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This paper generalized a new sliding mode control (SMC) without reaching phase to solve two important problems in the stability
of complex interconnected systems: (1) a decentralized controller that uses only output variables directly and (2) the stability of
complex interconnected systems ensured for all time. A new sliding surface is firstly designed to construct a single-phase SMC
in which the desired motion is determined from the initial time instant. A new lemma is secondly established for the controller
design using only output variables. The proposed single-phase SMC and the decentralized output feedback controller ensure the
robust stability of complex interconnected systems from the beginning to the end. One of the key features of the single phase SMC
scheme is that reaching time, which is required inmost of the existing two phases of SMC approaches to stabilize the interconnected
systems, is removed. Finally, a numerical example is used to demonstrate the efficacy of the method.

1. Introduction

The theory of sliding mode control (SMC) is known to be an
effective robust control technique and has been successfully
applied to a wide variety of practical engineering systems
such as robot manipulators, aircrafts, underwater vehicles,
spacecrafts, flexible space structures, electrical motors, power
systems, and automotive engines [1]. The main advantages
of SMC are fast response and strong robustness with respect
to uncertainties and external disturbances [2–4]. Generally
speaking, the traditional SMC design can be divided into two
phases: the reaching phase and the sliding phase. Firstly, in
the reaching phase, the feature of SMC is to use a switching
control law to drive system state trajectories onto a switching
surface and remain on it thereafter. Secondly, in the sliding
phase, the essence of SMC is to keep the state trajectories
moving along the surface towards the origin with desired
performance [5, 6].

Unfortunately, the applications of two phases SMC for
the stability of complex interconnected system have some
drawbacks. Firstly, the system stability is not ensured for

all time because the motion equation in sliding mode is
determined after the system state hits the sliding surface [6,
7]. Secondly, the performance of system in the reaching phase
is unknown and, subsequently, global performance may be
seriously degraded [6, 7]. In addition, the state variables
of complex interconnected system are not always accessible
in many practical systems. Therefore, for complex intercon-
nected systems, there are some important tasks should be
solved: (1) the creation of a decentralized controller that
uses only output variables directly; (2) guaranteed stability of
complex interconnected systems for all time.

In order to solve the above problems, first we develop
a new SMC such that the reaching time is equal to zero
and the desired motion is determined from the beginning
time. Second, appropriate LMI stability conditions by the
Lyapunov method are derived to guarantee the stability of
the system. Third, a new lemma is established for controller
design using only output variables directly. Consequently, the
stability of complex interconnected systems driven by single-
phase SMC law can be ensured throughout an entire response
of the system starting from the initial time instance. Before
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demonstrating the advantages of the application of single-
phase SMC to complex interconnected systems, one wants to
point out some previous results about the stability analysis of
uncertain systems.

The design of SMC without reaching phase can be found
in [1, 7–12].The authors of [1, 8] have presented a newmethod
to design an integral sliding mode control law. This nice
feature of the integral SMC law compensates the generally
slower and more oscillatory transient [1]. In order to reduce
disturbance, Rubagotti et al. [9] developed an integral sliding
mode controller with state-dependent drift and input matrix.
More recently, the researchers in [10] proposed a universal
fuzzy integral SMC formismatched uncertain systems, which
does not require that all local linear systems share a common
input matrix. The authors of [11] developed an integral SMC
for handling a larger class of mismatched uncertainties. In
[12], a new approach was proposed for approximating the
system states and disturbance vectors using observer-based
integral SMC. In addition, the stability of the sliding mode in
terms of linear matrix inequalities (LMI) has some benefits
over conventional approach methods, where LMI problems
can be easily determined and efficiently solved using the LMI
Toolbox in MATLAB software. As a result, the robustness
of the integral SMC via the LMI technique is guaranteed
throughout its entire trajectories starting from the initial
time.

Thus, the approaches in [1, 7–12] cannot be directly
applied to complex interconnected systems in which only
output information is available. In the limited available lit-
erature, the associated decentralized output feedback results
are few. In particular, when the mismatched uncertainties
are included, only a few results are available [13–19]. Earlier
works on decentralized SMC were mainly focused on inter-
connected systems or nonlinear systems with the matching
condition [20–23]. A decentralized model reference adaptive
control scheme is proposed in [24] in which the inter-
connections considered are linear and matched. In [25],
sufficient stability conditions were derived for the switched
interconnected time-delayed systems. The authors in [13]
proposed a decentralized slidingmode controller for a class of
mismatched uncertain interconnected systems by using two
sets of switching surfaces where the exogenous disturbance
was not mentioned. In [14, 15], a decentralized SMC scheme
was proposed for a class of interconnected time-delayed
systems with dead-zone input. In [16], a multiple-sliding
surface control scheme is presented for a class of multi-
input perturbed systems. In [17], a decentralized dynamic
output feedback sliding mode controller is designed for mis-
matched uncertain interconnected systems. In [18], a global
decentralised static output feedback SMC control scheme
is proposed for interconnected time-delayed systems where
the interconnection terms are functions of the output. In
[19], a state observer-based sliding mode control is designed
for a class of switched systems in which the system states
are unmeasurable. The above works obtained important
results related to handling the effects of interconnections and
disturbances of interconnected systems using SMC theory. As
a result, the stability of interconnected systems was assured
under certain conditions.

However, it is worth to point out that there are some
limitations in the existing design methods of SMC in appli-
cation for the stability of interconnected systems. First, the
approaches proposed in [20–25] could not be applied for
mismatched uncertain interconnected systems. Second, the
control schemes given in [13–24] are based on the traditional
SMCmethod which only yields the desired motion after slid-
ing motion has occurred. Therefore, the global performance
may be seriously degraded. Hence, it is necessary to develop
a new SMC without reaching phase to stabilize complex
interconnected systems for all time.

This study therefore developed a new single-phase SMC
for robust stability of a class of complex interconnected
systems from beginning to end. First, a new sliding surface
is designed to construct the single-phase SMC which the
desired motion is determined from the initial time instant.
Second, appropriate LMI stability conditions by the Lyapunov
method are derived to guarantee the stability of the system.
Third, a new lemma is established for controller design
using only output variables. Fourth, a decentralized output
feedback controller is designed to force the system states to
stay on the sliding surface for all time. Unlike the existing
related works such as [1, 7–12], this method can be directly
applied for complex interconnected systems in which only
output information is available. In contrast to the other SMC
approaches given in [13–24], this approach guarantees the
stability of complex interconnected systems for all time. In
addition, the complex interconnected systems investigated
in this study include exogenous disturbance, mismatched
parameter uncertainties in the state matrix, and mismatched
interconnections. Therefore, we consider a more general
structure than [13–25]. To summarize, themain contributions
of this paper are as follows.

(i) Design of a new sliding surface to construct a single-
phase SMC such that the desired motion is deter-
mined from the initial time instant.

(ii) Derivation of appropriate LMI stability conditions by
the Lyapunov method to guarantee the stability of the
system.

(iii) Establishment of a lemma for controller design using
only output variables.

(iv) Development of a new approach (single-phase SMC
and decentralized output feedback controller) guar-
antees that sliding mode exists from the initial time
instant and the closed loop of the complex inter-
connected systems in sliding mode is asymptotically
stable.

Notation. The notation used throughout this paper is fairly
standard. 𝑋𝑇 denotes the transpose of matrix 𝑋. 𝐼

𝑛×𝑚
and

0
𝑛×𝑚

are used to denote the 𝑛 × 𝑚 identity matrix and
the 𝑛 × 𝑚 zero matrix, respectively. The subscripts 𝑛 and
𝑛 × 𝑚 are omitted where the dimension is irrelevant or
can be determined from the context. ‖𝑥‖ stands for the
Euclidean norm of vector 𝑥 and ‖𝐴‖ stands for the matrix
induced norm of the matrix 𝐴. The expression 𝐴 > 0

means that 𝐴 is symmetric positive definite. 𝑅𝑛 denotes the
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𝑛-dimensional Euclidean space. For the sake of simplicity,
sometimes function 𝑥

𝑖
(𝑡) is denoted by 𝑥

𝑖
.

2. Problem Formulation and Preliminaries

In this paper, we consider a class of complex interconnected
systems with exogenous disturbance and mismatched uncer-
tainties of each isolated subsystem and interconnection. The
system is decomposed into 𝐿 subsystems and the state space
representation of each subsystem is described as follows:

𝑥̇
𝑖
= (𝐴
𝑖
+ Δ𝐴
𝑖
) 𝑥
𝑖
+ 𝐵
𝑖
(𝑢
𝑖
+ 𝜉
𝑖
(𝑥
𝑖
, 𝑡))

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝐻
𝑖𝑗
+ Δ𝐻
𝑖𝑗
) 𝑥
𝑗
,

𝑦
𝑖
= 𝐶
𝑖
𝑥
𝑖
,

(1)

where 𝑥
𝑖
∈ 𝑅
𝑛𝑖 , 𝑢
𝑖
∈ 𝑅
𝑚𝑖 , and 𝑦

𝑖
∈ 𝑅
𝑝𝑖 with 𝑚

𝑖
< 𝑝
𝑖
< 𝑛
𝑖
are

the state variables, inputs, and outputs of the 𝑖th subsystem,
respectively. The triples (𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
) and𝐻

𝑖𝑗
represent known

constant matrices of appropriate dimensions. The matrices
Δ𝐴
𝑖
𝑥
𝑖
and Δ𝐻

𝑖𝑗
𝑥
𝑗
represent the mismatched parameter

uncertainty in the state matrix in each isolated subsystems
and mismatched interconnections, respectively. The matrix
𝐵
𝑖
𝜉
𝑖
(𝑥
𝑖
, 𝑡) is disturbance input. In this paper, only the output

variables 𝑦
𝑖
are assumed to be known.

In order to modify the existing two phases SMC, we
denote the sliding surface by 𝜎

𝑖
(𝑥
𝑖
(𝑡), 𝑡) = 0, 𝑖 = 1, 2, . . . , 𝐿,

where the single-phase sliding function is given as

𝜎
𝑖
(𝑥
𝑖 (𝑡) , 𝑡) = 𝜎𝑖 (𝑦𝑖 (𝑡) , 𝑡) − 𝜎𝑖 (𝑦𝑖 (0) , 0) exp (−𝛽𝑖𝑡) (2)

with constant 𝛽
𝑖
> 0. The function 𝜎

𝑖
(𝑦
𝑖
(𝑡), 𝑡) is defined

later. The sliding mode is defined by 𝜎
𝑖
(𝑥
𝑖
(𝑡), 𝑡) = 0 and

𝜎̇
𝑖
(𝑥
𝑖
(𝑡), 𝑡) = 0. From (2), one can see that there are only

output variables used and the system states are in the sliding
mode from the initial time; 𝜎

𝑖
(𝑥
𝑖
(0), 0) = 0. Therefore, this is

to say that the SMC is single-phase (without reaching phase).
This can be formally defined as follows.

Definition 1. A sliding mode control is said to be a single-
phase SMC, if and only if the following two conditions are
satisfied:

(1) the reaching time is equal to zero; 𝜎
𝑖
(𝑥
𝑖
(0), 0) = 0;

(2) the order of the motion equation in sliding mode is
equal to the order of the original system.

Remark 2. The concept of single-phase sliding mode control
focusses on the robustness of the motion in the entire state
space. The order of the motion equation in sliding mode
is equal to the dimension of the state space. Therefore, the
robustness of complex interconnected systems can be assured
throughout an entire response of the system starting from the
initial time instance.

In order to apply the concept of single-phase SMC for the
system (1), we assume the following to be valid.

Assumption 3. The mismatched parameter uncertainties in
the state matrix of each isolated subsystem are satisfied as
Δ𝐴
𝑖
= 𝐷
𝑖
𝐹
𝑖
(𝑥
𝑖
, 𝑡)𝐸
𝑖
where 𝐹

𝑖
(𝑥
𝑖
, 𝑡) is unknown but bounded

as ‖𝐹
𝑖
(𝑥
𝑖
, 𝑡)‖ ≤ 1 and𝐷

𝑖
,𝐸
𝑖
are knownmatrices of appropriate

dimensions.

Assumption 4. The matrices 𝐵
𝑖
and 𝐶

𝑖
are full rank and

rank(𝐶
𝑖
𝐵
𝑖
) = 𝑚

𝑖
.

From [18], Assumption 4 implies that there exists a
nonsingular linear coordinate transformation 𝑧̃

𝑖
= 𝑇̃
𝑖
𝑥
𝑖
such

that the triple (𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
)with respect to the new coordinates

has the structure

𝐴
𝑖
= [

𝐴
𝑖1
𝐴
𝑖2

𝐴
𝑖3
𝐴
𝑖4

] , 𝐵
𝑖
= [

0

𝐵
𝑖2

] , 𝐶
𝑖
= [0 𝐶

𝑖2
] , (3)

where𝐴
𝑖1
∈ 𝑅
(𝑛𝑖−𝑚𝑖)×(𝑛𝑖−𝑚𝑖), 𝐵

𝑖2
∈ 𝑅
𝑚𝑖×𝑚𝑖 are nonsingular and

𝐶
𝑖2
∈ 𝑅
𝑝𝑖×𝑝𝑖 is orthogonal.

Assumption 5. The triple (𝐴
𝑖1
, 𝐴
𝑖2
, Ξ
𝑖
) is output feedback

stabilisable, where Ξ
𝑖

= [0(𝑝𝑖−𝑚𝑖)×(𝑛𝑖−𝑝𝑖)
𝐼
(𝑝𝑖−𝑚𝑖)

], 𝑖 =

1, 2, 3, . . . , 𝐿.
From [18], Assumption 5 implies that there exist matrices

𝐾̃
𝑖
such that the matrices 𝐴

𝑖1
= 𝐴
𝑖1
− 𝐴
𝑖2
𝐾̃
𝑖
Ξ
𝑖
are stable.

Assumption 6. There exist known nonnegative constants 𝑐
𝑖

and 𝑏
𝑖
such that ‖𝜉

𝑖
(𝑥
𝑖
, 𝑡)‖ ≤ 𝑐

𝑖
+ 𝑏
𝑖
‖𝑥
𝑖
(𝑡)‖.

Assumption 7. The mismatched interconnections are given
as Δ𝐻

𝑖𝑗
= 𝑀
𝑖𝑗
𝐹
𝑖𝑗
(𝑥
𝑗
, 𝑡)𝑁
𝑖𝑗
, where 𝐹

𝑖𝑗
(𝑥
𝑗
, 𝑡) is unknown but

bounded ‖𝐹
𝑖𝑗
(𝑥
𝑗
, 𝑡)‖ ≤ 1, and𝑀

𝑖𝑗
, 𝑁
𝑖𝑗
are known matrices of

appropriate dimensions.

Remark 8. Assumptions 4 and 5 have been utilized in [18].
The assumption of the norm boundedness of 𝐹

𝑖
(𝑥
𝑖
, 𝑡) and

𝜉
𝑖
(𝑥
𝑖
, 𝑡) can be found in [19, 26, 27].

3. Single-Phase Sliding Mode Control for
Complex Interconnected Systems

In this section, we develop a single-phase SMC to stabilize
the complex interconnected system (1) for all time. There are
four steps involved in the design of our single-phase SMC
using only output variables. In the first step, a proper sliding
surface is designed to construct the single-phase SMC such
that the desired motion is determined from the initial time
instant. In the second step, sufficient conditions in terms
of LMI are derived for the existence of a sliding surface
guaranteeing asymptotic stability. In the third step, a new
lemma is established for controller design using only output
variables. In the fourth step, a decentralized output feedback
controller is designed to force the system states to stay on the
sliding surface for all time.

3.1. Single-Phase Sliding Surface Design. Let us first design
a new sliding surface without reaching phase that uses only
output variables and the desired motion is determined from
the initial time instant. Under Assumptions 4 and 5, it follows
from (11), (12), and (13) of paper [18] that there exists a
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coordinate transformation 𝑧
𝑖
= 𝑇
𝑖
𝑥
𝑖
such that the system (1)

has the following regular form:

𝑧̇
𝑖
= ([

𝐴
𝑖1
𝐴
𝑖2

𝐴
𝑖3
𝐴
𝑖4

] + [
𝐷
𝑖1

𝐷
𝑖2

]𝐹
𝑖
[𝐸𝑖1 𝐸𝑖2]) 𝑧𝑖

+ [
0

𝐵
𝑖2

] (𝑢
𝑖
+ 𝜉
𝑖
(𝑥
𝑖
, 𝑡))

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

([
𝐻
𝑖𝑗1

𝐻
𝑖𝑗2

𝐻
𝑖𝑗3

𝐻
𝑖𝑗4

] + [
𝑀
𝑖𝑗1

𝑀
𝑖𝑗2

]𝐹
𝑖𝑗
[𝑁𝑖𝑗1 𝑁𝑖𝑗2]) 𝑧𝑗,

(4)

𝑦
𝑖
= [0 𝐶

𝑖2] 𝑧𝑖, (5)

where

𝑇
𝑖
𝐴
𝑖
𝑇
−1

𝑖
= [

𝐴
𝑖1
𝐴
𝑖2

𝐴
𝑖3
𝐴
𝑖4

] ,

𝑇
𝑖
𝐷
𝑖
𝐹
𝑖
𝐸
𝑖
𝑇
−1

𝑖
= [

𝐷
𝑖1

𝐷
𝑖2

]𝐹
𝑖
[𝐸𝑖1 𝐸𝑖2] ,

𝑇
𝑖
𝐻
𝑖𝑗
𝑇
−1

𝑗
= [

𝐻
𝑖𝑗1

𝐻
𝑖𝑗2

𝐻
𝑖𝑗3

𝐻
𝑖𝑗4

] , 𝑇
𝑖
𝐵
𝑖
= [

0

𝐵
𝑖2

] ,

𝑇
𝑖
𝑀
𝑖𝑗
𝐹
𝑖𝑗
𝑁
𝑖𝑗
𝑇
−1

𝑗
= [

𝑀
𝑖𝑗1

𝑀
𝑖𝑗2

]𝐹
𝑖𝑗
[𝑁𝑖𝑗1 𝑁𝑖𝑗2] ,

𝐶
𝑖
𝑇
𝑖

−1
= [0 𝐶

𝑖2] .

(6)

The matrices 𝐵
𝑖2
∈ 𝑅
𝑚𝑖×𝑚𝑖 and 𝐶

𝑖2
∈ 𝑅
𝑝𝑖×𝑝𝑖 are nonsingular

and 𝐴
𝑖1
= 𝐴
𝑖1
− 𝐴
𝑖2
𝐾̃
𝑖
Ξ
𝑖
∈ 𝑅
(𝑛𝑖−𝑚𝑖)×(𝑛𝑖−𝑚𝑖) is stable. Then,

by using the sliding function (2), the sliding surface can be
defined as follows:

𝜎
𝑖
(𝑥
𝑖 (𝑡) , 𝑡) = 𝜎𝑖 (𝑦𝑖 (𝑡) , 𝑡) − 𝜎𝑖 (𝑦𝑖 (𝑡) , 0) exp (−𝛽𝑖𝑡) = 0,

(7)

where the solution of 𝜎
𝑖
(𝑦
𝑖
, 𝑡) is given by

𝜎
𝑖
(𝑦
𝑖
, 𝑡) = 𝐾

𝑖
𝐶
−1

𝑖2
𝑦
𝑖

= 𝐾
𝑖
[

𝑁
𝑖

0
(𝑝𝑖−𝑚𝑖)×𝑚𝑖

0
𝑚𝑖×(𝑛𝑖−𝑚𝑖)

𝐼
𝑚𝑖×𝑚𝑖

] [
𝑧
𝑖1

𝑧
𝑖2

] = 𝐾
𝑖2
𝑧
𝑖2

(8)

in which 𝑧
𝑖
= [
𝑧𝑖1
𝑧𝑖2
], 𝑧
𝑖1

∈ 𝑅
𝑛𝑖−𝑚𝑖 , 𝑧

𝑖2
∈ 𝑅
𝑚𝑖 , 𝑁

𝑖
=

[0(𝑝𝑖−𝑚𝑖)×(𝑛𝑖−𝑝𝑖)
𝐼
(𝑝𝑖−𝑚𝑖)×(𝑝𝑖−𝑚𝑖)

], and 𝐾
𝑖
= [0𝑚𝑖×(𝑝𝑖−𝑚𝑖)

𝐾
𝑖2].

The matrix𝐾
𝑖2
∈ 𝑅
𝑚𝑖×𝑚𝑖 is given as

𝐾
𝑖2
= Π
𝑖
𝑃
𝑖
Π
𝑇

𝑖
, (9)

where the matrix 𝑃
𝑖
∈ 𝑅
(𝑛𝑖−𝑚𝑖)×(𝑛𝑖−𝑚𝑖) is defined later and

the matrix Π
𝑖
∈ 𝑅
𝑚𝑖×(𝑛𝑖−𝑚𝑖) is selected such that 𝐾

𝑖2
is

nonsingular. Using (8), sliding surface (7) can be rewritten
as

𝜎
𝑖
(𝑥
𝑖 (𝑡) , 𝑡) = 𝜎𝑖 (𝑦𝑖, 𝑡) − 𝜎𝑖 (𝑦𝑖, 0) exp (−𝛽𝑖𝑡)

= 𝐾
𝑖2
𝑧
𝑖2 (𝑡) − 𝐾𝑖2𝑧𝑖2 (0) exp (−𝛽𝑖𝑡) = 0.

(10)

Since 𝐾
𝑖2
∈ 𝑅
𝑚𝑖×𝑚𝑖 is nonsingular, sliding surface (7) can be

described by

{col (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝐿
) | 𝑧
𝑖2
= 𝑧
𝑖2 (0) exp (−𝛽𝑖𝑡) ,

𝑖 = 1, 2, . . . , 𝐿} .

(11)

From (11), it is clear that, in sliding mode,

𝑧̇
𝑖2
= −𝛽
𝑖
𝑧
𝑖2
. (12)

Then, from the structure of system (4)-(5) and (12), the sliding
mode dynamics of system (1) associated with sliding surface
(7) are described by

𝑧̇
𝑖
= [

𝐴
𝑖1

𝐴
𝑖2

0 −𝛽
𝑖
𝐼
𝑚𝑖×𝑚𝑖

] 𝑧
𝑖
+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

[
𝐻
𝑖𝑗1

𝐻
𝑖𝑗2

0 0
] 𝑧
𝑗
, (13)

where 𝐴
𝑖1
= 𝐴
𝑖1
+ 𝐷
𝑖1
𝐹
𝑖
𝐸
𝑖1
, 𝐴
𝑖2
= 𝐴
𝑖2
+ 𝐷
𝑖1
𝐹
𝑖
𝐸
𝑖2
, 𝐻
𝑖𝑗1

=

𝐻
𝑖𝑗1
+𝑀
𝑖𝑗1
𝐹
𝑖𝑗
𝑁
𝑖𝑗1
, and𝐻

𝑖𝑗2
= 𝐻
𝑖𝑗2
+𝑀
𝑖𝑗1
𝐹
𝑖𝑗
𝑁
𝑖𝑗2
.

Remark 9. It is obvious that 𝜎
𝑖
(𝑥
𝑖
(0), 0) = 0, which means

that the reaching time is equal to zero and the sliding mode
exists from the initial time instant. In other words, the desired
motion is determined from the beginning of the time.

Remark 10. This approach concentrates on the robustness of
the motion in the entire state space. The order of the motion
equation in sliding mode is equal to the order of the original
system.Therefore, the robustness of the system can be assured
throughout an entire response of the system starting from the
initial time instance.

3.2. Single-Phase Sliding Mode Stability Analysis. Following
design of the sliding surface, two tasks remain. First, for
stability analysis, appropriate LMI stability conditions by the
Lyapunov method must be derived to ensure the stability of
slidingmotion (13). Second, we design a decentralized output
feedback sliding mode controller to keep the system states to
stay on the sliding surface for all time.

This section focuses on the former task. We begin by
considering the following LMI:

[
[
[
[
[

[

Ψ
𝑖

𝑃
𝑖
𝐷
𝑖1

𝐸
𝑇

𝑖1

𝐷
𝑇

𝑖1
𝑃
𝑖
−𝜐
−1

𝑖
𝐼 0

𝐸
𝑖1

0 −𝜑
−1

𝑖
𝐼

]
]
]
]
]

]

< 0, (14)

where
Ψ
𝑖
= 𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖1
+ 𝜀
𝑖
𝑃
𝑖
𝑃
𝑖

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝜑
𝑗
𝐻
𝑇

𝑗𝑖1
𝐻
𝑗𝑖1
+ 𝜑
𝑗
𝑁
𝑇

𝑗𝑖1
𝑁
𝑗𝑖1
+ 𝜌
𝑖
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
) ,

(15)

𝑃
𝑖
∈ 𝑅
(𝑛𝑖−𝑚𝑖)×(𝑛𝑖−𝑚𝑖) is any positive matrix, and 𝜑

𝑖
, 𝜀
𝑖
, 𝜐
𝑖
,

𝜑
𝑗
, 𝜑
𝑗
, 𝜌
𝑖
are positive constants.

We also recall the following lemmas, which will be used
in proving the stability of sliding motion (13).
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Lemma 11 (see [26]). Let 𝑋, 𝑌, and 𝐹 be real matrices of
suitable dimension with 𝐹𝑇𝐹 ≤ 𝐼 and then, for any scalar
𝜑 > 0, the following matrix inequality holds:

𝑋𝐹𝑌 + 𝑌
𝑇
𝐹
𝑇
𝑋
𝑇
≤ 𝜑
−1
𝑋𝑋
𝑇
+ 𝜑𝑌
𝑇
𝑌. (16)

Lemma 12 (see [27]). Let𝑋 and 𝑌 be real matrices of suitable
dimension and then, for any scalar 𝜇 > 0, the following matrix
inequality holds:

𝑋
𝑇
𝑌 + 𝑌

𝑇
𝑋 ≤ 𝜇𝑋

𝑇
𝑋 + 𝜇

−1
𝑌
𝑇
𝑌. (17)

Lemma 13 (see [28]). The linear matrix inequality:

[
Θ (𝑥) Γ (𝑥)

Γ (𝑥)
𝑇
𝑅 (𝑥)

] > 0, (18)

where Θ(𝑥) = Θ(𝑥)𝑇, 𝑅(𝑥) = 𝑅(𝑥)𝑇, and Γ(𝑥) depend affinely
on 𝑥, is equivalent to 𝑅(𝑥) > 0, Θ(𝑥) − Γ(𝑥)𝑅(𝑥)−1Γ(𝑥)𝑇 > 0.

Then, we can establish the following theorem.

Theorem 14. Suppose that LMI (14) has a feasible solution
𝑃
𝑖
> 0 and positive constants 𝜑

𝑖
, 𝜀
𝑖
, 𝜐
𝑖
, 𝜑
𝑗
, 𝜑
𝑗
, 𝜌
𝑖
. And the

sliding surface is given by (7). Then, the sliding motion (13) is
asymptotically stable.

Proof of Theorem 14. Let us consider the following positive
definition function:

𝑉 =

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖
[
𝑃
𝑖

0

0 𝛾
𝑖
𝑄
𝑖

] 𝑧
𝑖
, (19)

where the positive constant 𝛾
𝑖
will be selected later, the

positive matrix 𝑃
𝑖
∈ 𝑅
(𝑛𝑖−𝑚𝑖)×(𝑛𝑖−𝑚𝑖) is defined in LMI (14),

and 𝑄
𝑖
∈ 𝑅
𝑚𝑖×𝑚𝑖 is any positive matrix. Then, taking the time

derivative of 𝑉 along the state trajectory of system (13), we
can obtain that

𝑉̇ =

𝐿

∑

𝑖=1

𝑧̇
𝑇

𝑖
[
𝑃
𝑖

0

0 𝛾
𝑖
𝑄
𝑖

] 𝑧
𝑖
+

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖
[
𝑃
𝑖

0

0 𝛾
𝑖
𝑄
𝑖

] 𝑧̇
𝑖
. (20)

Hence, substituting (13) into (20), we derive

𝑉̇ =

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖

[
[

[

𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖1

𝑃
𝑖
𝐴
𝑖2

𝐴
𝑇

𝑖2
𝑃
𝑖

−2𝛽
𝑖
𝛾
𝑖
𝑄
𝑖

]
]

]

𝑧
𝑖

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

𝑧
𝑇

𝑗

[
[

[

𝐻
𝑇

𝑖𝑗1
𝑃
𝑖
0

𝐻
𝑇

𝑖𝑗2
𝑃
𝑖
0

]
]

]

𝑧
𝑖

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

𝑧
𝑇

𝑖
[

[

𝑃
𝑖
𝐻
𝑖𝑗1

𝑃
𝑖
𝐻
𝑖𝑗2

0 0

]

]

𝑧
𝑗
.

(21)

Since 𝑧
𝑖
= [𝑧𝑖1 𝑧𝑖2]

𝑇, 𝐴
𝑖1
= 𝐴
𝑖1
+ 𝐷
𝑖1
𝐹
𝑖
𝐸
𝑖1
, 𝐴
𝑖2
= 𝐴
𝑖2
+

𝐷
𝑖1
𝐹
𝑖
𝐸
𝑖2
, 𝐻
𝑖𝑗1

= 𝐻
𝑖𝑗1

+ 𝑀
𝑖𝑗1
𝐹
𝑖𝑗
𝑁
𝑖𝑗1
, and 𝐻

𝑖𝑗2
= 𝐻
𝑖𝑗2

+

𝑀
𝑖𝑗1
𝐹
𝑖𝑗
𝑁
𝑖𝑗2
, the above equation can be rewritten as

𝑉̇ =

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖1
(𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝐸
𝑇

𝑖1
𝐹
𝑇

𝑖
𝐷
𝑇

𝑖1
𝑃
𝑖

+ 𝑃
𝑖
𝐴
𝑖1
+ 𝑃
𝑖
𝐷
𝑖1
𝐹
𝑖
𝐸
𝑖1
) 𝑧
𝑖1

+

𝐿

∑

𝑖=1

[𝑧
𝑇

𝑖2
𝐴
𝑇

𝑖2
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖2
𝑧
𝑖2
+ 𝑧
𝑇

𝑖2
𝐸
𝑇

𝑖2
𝐹
𝑇

𝑖

⋅ 𝐷
𝑇

𝑖1
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐷
𝑖1
𝐹
𝑖
𝐸
𝑖2
𝑧
𝑖2
− 2𝛽
𝑖
𝛾
𝑖
𝑧
𝑇

𝑖2
𝑄
𝑖
𝑧
𝑖2
]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝑧
𝑇

𝑗1
𝐻
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑗1
𝑁
𝑇

𝑖𝑗1
𝐹
𝑇

𝑖𝑗
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1

+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐻
𝑖𝑗1
𝑧
𝑗1
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝑀
𝑖𝑗1
𝐹
𝑖𝑗
𝑁
𝑖𝑗1
𝑧
𝑗1
)

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝑧
𝑇

𝑗2
𝐻
𝑇

𝑖𝑗2
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑗2
𝑁
𝑇

𝑖𝑗2
𝐹
𝑇

𝑖𝑗
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1

+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐻
𝑖𝑗2
𝑧
𝑗2
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝑀
𝑖𝑗1
𝐹
𝑖𝑗
𝑁
𝑖𝑗2
𝑧
𝑗2
) .

(22)

Using Lemma 11 and (22), we achieve

𝑉̇ ≤

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖1
(𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖1

+ 𝜑
−1

𝑖
𝑃
𝑖
𝐷
𝑖1
𝐷
𝑇

𝑖1
𝑃
𝑖
+ 𝜑
𝑖
𝐸
𝑇

𝑖1
𝐸
𝑖1
) 𝑧
𝑖1

+

𝐿

∑

𝑖=1

[𝑧
𝑇

𝑖2
𝐴
𝑇

𝑖2
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖2
𝑧
𝑖2
+ 𝜑
𝑖
𝑧
𝑇

𝑖2
𝐸
𝑇

𝑖2
𝐸
𝑖2
𝑧
𝑖2

+ 𝜑
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝐷
𝑖1
𝐷
𝑇

𝑖1
𝑃
𝑖
𝑧
𝑖1
− 2𝛽
𝑖
𝛾
𝑖
𝑧
𝑇

𝑖2
𝑄
𝑖
𝑧
𝑖2
]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝑧
𝑇

𝑗1
𝐻
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐻
𝑖𝑗1
𝑧
𝑗1
+ 𝜑
𝑖
𝑧
𝑇

𝑗1
𝑁
𝑇

𝑖𝑗1

⋅ 𝑁
𝑖𝑗1
𝑧
𝑗1
+ 𝜑
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1
)

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝑧
𝑇

𝑗2
𝐻
𝑇

𝑖𝑗2
𝑃
𝑖
𝑧
𝑖1
+ 𝑧
𝑇

𝑖1
𝑃
𝑖
𝐻
𝑖𝑗2
𝑧
𝑗2
+ 𝛿
𝑖
𝑧
𝑇

𝑗2
𝑁
𝑇

𝑖𝑗2

⋅ 𝑁
𝑖𝑗2
𝑧
𝑗2
+ 𝛿
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1
) ,

(23)

where 𝜑
𝑖
> 0, 𝜑

𝑖
> 0, 𝜑

𝑖
> 0 and 𝛿

𝑖
> 0 are scalars. Applying

Lemma 12 to (23), we can obtain
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𝑉̇ ≤

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖1
(𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖1
+ 𝜑
−1

𝑖
𝑃
𝑖
𝐷
𝑖1
𝐷
𝑇

𝑖1
𝑃
𝑖
+ 𝜑
𝑖
𝐸
𝑇

𝑖1
𝐸
𝑖1
) 𝑧
𝑖1

+

𝐿

∑

𝑖=1

[𝛿
𝑖
𝑧
𝑇

𝑖2
𝐴
𝑇

𝑖2
𝐴
𝑖2
𝑧
𝑖2
+ 𝛿
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑃
𝑖
𝑧
𝑖1
+ 𝜑
𝑖
𝑧
𝑇

𝑖2
𝐸
𝑇

𝑖2
𝐸
𝑖2
𝑧
𝑖2

+ 𝜑
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝐷
𝑖1
𝐷
𝑇

𝑖1
𝑃
𝑖
𝑧
𝑖1
− 2𝛽
𝑖
𝛾
𝑖
𝑧
𝑇

𝑖2
𝑄
𝑖
𝑧
𝑖2
]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝜑
𝑖
𝑧
𝑇

𝑗1
𝐻
𝑇

𝑖𝑗1
𝐻
𝑖𝑗1
𝑧
𝑗1
+ 𝜑
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑃
𝑖
𝑧
𝑖1
+ 𝜑
𝑖
𝑧
𝑇

𝑗1
𝑁
𝑇

𝑖𝑗1

⋅ 𝑁
𝑖𝑗1
𝑧
𝑗1
+ 𝜑
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1
)

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝛿
𝑖
𝑧
𝑇

𝑗2
𝐻
𝑇

𝑖𝑗2
𝐻
𝑖𝑗2
𝑧
𝑗2
+ 𝛿
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑃
𝑖
𝑧
𝑖1
+ 𝛿
𝑖
𝑧
𝑇

𝑗2
𝑁
𝑇

𝑖𝑗2

⋅ 𝑁
𝑖𝑗2
𝑧
𝑗2
+ 𝛿
−1

𝑖
𝑧
𝑇

𝑖1
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
𝑧
𝑖1
) ,

(24)

where 𝜑
𝑖
> 0, 𝛿

𝑖
> 0 and 𝛿

𝑖
> 0 are scalars. From (24) and

property

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝜑
𝑖
𝑧
𝑇

𝑗1
𝐻
𝑇

𝑖𝑗1
𝐻
𝑖𝑗1
𝑧
𝑗1
+ 𝜑
𝑖
𝑧
𝑇

𝑗1
𝑁
𝑇

𝑖𝑗1
𝑁
𝑖𝑗1
𝑧
𝑗1
)

=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝜑
𝑗
𝑧
𝑇

𝑖1
𝐻
𝑇

𝑗𝑖1
𝐻
𝑗𝑖1
𝑧
𝑖1
+ 𝜑
𝑗
𝑧
𝑇

𝑖1
𝑁
𝑇

𝑗𝑖1
𝑁
𝑗𝑖1
𝑧
𝑖1
) ,

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝛿
𝑖
𝑧
𝑇

𝑗2
𝐻
𝑇

𝑖𝑗2
𝐻
𝑖𝑗2
𝑧
𝑗2
+ 𝛿
𝑖
𝑧
𝑇

𝑗2
𝑁
𝑇

𝑖𝑗2
𝑁
𝑖𝑗2
𝑧
𝑗2
)

=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝛿
𝑗
𝑧
𝑇

𝑖2
𝐻
𝑇

𝑗𝑖2
𝐻
𝑗𝑖2
𝑧
𝑖2
+ 𝛿
𝑗
𝑧
𝑇

𝑖2
𝑁
𝑇

𝑗𝑖2
𝑁
𝑗𝑖2
𝑧
𝑖2
) ,

(25)

it generates

𝑉̇ ≤

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖1

[
[
[

[

𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖1
+ 𝜑
𝑖
𝐸
𝑇

𝑖1
𝐸
𝑖1

+ 𝜀
𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜐
𝑖
𝑃
𝑖
𝐷
𝑖1
𝐷
𝑇

𝑖1
𝑃
𝑖

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝜑
𝑗
𝐻
𝑇

𝑗𝑖1
𝐻
𝑗𝑖1
+ 𝜑
𝑗
𝑁
𝑇

𝑗𝑖1
𝑁
𝑗𝑖1

+ 𝜌
𝑖
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
)

]
]
]

]

𝑧
𝑖1

+

𝐿

∑

𝑖=1

𝑧
𝑇

𝑖2

[
[
[

[

−2𝛽
𝑖
𝛾
𝑖
𝑄
𝑖
+ 𝛿
𝑖
𝐴
𝑇

𝑖2
𝐴
𝑖2
+ 𝜑
𝑖
𝐸
𝑇

𝑖2
𝐸
𝑖2

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝛿
𝑗
𝐻
𝑇

𝑗𝑖2
𝐻
𝑗𝑖2
+ 𝛿
𝑗
𝑁
𝑇

𝑗𝑖2
𝑁
𝑗𝑖2
)

]
]
]

]

𝑧
𝑖2
,

(26)

where 𝜐
𝑖
= 𝜑
−1

𝑖
+ 𝜑
−1

𝑖
, 𝜌
𝑖
= 𝜑
−1

𝑖
+ 𝛿
−1

𝑖
, and 𝜀

𝑖
= (𝐿 − 1)𝜑

−1

𝑖
+

𝛿
−1

𝑖
+ (𝐿 − 1)𝛿

−1

𝑖
and 𝐿 is the number of subsystems. Let us

define Ω
𝑖
= 2𝛽
𝑖
𝑄
𝑖
> 0, so that all the eigenvalues of Ω

𝑖
are

greater than some positive ∋
𝑖
. Then, it is easy to select

𝛾
𝑖
>
1

∋
𝑖

max
𝑖=1:𝐿
𝑗=1:𝐿

𝑖 ̸=𝑗

[
[
[

[

𝛿
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇

𝑖2
𝐴
𝑖2

󵄩󵄩󵄩󵄩󵄩
+ 𝜑
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑇

𝑖2
𝐸
𝑖2

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝛿
𝑗

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑇

𝑗𝑖2
𝐻
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+ 𝛿
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑇

𝑗𝑖2
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

.

(27)

According to (27) and the result of paper [29], we have

− 2𝛽
𝑖
𝛾
𝑖
𝑄
𝑖
+ 𝛿
𝑖
𝐴
𝑇

𝑖2
𝐴
𝑖2
+ 𝜑
𝑖
𝐸
𝑇

𝑖2
𝐸
𝑖2

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝛿
𝑗
𝐻
𝑇

𝑗𝑖2
𝐻
𝑗𝑖2
+ 𝛿
𝑗
𝑁
𝑇

𝑖𝑗2
𝑁
𝑗𝑖2
) < 0.

(28)

By applying Lemma 13, LMI (14) is equivalent to the following
inequality:

𝐴
𝑇

𝑖1
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖1
+ 𝜑
𝑖
𝐸
𝑇

𝑖1
𝐸
𝑖1
+ 𝜀
𝑖
𝑃
𝑖
𝑃
𝑖
+ 𝜐
𝑖
𝑃
𝑖
𝐷
𝑖1
𝐷
𝑇

𝑖1
𝑃
𝑖

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝜑
𝑗
𝐻
𝑇

𝑗𝑖1
𝐻
𝑗𝑖1
+ 𝜑
𝑗
𝑁
𝑇

𝑗𝑖1
𝑁
𝑗𝑖1
+ 𝜌
𝑖
𝑃
𝑖
𝑀
𝑖𝑗1
𝑀
𝑇

𝑖𝑗1
𝑃
𝑖
) < 0.

(29)

From (26), (28), and (29), we have

𝑉̇ < 0. (30)

Inequality (30) implies that if LMI (14) holds, then sliding
motion (13) is asymptotically stable.

Remark 15. Theorem 14 provides an existence condition of
the sliding surface in terms of strict LMI, which can be easily
worked out using the LMI Toolbox in MATLAB.

Remark 16. It is seen that, compared to the the recent
LMI methods [17], the present LMI method shows less
conservative results and easily finds a feasible solution of the
LMI.
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In order to design a new output feedback sliding mode
control scheme for complex interconnected system (1), we
establish the following lemma.

Lemma 17. Consider a class of interconnected systems that is
decomposed into 𝐿 subsystems

V̇
𝑖
= [𝑆
𝑖
+ 𝐺
𝑖
Δ
𝑖
(V
𝑖
, 𝑡) 𝑋
𝑖
] V
𝑖
+ 𝐵
𝑖
(𝑢
𝑖
+ 𝜉
𝑖
(V
𝑖
, 𝑡))

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(𝐴
𝑖𝑗
+ 𝐷
𝑖𝑗
Δ
𝑖𝑗
(V
𝑗
, 𝑡) 𝐸
𝑖𝑗
) V
𝑗
,

(31)

where V
𝑖
= [

V𝑖1
V𝑖2 ] are the state variables of the 𝑖th subsystem

with V
𝑖1
∈ 𝑅
𝑛𝑖−𝑚𝑖 and V

𝑖2
∈ 𝑅
𝑚𝑖 . The matrices 𝑆

𝑖
= [
𝑆𝑖1 𝑆𝑖2

𝑆𝑖3 𝑆𝑖4
],

𝐺
𝑖
= [
𝐺𝑖1

𝐺𝑖2
], 𝑋
𝑖
= [𝑋𝑖1 𝑋𝑖2], 𝐵𝑖 = [

0

𝐵𝑖2
], 𝐴
𝑖𝑗
= [
𝐴𝑖𝑗1 𝐴𝑖𝑗2

𝐴𝑖𝑗3 𝐴𝑖𝑗4
],

𝐷
𝑖𝑗
= [
𝐷𝑖𝑗1

𝐷𝑖𝑗2
], and 𝐸

𝑖𝑗
= [𝐸𝑖𝑗1 𝐸𝑖𝑗2] are known matrices of

appropriate dimensions. The matrices Δ
𝑖
(V
𝑖
, 𝑡) and Δ

𝑖𝑗
(V
𝑗
, 𝑡)

are unknown but bounded as ‖Δ
𝑖
(V
𝑖
, 𝑡)‖ ≤ 1 and ‖Δ

𝑖𝑗
(V
𝑗
, 𝑡)‖ ≤

1. If the matrix 𝑆
𝑖1
is stable, then ∑𝐿

𝑖=1
‖V
𝑖1
(𝑡)‖ is bounded by

∑
𝐿

𝑖=1
𝜙
𝑖
(𝑡) for all time, where 𝜙

𝑖
(𝑡) is the solution of

̇𝜙
𝑖 (𝑡) = 𝑘̂𝑖𝜙𝑖 (𝑡) + 𝑘𝑖

[
[
[

[

󵄩󵄩󵄩󵄩𝑆𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

󵄩󵄩󵄩󵄩V𝑖2
󵄩󵄩󵄩󵄩 ,

𝑖 = 1, 2, . . . , 𝐿,

(32)

in which 𝑘̂
𝑖

= 𝑘
𝑖
[‖𝐺
𝑖1
‖‖𝑋
𝑖1
‖ + ∑

𝐿

𝑗=1,𝑗 ̸=𝑖
(‖𝐴
𝑗𝑖1
‖ +

‖𝐷
𝑗𝑖1
‖‖𝐸
𝑗𝑖1
‖)] + 𝜆

𝑖
< 0, 𝑘

𝑖
> 0. 𝜆

𝑖
is the maximum

eigenvalue of the matrix 𝑆
𝑖1
.

Proof of Lemma 17. We are now in the position to prove
Lemma 17. From (31), it is obvious that

V̇
𝑖1 (𝑡) = (𝑆

𝑖1
+ 𝐺
𝑖1
Δ
𝑖
𝑋
𝑖1
) V
𝑖1
+ (𝑆
𝑖2
+ 𝐺
𝑖1
Δ
𝑖
𝑋
𝑖2
) V
𝑖2

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

[(𝐴
𝑖𝑗1
+ 𝐷
𝑖𝑗1
Δ
𝑖𝑗
𝐸
𝑖𝑗1
) V
𝑗1

+ (𝐴
𝑖𝑗2
+ 𝐷
𝑖𝑗1
Δ
𝑖𝑗
𝐸
𝑖𝑗2
) V
𝑗2
] .

(33)

According to (33), we can obtain

󵄩󵄩󵄩󵄩V𝑖1 (𝑡)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩exp (𝑆𝑖1𝑡)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1 (0)
󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩exp (𝑆𝑖1 (𝑡 − 𝜏))
󵄩󵄩󵄩󵄩

⋅ (
󵄩󵄩󵄩󵄩𝑆𝑖2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩exp (𝑆𝑖1 (𝑡 − 𝜏))
󵄩󵄩󵄩󵄩

⋅

[
[
[

[

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗1

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗2

󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝑑𝜏.

(34)

The stable matrix 𝑆
𝑖1
implies that ‖ exp(𝑆

𝑖1
𝑡)‖ ≤ 𝑘

𝑖
exp(𝜆

𝑖
𝑡),

for some 𝑘
𝑖
> 0, and the inequality (34) can be rewritten as

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩 ≤ 𝑘𝑖 exp (𝜆𝑖𝑡)

󵄩󵄩󵄩󵄩V𝑖1 (0)
󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

𝑘
𝑖
exp (𝜆

𝑖 (𝑡 − 𝜏))

⋅ [
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩

+ (
󵄩󵄩󵄩󵄩𝑆𝑖2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩] 𝑑𝜏

+ ∫

𝑡

0

𝑘
𝑖
exp (𝜆

𝑖 (𝑡 − 𝜏))

⋅

[
[
[

[

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗1

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗2

󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝑑𝜏.

(35)

For the above inequality, we multiply both sides by the term
exp(−𝜆

𝑖
𝑡)
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󵄩󵄩󵄩󵄩V𝑖1 (𝑡)
󵄩󵄩󵄩󵄩 exp (−𝜆𝑖𝑡)

≤ 𝑘
𝑖

󵄩󵄩󵄩󵄩V𝑖1 (0)
󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

𝑘
𝑖
exp (−𝜆

𝑖
𝜏)

⋅ [
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩 + (

󵄩󵄩󵄩󵄩𝑆𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩 ]𝑑𝜏

+ ∫

𝑡

0

𝑘
𝑖
exp (−𝜆

𝑖
𝜏)

⋅

[
[
[

[

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗1

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗2

󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝑑𝜏.

(36)

Let 𝑠
𝑖
(𝑡) represent the right side of the inequality (36)

𝑠
𝑖 (𝑡) = 𝑘𝑖

󵄩󵄩󵄩󵄩V𝑖1 (0)
󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

𝑘
𝑖
exp (−𝜆

𝑖
𝜏)

⋅ [
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩

+ (
󵄩󵄩󵄩󵄩𝑆𝑖2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩] 𝑑𝜏

+ ∫

𝑡

0

𝑘
𝑖
exp (−𝜆

𝑖
𝜏)

⋅

[
[
[

[

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗1

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗2

󵄩󵄩󵄩󵄩󵄩

]
]
]

]

𝑑𝜏.

(37)

Hence, by taking the time derivative of 𝑠
𝑖
(𝑡), we can obtain

1

𝑘
𝑖

exp (𝜆
𝑖
𝑡)
𝑑

𝑑𝑡
𝑠
𝑖 (𝑡)

= (
󵄩󵄩󵄩󵄩𝑆𝑖2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗1

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗2

󵄩󵄩󵄩󵄩󵄩
.

(38)

Then, by taking the summation 𝑖 = 1, 2, . . . , 𝐿 to both sides of
(38), we have

𝐿

∑

𝑖=1

1

𝑘
𝑖

exp (𝜆
𝑖
𝑡)
𝑑

𝑑𝑡
𝑠
𝑖 (𝑡)

=

𝐿

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝑆𝑖2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V𝑖1
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩V𝑖1

󵄩󵄩󵄩󵄩 .

(39)

For the above equation, we multiply both sides by the term
𝑘
𝑖
exp(−𝜆

𝑖
𝑡). Since ‖V

𝑖1
(𝑡)‖ exp(−𝜆

𝑖
𝑡) ≤ 𝑠
𝑖
(𝑡), one can get that

𝐿

∑

𝑖=1

𝑑

𝑑𝑡
𝑠
𝑖 (𝑡) ≤

𝐿

∑

𝑖=1

𝑘
𝑖
exp (−𝜆

𝑖
𝑡)

⋅

[
[
[

[

󵄩󵄩󵄩󵄩𝑆𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

󵄩󵄩󵄩󵄩V𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝑘
𝑖
𝑠
𝑖 (𝑡) ,

(40)

where 𝑘
𝑖
= 𝑘
𝑖
(‖𝐺
𝑖1
‖‖𝑋
𝑖1
‖ + ∑

𝐿

𝑗=1,𝑗 ̸=𝑖
(‖𝐴
𝑗𝑖1
‖ + ‖𝐷

𝑗𝑖1
‖‖𝐸
𝑗𝑖1
‖)).

Wemultiply the term exp(−𝑘
𝑖
𝑡) to both sides of the inequality

(40), and then

𝐿

∑

𝑖=1

𝑑

𝑑𝑡
[𝑠
𝑖 (𝑡) exp (−𝑘𝑖𝑡)]

≤

𝐿

∑

𝑖=1

𝑘
𝑖
exp (−𝜆

𝑖
𝑡)
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⋅

[
[
[

[

󵄩󵄩󵄩󵄩𝑆𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

󵄩󵄩󵄩󵄩V𝑖2
󵄩󵄩󵄩󵄩 exp (−𝑘𝑖𝑡) .

(41)

Integrating inequality (41) on both sides, we obtain

𝐿

∑

𝑖=1

𝑠
𝑖 (𝑡) ≤

𝐿

∑

𝑖=1

𝑘
𝑖

󵄩󵄩󵄩󵄩V𝑖1 (0)
󵄩󵄩󵄩󵄩 exp (𝑘𝑖𝑡)

+

𝐿

∑

𝑖=1

{{{

{{{

{

∫

𝑡

0

𝑘
𝑖
exp (−𝜆

𝑖
𝜏)

⋅

[
[
[

[

󵄩󵄩󵄩󵄩𝑆𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

⋅
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩 exp (−𝑘𝑖𝜏) 𝑑𝜏
}}}

}}}

}

exp (𝑘
𝑖
𝑡) .

(42)

Since ‖V
𝑖1
(𝑡)‖ exp(−𝜆

𝑖
𝑡) ≤ 𝑠
𝑖
(𝑡), we can show that

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩V𝑖1 (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝐿

∑

𝑖=1

{{{

{{{

{

𝜙
𝑖 (0) exp ((𝑘𝑖 + 𝜆𝑖) 𝑡)

+ ∫

𝑡

0

𝑘
𝑖
exp [(𝑘

𝑖
+ 𝜆
𝑖
) (𝑡 − 𝜏)]

×

[
[
[

[

󵄩󵄩󵄩󵄩𝑆𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐸
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

⋅
󵄩󵄩󵄩󵄩V𝑖2

󵄩󵄩󵄩󵄩 𝑑𝜏

}}}

}}}

}

=

𝐿

∑

𝑖=1

𝜙
𝑖 (𝑡) if 𝜙

𝑖 (0) ≥ 𝑘𝑖
󵄩󵄩󵄩󵄩V𝑖1 (0)

󵄩󵄩󵄩󵄩 > 0,

(43)

where the time function 𝜙
𝑖
(t) satisfies (32). Hence, we can

see that ∑𝐿
𝑖=1
𝜙
𝑖
(𝑡) ≥ ∑

𝐿

𝑖=1
‖V
𝑖1
(𝑡)‖ for all time, if 𝜙

𝑖
(0) is

sufficiently large.

Remark 18. It is obvious that the time function 𝜙
𝑖
(𝑡) is only

dependent on the state variable V
𝑖2
. Therefore, the term

∑
𝐿

𝑖=1
‖V
𝑖1
‖ is bounded by a function of state variable V

𝑖2
. This

feature is useful in the design of a controller, which only uses
output variables.

3.3. Decentralized Output Feedback Single-Phase SlidingMode
Controller Design. In the last section, we proved that the
sliding motion (13) is asymptotically stable. We further
established Lemma 17. Now, by applying this lemma, we
design a decentralized output feedback controller to keep the
system states to stay in the sliding surface for all time. This
is achieved when the following two conditions are satisfied:
(1) reaching time is equal to zero (𝜎

𝑖
(𝑥
𝑖
(0), 0) = 0); (2) the

reaching conditions are satisfied by the Lyapunov function
𝑉(𝜎
𝑖
(𝑥
𝑖
(𝑡), 𝑡)) > 0 and 𝑉̇(𝜎

𝑖
(𝑥
𝑖
(𝑡), 𝑡)) < 0 holds for all 𝑡 ≥ 0.

Sliding surface (7) allows for the first condition to be met.
In order to prove the second condition is also satisfied, the
single-phase sliding mode controller is selected to be

𝑢
𝑖 (𝑡) = − (𝐾𝑖2𝐵𝑖2)

−1
(𝜅
𝑖
+ 𝜅
𝑖

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩 + 𝜅𝑖𝜂𝑖)

𝜎
𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

, (44)

where

𝜅
𝑖
=
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖3

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖1
󵄩󵄩󵄩󵄩 + 𝑏𝑖

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑊𝑖1
󵄩󵄩󵄩󵄩)

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
) ,

𝜅
𝑖
=

[
[
[

[

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖4

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩 + 𝑏𝑖

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑊𝑖2
󵄩󵄩󵄩󵄩)

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]
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⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩
,

𝜅
𝑖
= 𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (0)
󵄩󵄩󵄩󵄩 exp (−𝛽𝑖𝑡)

+ 𝛼
𝑖
+ 𝑐
𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩 ,

[𝑊𝑖1 𝑊𝑖2] = 𝑇𝑖
−1
,

(45)

and the scalar 𝛼
𝑖
> 0 and 𝜂

𝑖
(𝑡) is the solution of

̇𝜂
𝑖 (𝑡) = 𝑘̂𝑖𝜂𝑖 (𝑡)

+ 𝑘
𝑖

[
[
[

[

󵄩󵄩󵄩󵄩𝐴 𝑖2
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐷𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

]
]
]

]

⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

(46)

in which 𝑘̂
𝑖

= 𝑘
𝑖
[‖𝐷
𝑖1
‖‖𝐸
𝑖1
‖ + ∑

𝐿

𝑗=1,𝑗 ̸=𝑖
(‖𝐻
𝑗𝑖1
‖ +

‖𝑀
𝑗𝑖1
‖‖𝑁
𝑗𝑖1
‖)] + 𝜆

𝑖
< 0, 𝑘

𝑖
> 0, and 𝜆

𝑖
is the maximum

eigenvalue of the matrix 𝐴
𝑖1
. It should be pointed out that

controller (44) uses only output variables.
Now, we can establish the following theorem.

Theorem 19. Suppose that LMI (14) has a feasible solution
𝑃
𝑖
> 0 and positive constants 𝜑

𝑖
, 𝜀
𝑖
, 𝜐
𝑖
, 𝜑
𝑗
, 𝜑
𝑗
, 𝜌
𝑖
. Consider

the closed loop of the system (1) with the above-decentralized
output feedback controller (44), where the sliding surface is
given by (7). Then, the system states stay on the sliding surface
for all time.

Proof of Theorem 19. Now, we are going to proveTheorem 19.
Let us consider the following Lyapunov function:

𝑉 (𝜎
𝑖
(𝑥
𝑖 (𝑡) , 𝑡)) =

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩 .

(47)

By differentiating (47) along the trajectories of (7), we can
obtain

𝑉̇ =

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝜎̇
𝑖

=

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

(𝐾
𝑖2
𝑧̇
𝑖2
+ 𝛽
𝑖
𝐾
𝑖
𝐶
−1

𝑖2
𝑦
𝑖 (0) exp (−𝛽𝑖𝑡)) .

(48)

From (4), it is clear that

𝑧̇
𝑖2
= (𝐴
𝑖3
+ 𝐷
𝑖2
𝐹
𝑖
𝐸
𝑖1
) 𝑧
𝑖1
+ 𝐵
𝑖2
(𝑢
𝑖
+ 𝜉
𝑖
)

+ (𝐴
𝑖4
+ 𝐷
𝑖2
𝐹
𝑖
𝐸
𝑖2
) 𝑧
𝑖2

+

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

[(𝐻
𝑖𝑗3
+𝑀
𝑖𝑗2
𝐹
𝑖𝑗
𝑁
𝑖𝑗1
) 𝑧
𝑗1

+ (𝐻
𝑖𝑗4
+𝑀
𝑖𝑗2
𝐹
𝑖𝑗
𝑁
𝑖𝑗2
) 𝑧
𝑗2
] .

(49)

According to (48) and (49), we have

𝑉̇ =

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

[𝐾
𝑖2
(𝐴
𝑖3
+ 𝐷
𝑖2
𝐹
𝑖
𝐸
𝑖1
) 𝑧
𝑖1

+ 𝐾
𝑖2
(𝐴
𝑖4
+ 𝐷
𝑖2
𝐹
𝑖
𝐸
𝑖2
) 𝑧
𝑖2

+ 𝛽
𝑖
𝐾
𝑖
𝐶
−1

𝑖2
𝑦
𝑖 (0) exp (−𝛽𝑖𝑡)]

+

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
𝐵
𝑖2
(𝑢
𝑖
+ 𝜉
𝑖
(𝑥
𝑖
, 𝑡))

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
(𝐻
𝑖𝑗4
+𝑀
𝑖𝑗2
𝐹
𝑖𝑗
𝑁
𝑖𝑗2
) 𝑧
𝑗2

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
(𝐻
𝑖𝑗3
+𝑀
𝑖𝑗2
𝐹
𝑖𝑗
𝑁
𝑖𝑗1
) 𝑧
𝑗1
.

(50)

Using (50) and property ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖, we can generate

𝑉̇ ≤

𝐿

∑

𝑖=1

[
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖3

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖1
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑖1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖4

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑖2

󵄩󵄩󵄩󵄩

+ 𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (0)
󵄩󵄩󵄩󵄩 exp (−𝛽𝑖𝑡)]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑖𝑗4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗2

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑖𝑗3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗1

󵄩󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
𝐵
𝑖2
𝑢
𝑖
+

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑖
󵄩󵄩󵄩󵄩 .

(51)
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Since

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝑧𝑖2

󵄩󵄩󵄩󵄩

=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑖𝑗4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗2

󵄩󵄩󵄩󵄩󵄩
,

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝑧𝑖1

󵄩󵄩󵄩󵄩

=

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑖𝑗3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑖𝑗2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑖𝑗1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗1

󵄩󵄩󵄩󵄩󵄩
,

(52)

the above inequality can be rewritten as

𝑉̇ ≤

𝐿

∑

𝑖=1

[
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖3

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖1
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑖1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖4

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑖2

󵄩󵄩󵄩󵄩

+ 𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (0)
󵄩󵄩󵄩󵄩 exp (−𝛽𝑖𝑡)]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝑧𝑖2

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝑧𝑖1

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
𝐵
𝑖2
𝑢
𝑖
+

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜉𝑖 (𝑥𝑖, 𝑡)
󵄩󵄩󵄩󵄩 .

(53)

In addition, 𝑥
𝑖
= 𝑇
−1

𝑖
𝑧
𝑖
, where 𝑇

𝑖

−1
= [𝑊𝑖1 𝑊𝑖2], 𝑧𝑖 = [

𝑧𝑖1
𝑧𝑖2
]

and using Assumption 6, we have

󵄩󵄩󵄩󵄩𝜉𝑖 (𝑥𝑖, 𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑐𝑖 + 𝑏𝑖

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡)
󵄩󵄩󵄩󵄩

= 𝑐
𝑖
+ 𝑏
𝑖
(
󵄩󵄩󵄩󵄩𝑊𝑖1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑖1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑖2
󵄩󵄩󵄩󵄩) .

(54)

Substituting (54) into (53), we obtain

𝑉̇ ≤

𝐿

∑

𝑖=1

[
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖3

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖1
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑖1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖4

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑧𝑖2

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
𝐵
𝑖2
𝑢
𝑖

+ 𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (0)
󵄩󵄩󵄩󵄩 exp (−𝛽𝑖𝑡)]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝑧𝑖2

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝑧𝑖1

󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩 [𝑐𝑖 + 𝑏𝑖 (

󵄩󵄩󵄩󵄩𝑊𝑖1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑖1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑊𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑖2
󵄩󵄩󵄩󵄩)] .

(55)

Equation (8) implies that

󵄩󵄩󵄩󵄩𝑧𝑖2
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩 . (56)

Now, for the design of a controller using only output variables,
we apply Lemma 17 to the system (4). Let V

𝑖1
= 𝑧
𝑖1
, V
𝑖2
= 𝑧
𝑖2
,

𝑆
𝑖1
= 𝐴
𝑖1
, 𝐺
𝑖1
= 𝐷
𝑖1
, 𝐺
𝑖2
= 𝐷
𝑖2
, 𝑋
𝑖1
= 𝐸
𝑖1
, 𝑋
𝑖2
= 𝐸
𝑖2
, Δ
𝑖
= 𝐹
𝑖
,

𝑆
𝑖2
= 𝐴
𝑖2
, Δ
𝑖𝑗
= 𝐹
𝑖𝑗
, 𝐴
𝑖𝑗1

= 𝐻
𝑖𝑗1
, 𝐴
𝑖𝑗2

= 𝐻
𝑖𝑗2
, 𝐷
𝑖𝑗1

= 𝑀
𝑖𝑗1
,

𝐷
𝑖𝑗2

= 𝑀
𝑖𝑗2
, 𝐸
𝑖𝑗1

= 𝑁
𝑖𝑗1
, and 𝐸

𝑖𝑗2
= 𝑁
𝑖𝑗2
. Then, from (32),

(46), and (56), we obtain

𝜙
𝑖 (𝑡) = 𝜂𝑖 (𝑡) , (57)

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑧𝑖1
󵄩󵄩󵄩󵄩 ≤

𝐿

∑

𝑖=1

𝜂
𝑖 (𝑡) . (58)

Using (56) and (58), the inequality (55) can be rewritten as

𝑉̇ ≤

𝐿

∑

𝑖=1

[
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖3

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖1
󵄩󵄩󵄩󵄩) 𝜂𝑖

+
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖4

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩)

⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

+ 𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (0)
󵄩󵄩󵄩󵄩 exp (−𝛽𝑖𝑡)]



12 Mathematical Problems in Engineering

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
) 𝜂
𝑖

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
𝐵
𝑖2
𝑢
𝑖

+

𝐿

∑

𝑖=1

𝑏
𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑊𝑖1

󵄩󵄩󵄩󵄩 𝜂𝑖 +
󵄩󵄩󵄩󵄩𝑊𝑖2

󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩)

+

𝐿

∑

𝑖=1

𝑐
𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩 .

(59)

Inserting the control law (44) into the right-hand side of (59)
yields

𝑉̇ ≤

𝐿

∑

𝑖=1

[
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖3

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖1
󵄩󵄩󵄩󵄩) 𝜂𝑖

+
󵄩󵄩󵄩󵄩𝐾𝑖2

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝐴 𝑖4

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐷𝑖2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐸𝑖2
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

+ 𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖 (0)
󵄩󵄩󵄩󵄩 exp (−𝛽𝑖𝑡)]

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖3

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖1

󵄩󵄩󵄩󵄩󵄩
) 𝜂
𝑖

+

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑗 ̸=𝑖

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑗2

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑗𝑖4

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑗𝑖2

󵄩󵄩󵄩󵄩󵄩
)

⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

+

𝐿

∑

𝑖=1

𝑏
𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑊𝑖1

󵄩󵄩󵄩󵄩 𝜂𝑖 +
󵄩󵄩󵄩󵄩𝑊𝑖2

󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩
𝐾
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐾
𝑖
𝐶
−1

𝑖2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩)

+

𝐿

∑

𝑖=1

𝑐
𝑖

󵄩󵄩󵄩󵄩𝐾𝑖2
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐵𝑖2
󵄩󵄩󵄩󵄩

−

𝐿

∑

𝑖=1

𝜎
𝑇

𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

𝐾
𝑖2
𝐵
𝑖2
(𝐾
𝑖2
𝐵
𝑖2
)
−1
(𝜅
𝑖
+ 𝜅
𝑖

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩 + 𝜅𝑖𝜂𝑖)

𝜎
𝑖

󵄩󵄩󵄩󵄩𝜎𝑖
󵄩󵄩󵄩󵄩

.

(60)

Therefore,

𝑉̇ ≤ −

𝐿

∑

𝑖=1

𝛼
𝑖
< 0. (61)

It is then clear that 𝑉̇(𝜎
𝑖
(𝑥
𝑖
(𝑡), 𝑡)) < 0. Since 𝜎

𝑖
(𝑥
𝑖
(0), 0) = 0,

suppose that there exists a time 𝑡 > 0 such that

𝑉 (𝜎
𝑖
(𝑥
𝑖 (𝑡) , 𝑡)) =

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝜎𝑖 (𝑥𝑖 (𝑡) , 𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑉 (𝜎𝑖 (𝑥𝑖 (0) , 0))

=

𝐿

∑

𝑖=1

󵄩󵄩󵄩󵄩𝜎𝑖 (𝑥𝑖 (0) , 0)
󵄩󵄩󵄩󵄩 = 0.

(62)

Thus, the identities

𝜎
𝑖
(𝑥
𝑖 (𝑡) , 𝑡) = 𝜎̇𝑖 (𝑥𝑖 (𝑡) , 𝑡) = 0 (63)

hold for all 𝑡 ≥ 0; that is, there is no reaching phase and the
system states remain on the sliding mode for all time 𝑡 ≥ 0.
Thus, the proof is completed.

Remark 20. From sliding mode control theory, Theorems 14
and 19 together show that the sliding surface (7) with the
decentralized output feedback control law (44) guarantees the
following: (1) at any initial value, the system states remain
on the sliding surface for all time 𝑡 ≥ 0 and (2) the
complex interconnected system (1) in the sliding mode is
asymptotically stable.

Remark 21. Unlike the existing related work such as [13–25],
the stability of interconnected system (1) can be assured for
all time.

Remark 22. In contrast to other SMC approaches such as
those presented in [1, 7–12], the proposed method can
be applied to complex interconnected systems where only
output information is available.

Remark 23. It is obvious that this approach uses the output
information completely in the sliding surface and controller
design. Therefore, conservatism is reduced and robustness is
enhanced.

4. Numerical Examples

To verify the effectiveness of the proposed decentralized
output feedback SMC law, we apply our single-phase SMC to
a mismatched uncertain interconnected system composed of
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two third-order subsystems, which is modified from [30] as
follows:

𝑥̇
1
= ([

[

−8 0 1

0 −7 1

1 0 0

]

]

+ Δ𝐴
1
)𝑥
1
+ [

[

0

0

1

]

]

(𝑢
1
+ 𝜉
1
(𝑥
1
, 𝑡))

+ ([

[

1 0 0

0 0 1

0 1 0

]

]

+ Δ𝐻
12
)𝑥
2
,

(64)

𝑥̇
2
= ([

[

−6 0 1

0 −7 1

1 0 0

]

]

+ Δ𝐴
2
)𝑥
2
+ [

[

0

0

1

]

]

(𝑢
2
+ 𝜉
2
(𝑥
2
, 𝑡))

+ ([

[

1 0 0

0 1 0

0 1 0

]

]

+ Δ𝐻
21
)𝑥
1
,

(65)

𝑦
𝑖
= [

1 1 0

0 0 1
] 𝑥
𝑖
, 𝑖 = 1, 2, (66)

where 𝑥
1
= [
𝑥11
𝑥12
𝑥13

] ∈ 𝑅
3, 𝑥
2
= [
𝑥21
𝑥22
𝑥23

] ∈ 𝑅
3, 𝑢
1
∈ 𝑅
1,

𝑦
1
= [
𝑦11
𝑦12
] ∈ 𝑅

2, 𝑢
2
∈ 𝑅
1, and 𝑦

2
= [
𝑦21
𝑦22
] ∈ 𝑅

2. The
mismatched uncertainties in the state matrix are assumed
to satisfy Δ𝐴

1
= [0.1 0.1 0]

𝑇
𝐹
1
[0.1 0 0] and Δ𝐴

2
=

[0 0.1 0.1]
𝑇
𝐹
2
[0 0 1] with

𝐹
1
= 0.9 sin (𝑥2

11
𝑥
13
+ 𝑡 × 𝑥

12
+ 𝑥
13
+ 𝑡 × 𝑥

11
𝑥
12
) ,

𝐹
2
= 0.9 sin (𝑥

21
𝑥
23
+ 𝑥
2

23
𝑥
22
+ 𝑡 × 𝑥

22
+ 𝑥
21
𝑥
22
) .

(67)

The mismatched interconnections are given by
Δ𝐻
12

= [0.1 0 0.1]
𝑇
𝐹
12
[0.1 0 0.1] and Δ𝐻

21
=

[0.1 0.1 0.1]
𝑇
𝐹
21
[0 0.1 0.1] with

𝐹
12
= 0.8 sin (𝑥

22
𝑥
23
+ 𝑥
22
+ 𝑡 × 𝑥

21
𝑥
22
) ,

𝐹
21
= 0.7 sin (𝑥

11
𝑥
13
+ 𝑡 × 𝑥

12
+ 𝑥
11
𝑥
12
𝑥
13
) .

(68)

The exogenous disturbances are given as follows:
‖𝜉
1
(𝑥
1
, 𝑡))‖ ≤ 1.2 + 1.3‖𝑥

1
‖ and ‖𝜉

2
(𝑥
2
, 𝑡))‖ ≤ 2 + 2.1‖𝑥

2
‖.

For this work, the following parameters are given as
follows: 𝛼

1
= 0.04, 𝛼

2
= 0.3, 𝛽

1
= 6.1, 𝛽

2
= 10.8, 𝜑

1
= 0.9,

𝜑
2
= 0.4, 𝜑

1
= 0.8, 𝜑

2
= 0.7, 𝜑

1
= 0.5, 𝜑

2
= 0.6, 𝜑

1
= 1.1,

𝜑
2
= 1.2, 𝛿

1
= 0.3, 𝛿

2
= 0.4, 𝛿

1
= 0.1, 𝛿

2
= 0.2, 𝛿

1
= 0.8,

𝛿
2
= 0.4, 𝜀

1
= 𝜑
−1

1
+𝛿
−1

1
+𝛿
−1

1
= 5.4924, 𝜀

2
= 𝜑
−1

2
+𝛿
−1

2
+𝛿
−1

2
=

5.8333, 𝜐
1
= 𝜑
−1

1
+ 𝜑
−1

1
= 2.3611, 𝜐

2
= 𝜑
−1

2
+ 𝜑
−1

2
= 3.9286,

𝜌
1
= 𝜑
−1

1
+𝛿
−1

1
= 12, 𝜌

2
= 𝜑
−1

2
+𝛿
−1

2
= 6.6667, 𝑘

1
= 1.002, and

𝑘
2
= 1. The initial conditions for two subsystems are selected

to be 𝑥
1
(0) = [−11 9 3.5]

𝑇 and 𝑥
2
(0) = [−9 10 −1]

𝑇,
respectively. According to the algorithm given in [30], the
coordinate transformations are given by 𝑇

1
= 𝑇
2
= [
1 0 0

1 1 0

0 0 1
].

By solving LMI (14), we find a feasible solution 𝑃
𝑖
, 𝑖 = 1, 2,

as follows: 𝑃
1
= [
0.1361 −0.0107

−0.0107 0.1534
] and 𝑃

2
= [
0.2598 0.0051

0.0051 0.0673
].

The matrix 𝐾
𝑖2
, 𝑖 = 1, 2, is given as 𝐾

12
= 0.00833,

𝐾
22
= 0.0113548. From (7), the single-phase sliding surface

for the systems (64) and (65) is designed as

𝜎
1
= [0 0 0.0013] 𝑥

1
− 0.0047 exp (−6.1𝑡) = 0,

𝜎
2
= [0 0 0.0114] 𝑥

2
− 0.0114 exp (−10.8𝑡) = 0.

(69)

Then, from Theorem 14, we know that the sliding motion
of the systems (64) and (65) associated with the sliding
surfaces 𝜎

1
and 𝜎

2
are asymptotically stable. From (44), the

decentralized output feedback controller for the systems (64)
and (65) are given as

𝑢
1 (𝑡) = − 750.2281

⋅ [0.0416 + 0.0285 exp (−6.1𝑡)

+ 0.0018
󵄩󵄩󵄩󵄩𝑦1

󵄩󵄩󵄩󵄩 + 0.0204𝜂1 (𝑡)]
𝜎
1

󵄩󵄩󵄩󵄩𝜎1
󵄩󵄩󵄩󵄩

,

𝑢
2 (𝑡) = − 88.0679

⋅ [0.3227 + 0.1226 exp (−10.8𝑡)

+ 0.025
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩 + 0.0518𝜂2 (𝑡)]
𝜎
2

󵄩󵄩󵄩󵄩𝜎2
󵄩󵄩󵄩󵄩

,

(70)

where the time functions 𝜂
1
(𝑡) and 𝜂

2
(𝑡) are the solution of

̇𝜂
1
(𝑡) = −6.613𝜂

1
(𝑡) + 2.258‖𝑦

1
‖ and ̇𝜂

2
(𝑡) = −5.7𝜂

2
(𝑡) +

3.35‖𝑦
2
‖, respectively.

From Theorem 19, the system states stay on the sliding
surface from beginning to end.This is to say that the stability
of systems (64) and (65) is guaranteed for all time.

Remark 24. In the example above, the mismatched uncer-
tainties in the state matrix of the systems (64) and (65) are
nonlinear and time-variable and the mismatched intercon-
nections are also nonlinear and time-variable, as shown in
(67) and (68). Thus, the stability of systems (64) and (65) is
more difficult to ensure than that of [17, 30]. Therefore, the
approaches given in [17, 30] are not applicable here. From
Figures 3 and 4, we can see that the sliding mode exists for
all time. Even though the mismatched uncertainties in the
statematrix and interconnections of the systems (64) and (65)
are nonlinear and time-variable, the systems still exhibit good
performance with low control energy, as seen in Figures 1, 2,
5, and 6.

5. Conclusion

In this paper, a single-phase SMC law is presented for decen-
tralized robust stability of complex interconnected systems
from the beginning to the end. It is proved that the proposed
single-phase SMC guaranteed the robustness of complex
interconnected system throughout an entire response of the
system starting from the initial time instance. One of the
key features of the single-phase SMC scheme is that reaching
time, which is required in most of the existing two phases
of SMC approaches to stabilize the complex interconnected
systems, is removed. As a consequence, the proposed single-
phase SMC law can be applied to complex interconnected
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systems, which is not always achievable in the traditional
SMC design for complex interconnected systems using only
output variables.
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