
𝐴
𝑐
⋅ ⋅ ⋅ 𝑎𝑟
𝑛𝑛
𝐴
𝑐

), (6)

where the matrices 𝐴
𝑟
and 𝐴

𝑐
have parameters a and

b, respectively, with the specific structures depending on
the imposed boundary condition [6, 16], and “⊗” denotes
Kronecker product. We refer the readers to [17] for details
about the properties of Kronecker product.

If the PSF𝑃 is inseparable, then the correspondingmatrix
𝐴 is inseparable. However, we can find theKronecker product
approximation of𝐴 by using SVD technique so that𝐴 can be
approximately decomposed as the following form:

𝐴 ≈
𝑟

∑
𝑖=1

𝐴a
𝑖

⊗ 𝐴b
𝑖

, (7)

where 𝑃 = ∑𝑟
𝑖=1

b
𝑖
a𝑇
𝑖
with a given integer 𝑟 ≤ rank(𝑃). In

particular, the authors in [2, 16] pointed out that 𝐴a
1

⊗ 𝐴b
1

is the best (as measured by the Frobenius norm) Kronecker
approximation of 𝐴.

According to the properties of Kronecker product, (4) can
be rewritten as

𝐴
𝑐
𝑋𝐴𝑇
𝑟
= 𝐵, (8)

where 𝑥 = vec(𝑋) and 𝑏 = vec(𝐵). Note that 𝑧 = vec(𝑍) with
𝑍 ∈ R𝑛×𝑛 is the 𝑛2×1 vector obtained by stacking 𝑛 columns of
the matrix 𝑍. Define an operator A : 𝑋 ∈ R𝑛×𝑛 → 𝐴

𝑐
𝑋𝐴𝑇
𝑟

andA𝑇 : 𝑋 ∈ R𝑛×𝑛 → 𝐴
𝑟
𝑋𝐴𝑇
𝑐
; then (4) can be rewritten as

A𝑋 = 𝐵. (9)

We use the notation

K
𝑚 (A, 𝑉) = span {𝑉,A𝑉,A2𝑉, . . . ,A𝑚−1𝑉} , (10)

for the global Krylov subspace of R𝑛×𝑛 generated by the
matrix 𝑉 ∈ R𝑛×𝑛 and the operatorA. Note that

𝑍 ∈ K
𝑚 (A, 𝑉) ⇐⇒ 𝑍 =

𝑚

∑
𝑖=1

𝛼
𝑖
A
𝑖−1𝑉, 𝛼

𝑖
∈ R. (11)

Let 𝑋,𝑌 ∈ R𝑛×𝑛; we define the inner matrix product
⟨𝑋, 𝑌⟩

𝐹
= tr(𝑋𝑇𝑌), where tr(𝑍) denotes the trace of the

square matrix 𝑍 and 𝑋𝑇 the transpose of the matrix 𝑋. The
associated norm is the Frobenius norm ‖⋅‖𝐹. The matrices
𝑋,𝑌 are said to be F-orthonormal if tr(𝑋𝑇𝑌) = 0.

In the following, we will introduce an algorithm of
the global Lanczos biorthogonal process, which has been
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(1) GivenA, 𝑉
1
and𝑊

1
such that ⟨𝑉

1
,𝑊
1
⟩
𝐹
= 1;

(2) Set 𝛽
1
= 𝛿
1
= 0 and 𝑉

0
= 𝑊
0
= 𝑂
𝑛×𝑛

;
(3) For 𝑖 = 1, 2, . . . , 𝑚

𝛼
𝑗
= tr(𝑊𝑇

𝑗
A𝑉
𝑗
);

𝑉̂
𝑗+1

= A𝑉
𝑗
− 𝛼
𝑗
𝑉
𝑗
− 𝛽
𝑗
𝑉
𝑗−1

;
𝑊̂
𝑗+1

= A𝑇𝑊
𝑗
− 𝛼
𝑗
𝑊
𝑗
− 𝛿
𝑗
𝑊
𝑗−1

;
𝛿
𝑗+1

= 󵄨󵄨󵄨󵄨󵄨tr(𝑉̂𝑇𝑗+1𝑊̂𝑗+1)
󵄨󵄨󵄨󵄨󵄨
1/2

, if 𝛿
𝑗+1

= 0, stop;
𝛽
𝑗+1

= tr(𝑉̂𝑇
𝑗+1

𝑊̂
𝑗+1

)/𝛿
𝑗+1

;
𝑉
𝑗+1

= 𝑉̂
𝑗+1

/𝛿
𝑗+1

;
𝑊
𝑗+1

= 𝑊̂
𝑗+1

/𝛽
𝑗+1

;
End

Algorithm 1: The global Lanczos biorthogonal process.

elaborately discussed in [15, 18]. This process is used to
construct a pair of biorthogonal basis 𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑚
and

𝑊
1
,𝑊
2
, . . . ,𝑊

𝑚
of the two Krylov subspacesK

𝑚
(A, 𝑉
1
) and

K
𝑚
(A𝑇,𝑊

1
), respectively, such that

⟨𝑉
𝑖
,𝑊
𝑗
⟩ = tr (𝑉𝑇

𝑖
𝑊
𝑗
) = 𝛿
𝑖𝑗

= {1, 𝑖 = 𝑗,
0, 𝑖 ̸= 𝑗. for 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(12)

The construction process can be summarized as in
Algorithm 1.

For convenience, we denote by V
𝑚
and W

𝑚
the 𝑛 × 𝑛𝑚

block matrix, that is, V
𝑚

= [𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
] and W

𝑚
=

[𝑊
1
,𝑊
2
, . . . ,𝑊

𝑚
]; two matrices are of dimension 𝑛 × 𝑚𝑛.

Suppose that the tridiagonal matrix 𝑇
𝑚
is denoted by

𝑇
𝑚
= (

𝛼
1

𝛽
2𝛿

2
𝛼
2

d
d d 𝛽

𝑚−1𝛿
𝑚

𝛼
𝑚

), (13)

where 𝛼
𝑖
, 𝛽
𝑖
, and 𝛿

𝑖
(𝑖 = 1, 2, . . . , 𝑚) are the scalars defined in

Algorithm 1.
To derive the relation between AV

𝑚
and 𝑇

𝑚
, we define

the matrix 𝑇̃
𝑚
= ( 𝑇𝑚
𝛿
𝑚+1
𝑒
𝑇

𝑚

), where 𝑒
𝑚
= (0, . . . , 0, 1)𝑇 ∈ R𝑚.

Recall the notation ∗ in [10]:

V
𝑚
∗ 𝑦 =

𝑚

∑
𝑖=1

𝑦𝑖𝑉
𝑖
= V
𝑚
(𝑦 ⊗ 𝐼

𝑛
) , (14)

where 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)𝑇 is a vector of R𝑚, 𝐼

𝑛
is the 𝑛 × 𝑛

identity matrix, and

V
𝑚
∗ 𝑇
𝑚
= [V
𝑚
∗ 𝑇
.,1
, . . . ,V

𝑚
∗ 𝑇
.,𝑚
] , (15)

where 𝑇
.,𝑖
denotes the 𝑖th column of the matrix 𝑇

𝑚
. Then, for

𝑗 = 1, 2, . . . , 𝑚 − 1, we have the following relations:
V
𝑚
∗ 𝑇
.,𝑗
= 𝛼
𝑗
𝑉
𝑗
+ 𝛿
𝑗+1

𝑉
𝑗+1

+ 𝛽
𝑗
𝑉
𝑗−1

= A𝑉
𝑗
,

V
𝑚
∗ 𝑇
.,𝑚

= 𝛽
𝑚
𝑉
𝑚−1

+ 𝛼
𝑚
𝑉
𝑚

= A𝑉
𝑚
+ 𝛿
𝑚+1

𝑉
𝑚+1

.
(16)

Then we get

AV
𝑚
= V
𝑚
∗ 𝑇
𝑚
+ 𝛿
𝑚+1

[𝑂
𝑛×𝑛

, . . . , 𝑂
𝑛×𝑛

, 𝑉
𝑚+1

]
= V
𝑚
∗ 𝑇
𝑚
+ 𝛿
𝑚+1

𝑒𝑇
𝑚
𝑉
𝑚+1

= [V
𝑚
, 𝑉
𝑚+1

] ∗ 𝑇̃
𝑚
.

(17)

That is, by the global Lanczos biorthogonal process, we can
obtain

AV
𝑚
= V
𝑚+1

∗ 𝑇̃
𝑚
. (18)

It was pointed out in [15] that the global Lanczos algo-
rithmhad significant advantages over theArnoldimethod for
its fewer matrices of storage.

3. The Global QMR Method for Image
Restoration

The quasi-minimal residual (QMR) method was first intro-
duced by Freund and Nachtigal [19] to solve the linear
equation 𝐴𝑥 = 𝑏. The main idea of this algorithm is
to solve the reduced tridiagonal system in a least squares
sense. Additionally, the QMR method uses the look-ahead
technique to avoid breakdowns in the underlying Lanczos
process, which makes it more robust than the BiConjugate
Gradient method (BiCG) [20], and when BiCG makes no
progress at all, QMR may still show slow convergence. Since
the linear system is usually of large scale in applications such
as image restoration, it needs enormous computation.

Fortunately, by applying the Kronecker product approx-
imation of the matrix 𝐴 [16, 17], the large-scale problems
such as image restoration could be simplified intensively. In
[10], the authors first introduced a global approach for solving
matrix equations and derived the global FOM and the global
GMRES methods. These methods are generalizations of the
global MINRES method proposed by Saad [20]. The authors
proved that these methods were effective when applied for
matrix equations of large scale and low rank [21]. More
recently, Wang and Gu [15] applied the global QMR method
to solve the Sylvester equations. In this work, we will focus on
the global QMR method for image restoration.

Suppose that the operator A = 𝐴
𝑟
⊗ 𝐴
𝑐
is a good

approximation of 𝐴, 𝑥 = vec(𝑋) and 𝑏 = vec(𝐵). In the
following, we give details of the global QMR method for
image restoration. Let 𝑋

0
∈ R𝑛×𝑛 be the initial solution of

(9) and let 𝑅
0
= 𝐵 − A𝑋

0
be the corresponding residual.

Usually we set the black image to be the initialization. By
using Algorithm 1 for (9), the iterate 𝑋

𝑚
at step 𝑚 satisfies

that
𝑋
𝑚
− 𝑋
0
∈ K
𝑚
(A, 𝑅

0
) . (19)

Define 𝑉
1

= 𝑅
0
/𝜌, 𝜌 = 󵄩󵄩󵄩󵄩𝑅0󵄩󵄩󵄩󵄩𝐹 and 𝑊

1
such that,

⟨𝑉
1
,𝑊
1
⟩
𝐹

= 1. Suppose that the matrix Krylov subspaces
K
𝑚
(A, 𝑅
0
) and K

𝑚
(A𝑇,𝑊

1
) are generated by the sets of

matrices {𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑚
} and {𝑊

1
,𝑊
2
, . . . ,𝑊

𝑚
} constructed

by Algorithm 1. Then according to (19), we can obtain an
approximate solution of (9):

𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ y
𝑚
, (20)
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where y
𝑚

= (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)𝑇. Consequently, we can get the

associated residual matrix

𝑅
𝑚
= 𝐵 −A𝑋

𝑚

= 𝐵 −A (𝑋
0
+V
𝑚
∗ y
𝑚
)

= 𝑅
0
−AV

𝑚
∗ y
𝑚

= 𝜌𝑉
1
−V
𝑚+1

∗ 𝑇̃
𝑚
y
𝑚

= V
𝑚+1

∗ (𝜌𝑒
1
− 𝑇̃
𝑚
y
𝑚
) ,

(21)

where 𝑒
1
= (1, 0, . . . , 0)𝑇. Hence, the norm of the residual

matrix is
󵄩󵄩󵄩󵄩𝑅𝑚󵄩󵄩󵄩󵄩𝐹 = 󵄩󵄩󵄩󵄩󵄩V𝑚+1 ∗ (𝜌𝑒

1
− 𝑇̃
𝑚
y
𝑚
)󵄩󵄩󵄩󵄩󵄩𝐹 . (22)

An approximate solution of (9) can be obtained by com-
puting theminimizer from (22) with respect to y

𝑚
. Generally,

the 𝑉
𝑖
’s obtained by Algorithm 1 are not F-orthonormal.

However, as shown in [20], it is still reasonable to obtain that

ŷ
𝑚
= arg min

𝑦
𝑚
∈R𝑚

󵄩󵄩󵄩󵄩󵄩𝜌𝑒1 − 𝑇̃
𝑚
y
𝑚

󵄩󵄩󵄩󵄩󵄩𝐹 . (23)

What has been shown above is the key idea of the global
QMRmethod; hence the approximated solution by the global
QMR method can be given as

𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ ŷ
𝑚
, (24)

where ŷ
𝑚

= argmin
𝑦
𝑚
∈R𝑚

󵄩󵄩󵄩󵄩󵄩𝜌𝑒1 − 𝑇̃
𝑚
y
𝑚

󵄩󵄩󵄩󵄩󵄩𝐹. We refer the
readers to see [15, 20] for the details on how to compute ŷ

𝑚
.

To sum up, the algorithm for obtaining the approxi-
mate solution of (9) arising from image restoration can be
described as in Algorithm 2.

We note that the discrepancy principle can be used as the
stopping criterion in Algorithm 2; that is, the computations
will be terminated if the associated residual error corresponds
to the approximate solution𝑋

𝑚

󵄩󵄩󵄩󵄩A𝑋
𝑚
− 𝐵󵄩󵄩󵄩󵄩 ≤ 𝜇𝜖, 󵄩󵄩󵄩󵄩A𝑋

𝑚−1
− 𝐵󵄩󵄩󵄩󵄩 > 𝜇𝜖, (25)

where 𝜖 is the noise’s Frobenius Norm which is supposed to
be a priori and 𝜇 ≥ 1 is a fixed constant. For details on the
discrepancy principle, we refer to [22] and references therein
for more details.

Since the matrix𝐴 is usually ill-conditioned, the solution
is sensitive to the noise in the observed image. In the
following, in order to improve the accuracy of the solution,we
consider combining the global QMR method with Tikhonov
regularization technique. Motivated by the work in [11], we
can obtain the following algorithm which is named as the
global Tik-QMR method.

In Algorithm 3, the regularization parameter 𝜆 can be
determined by the L-curve criterion or the GCVmethod.We
choose the latter here. Note that the regularization step in our
work is different from the work in [11], since we adopt the
regularization after Lanczos process while the authors in [11]
used the regularization before the Lanczos process. Then our
method needs fewer computations than theirs.

(1) GivenA, and 𝐵,𝑋
0
;

(2) Set 𝑅
0
= 𝐵 −A𝑋

0
, 𝜌 = 󵄩󵄩󵄩󵄩𝑅0󵄩󵄩󵄩󵄩𝐹,𝑊1 = 𝑉

1
= 𝑅
0
/𝜌;

(3) For𝑚 = 1, 2, . . .
Compute 𝑇̃

𝑚
, 𝑉
𝑚
,𝑊
𝑚
using Algorithm 1;

ŷ
𝑚
= arg min

y𝑚∈R𝑚
󵄩󵄩󵄩󵄩󵄩𝜌𝑒1 − 𝑇̃

𝑚
y
𝑚

󵄩󵄩󵄩󵄩󵄩2;
𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ ŷ
𝑚
;

End

Algorithm 2: The global QMR method for image restoration.

(1) GivenA, 𝐵, 𝑋
0
, 𝜇 and 𝜖;

(2) Set 𝑅
0
= 𝐵 −A𝑋

0
, 𝜌 = 󵄩󵄩󵄩󵄩𝑅0󵄩󵄩󵄩󵄩𝐹,𝑊1 = 𝑉

1
= 𝑅
0
/𝜌;

(3) For𝑚 = 1, 2, . . .
Compute 𝑇̃

𝑚
, 𝑉
𝑚
,𝑊
𝑚
using Algorithm 1;

ŷ
𝑚
= arg min

y𝑚∈R𝑚
󵄩󵄩󵄩󵄩󵄩𝜌𝑒1 − 𝑇̃

𝑚
y
𝑚

󵄩󵄩󵄩󵄩󵄩
2

2
+ 𝜆2󵄩󵄩󵄩󵄩y𝑚󵄩󵄩󵄩󵄩22;

𝑋
𝑚
= 𝑋
0
+V
𝑚
∗ ŷ
𝑚
;

𝑅
𝑚
= V
𝑚+1

∗ (𝜌𝑒
1
− 𝑇̃
𝑚
y
𝑚
);

if 󵄩󵄩󵄩󵄩𝑅𝑚󵄩󵄩󵄩󵄩𝐹 satisfies the discrepancy principle, stop
else

𝑋
0
= 𝑋
𝑚
, 𝜌 = 󵄩󵄩󵄩󵄩𝑅𝑚󵄩󵄩󵄩󵄩𝐹, 𝑉1 = 𝑅

𝑚
/𝜌;

End

Algorithm 3: The global Tik-QMR method for image restoration.

4. Numerical Experiments

In this section, we report some numerical examples to
illustrate the performance of the global QMR method for
image restoration problems.The results show that the quality
of images restored by the global QMR method is better than
those obtained by other methods of the same kind, such as
the classic CGLSmethod [23] and the global GMRESmethod
proposed by Jbilou et al. [10].The experiments are carried out
in Matlab 7.0 on a PC equipped with a 2.93GHz Intel Core
Duo CPU, with 2GB of RAM, under MicrosoftWindows XP.

Example 1. Our first example is to show the practical effi-
ciency of the global QMR method. The original image 𝑋 of
size 256 × 256 is shown in Figure 1(a), which can be obtained
from the Telescope Science Institute, and intended to simulate
a star cluster image taken by the Hubble space telescope
before its defective mirror was replaced [24]. Let 𝑋 denote
the exact star cluster. The PSF used in this example is the so-
called Moffat function [6]. The PSF is given by

𝑃
𝑖𝑗
=
{{
{{
{
((𝑖 − 16)2 + (𝑗 − 16

2 )
2

)
−5

if 1 ≤ 𝑖, 𝑗 ≤ 30,
0, otherwise.

(26)

This PSF 𝑃 is nonsymmetric and unseparable, so the
blurring matrix 𝐴 constructed from 𝑃 is nonsymmetric and
unseparable. If the zero boundary condition is imposed,
the matrix 𝐴 can be represented as the Kronecker product
approximation of Toeplitz matrices 𝐴

𝑟
and 𝐴

𝑐
; that is, 𝐴 =

𝐴
𝑟
⊗𝐴
𝑐
.We add 1%whiteGaussian noise to the blurred image
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Table 1: Numerical results for the experiments, in terms of PSNR (dB) and CPU time (second).

Test problem Method restored PSNR CPU time observed PSNR
starcluster global QMR 41.16 0.25 s 30.82

MRI global QMR 20.61 0.156 s 17.95
global Tik-QMR 22.16 0.344 s

Indian man global Tik-QMR 25.69 8.078 s 23.51
CGLS 25.05 1.7 s

bridge global Tik-QMR 19.91 49.42 s 15.66
global GMRES 20.05 67.95 s

(a) Exact image (b) Observed image (c) Restored image

Figure 1: Example 1: (a) original image. (b) Observed image contaminatedwith blur and noise. (c) Image restored by the global QMRmethod.

to simulate the observed image (Figure 1(b)). The PSNR of
the observed image is 30.82 dB. We set the parameter 𝜇 =
1.05 for the discrepancy principle. Using the global QMR
method, we obtained the estimated image after 4 iterations
when the discrepancy principle of its associated residual is
satisfied.The numerical results in terms of PSNR are reported
in Table 1. From the table, we see that the PSNR of the
restored image by the global QMRmethod is 41.16 dB and the
consumed CPU time is 0.25 s.The restored image is shown in
Figure 1(c).

Example 2. In order to suppress the sensitivity of solution
to noise, we employ Tikhonov regularization technique to
get a more accurate solution. In this example, we compared
the performance of the global Tik-QMR method and the
global QMR method. We consider the problem of restoring
the image of theMRIdata fromMatlab (Figure 2(a)).Thedata
size is 128 × 128. The blurred and noisy image is shown in
Figure 2(b). The PSF for blurring in this test is the truncated
separableGaussian function, and the variance of theGaussian
blur is 3 and 1% white Gaussian noise is added.

The restored images obtained by the global QMRmethod
and the global Tik-QMR method are shown in Figure 3,
respectively. From Figure 3, it is easy to see that the image
restored by the global Tik-QMR method has higher visual
quality than that by the global QMR method. The numerical
results are shown in Table 1, and it is not difficult to see that

the global Tik-QMR method outperforms the global QMR
method.

Example 3. The third example consists in restoring the image
of 512×512 “Indianman” degraded by the Gaussian blur and
0.1% additive noise. The true image and degraded image are
shown in Figure 4.We compare the global Tik-QMRmethod
with the classic CGLS. The PSNR of the restored images by
the two methods and computational CPU time are given in
Table 1. The restored images are shown in Figure 5.

From Figure 5 and Table 1, we see that the global Tik-
QMR method is quite competitive with the CGLS method.

Example 4. In the last experiment, the 256×256 bridge image
has been contaminated by a nonsymmetric wavefront blur
[25] and 0.1% additive noise. The true image, the wavefront
PSF, and the degraded image are shown in Figure 6. The
PSF is also unseparable. Then the corresponding blurring
matrix 𝐴 is approximated by the Kronecker product of two
small matrices. We compared the behavior of the global Tik-
QMR method and the global GMRES method [11] in this
experiment.

The numerical results are given in Table 1. From the
table, we see that the PSNR of the restored image by the
global GMRES method is slightly higher than the global Tik-
QMR method, but the CPU time by using the global Tik-
QMR method is much less than the global GMRES method.
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(a) Exact image (b) Observed image

Figure 2: Example 2: exact and observed images.

(a) Global QMR image (b) Global Tik-QMR image

Figure 3: Example 2: restored images by the global QMR method and the global Tik-QMR method.

(a) Exact image (b) Observed image

Figure 4: Example 3: exact and observed images.

The visual quality of restored images is very close. The
restored images by using the two methods are displayed in
Figure 7.

At the end of this section, a general comment about the
presented numerical experiments is worth mentioning. The
first example illustrates efficiency of the proposedmethod for
image restoration problems. In general, the global Tik-QMR

method behaves better than the classic CGLSmethod and the
global GMRES method.

5. Conclusion

In [10], Jbilou et al. first introduced the global methods. In
this paper, we take the advantage of the global QMR method



Mathematical Problems in Engineering 7

(a) Global Tik-QMR image (b) CGLS image

Figure 5: Example 3: exact and observed images.

(a) Exact image (b) Wavefront PSF (c) Observed image

Figure 6: Example 4: exact image, wavefront PSF, and observed image.

(a) Global GMRES image (b) Global Tik-QMR image

Figure 7: Example 4: restored images using the global GMRES method and the global Tik-QMR method.
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for image restoration and compare it with other popular
methods. Numerical results show that the global QMR
method is very efficient and is competitive with the classic
CGLS method and the global GMRES method in [11]. In
addition, when combining with the Tikhonov regularization,
the global QMR method can behave much better.
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