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We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of
short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a
fiber nonlinear optical loop mirror (NOLM). Under some assumptions, the statistics of the pulses can be determined from the
energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup.The
statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the
least squares method. The technique is demonstrated numerically in the case of a packet of solitons.

1. Introduction

Considering the ever-growing number of applications involv-
ing short and ultrashort optical pulses (sensing, micro-
machining, medicine, etc.), their precise characterization
is an essential task. When the pulses are so short that
their direct measurement by optoelectronic means becomes
extremely costly or impossible (when the required bandwidth
lies beyond that of the fastest photodetectors), all-optical
techniques, like the widespread optical autocorrelation [1],
are available. The optical autocorrelation technique relies on
an ultrafast nonlinear process (typically, second-harmonic
generation in a crystal) to measure the autocorrelation
function of the optical pulse intensity profile. Although this
technique is able to estimate the duration of pulses down
to the few fs range, it provides little additional informa-
tion. The autocorrelation however has been adapted and
extended and several techniques were developed that allow
complete pulse profile characterization (amplitude and phase
of the electric field) [2–6]. One noticeable example is the
FROG (Frequency Resolved Optical Gating) technique [2],

which combines optical autocorrelation with spectral anal-
ysis. However, complex data processing is usually required
to retrieve the pulse profile from the measured data. Besides,
the free-space implementation of such devices and the phase-
matching requirement (if the nonlinear process is the second-
harmonic generation) impose careful beam alignment and
crystal orientation and cause enhanced sensitivity to pertur-
bations.Moreover, themechanically imposed scanning range
limits the flexibility of the measurement span. Linear tech-
niques were also developed for the complete characterization
of ultrashort pulses, being usually simpler in processing
and requiring much lower intensities than their nonlinear
counterparts [7–12]. The drawbacks, however, include the
need for complex electronics or high-speed detection, or
for the precise characterization of a reference pulse (using a
nonlinear technique).

Aside from the precise measurement of single or periodic
identical pulses, like the stable trains of periodic solitons pro-
duced by mode-locked lasers, or relatively simple multipulse
compounds, there is also a need for characterization of by
far more complex waveforms consisting of a large number
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of pulses having different amplitudes, possibly varying over
time. One typical example is the “sea of solitons” produced
by the breakup of wide, smooth ns pulses in a nonlinear and
dispersive fiber [13]. In the frame of supercontinuum genera-
tion under ns pumping, pulse breakup into a large number
of solitons constitutes the initial stage of the process [14].
Therefore, an experimental method to estimate the statistics
of the formed solitons would be helpful to understand the
physics of supercontinuumgeneration in the ns regime, when
numerical calculations tend to be prohibitively long. Another
example is offered by the so-called noiselike pulses [15–
24]. Noiselike pulses are long (∼ns) packets containing from
thousands to millions of sub-ps subpulses with randomly
distributed amplitudes. Their potential applications include
supercontinuum generation [25, 26], nonlinear frequency
conversion [27, 28], sensing [29], and micromachining [30].
Although noiselike pulsing is gaining recognition as a univer-
sal mode of operation of passively mode-locked fiber lasers
[24], it differs from the more conventional (conservative and
dissipative) soliton regimes in that the inner details of the
noiselike pulse (i.e., the subpulses) vary widely after each
round-trip. Considering the very large number of subpulses
and their variability, a statistical approach seems adequate to
tackle these complex objects. Such an approach could thus be
considered to reinforce the few recent efforts [31] addressing
the challenging task of developing novel techniques for noise-
like pulse characterization. Once it will become possible to
characterize precisely noiselike pulses using such techniques,
the path will be open towards a better understanding of the
physics underlying their formation and dynamics, a subject
that has fueled controversy over the years [15–19].

In this work we propose the use of a fiber nonlinear
optical loop mirror (NOLM) [32] to determine the statistical
distribution of the amplitudes of pulses in a bunch, from low-
frequency energy measurements. The NOLM is a versatile
device that has beenwidely used for ultrafast switching, signal
processing, and laser mode-locking applications, among
others [33–35]. The ultrafast (∼fs) response time of the
optical Kerr effect in silica fiber is exploited, which requires
no phase matching. An all-fiber solution avoids alignment
issues, ensures a high robustness, and reduces costs, whereas
the Sagnac architecture (in which both beams travel along
the same path) improves the stability, especially under strict
polarization control.

2. Design of the Setup and General
Principle of the Method

A NOLM displays a power-dependent transmission (switch-
ing) characteristic, which is a sinusoidal function of input
power. In most conventional, power-imbalanced schemes, in
which an asymmetric coupler is used [32], destructive inter-
ference between the counter-propagating beams is not total,
and therefore minimal transmission is not zero. Although
zero minimal transmission can be achieved in a power-
imbalanced scheme (in particular, using an attenuator located
asymmetrically in the loop [34]), another option is offered
by the polarization-imbalanced NOLM [36]. In this scheme,
a 50/50 coupler is used, so that the counter-propagating

Twist

Polarizer NOLM

50/50

QWR

QWR

Pin

𝛼

Pout

45∘

Figure 1: Polarization-imbalanced NOLMwith output polarization
selection. The use of a QWR at the NOLM output in combination
with a polarizer oriented at 45∘ in the proper direction allows
selecting the circular polarization component orthogonal to the
input polarization.

powers are equal, and only the polarization symmetry is
broken through the use of a quarter-wave retarder (QWR)
in the loop. NOLM switching is then obtained thanks to
the polarization-dependent Kerr effect [37]. Because the
device relies heavily on polarization, light polarization at the
NOLM input should be strictly controlled, as well as the
polarization of the counter-propagating beams in the loop;
the latter condition can be met in practice if the fiber is
twisted (twist makes the fiber optically active, so that light
ellipticity is maintained during propagation) [38]. On the
other hand, polarization control offers enhanced flexibility
of the switching characteristic. Flexibility can be further
enhanced if a polarization selection is performed at the
NOLM output [39]. For example, assuming circular (say,
right) input polarization, and selecting the orthogonal (left)
polarization component at the NOLM output (see Figure 1),
the NOLM power transmission is given by [40]

𝑇 =

𝑃out
𝑃in

=

1

4

[1 − cos(𝜋𝑃in
𝑃

𝜋

+ Δ𝜙)] , (1)

where 𝑃in, 𝑃out, and 𝑃

𝜋
are the input, output, and NOLM

switching powers, respectively (𝑃
𝜋
= 6𝜋/(𝛾𝐿), where 𝛾 is the

nonlinear coefficient for linear polarization and 𝐿 is the loop
length), and the phase shift Δ𝜙 is related to the QWR angle
throughΔ𝜙 = 4𝛼 (we chose to reference theQWR angle from
the orientation for which Δ𝜙 = 0). Equation (1) was derived
using a continuous-wave approach [36], which disregards
phenomena like group velocity dispersion and the group
velocity mismatch between the two circular polarization
eigenmodes in the twisted fiber, whose effects increase as
the pulse duration reduces. Some highly nonlinear optical
fibers are available, however, which are especially designed
to have zero second-order dispersion and a low value of
the dispersion slope at a specific wavelength (in particular
at 1550 nm). On the other hand, the twist-induced group
velocity mismatch is relatively moderate: only ∼0.3 fs/m at
1550 nm in a fiber twisted at a rate of 5 turns/m [41]. In these
conditions, (1) remains valid for pulses as short as 1 ps and
below, even if they are chirped.
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Although a transmission function such as (1) can be
obtained using other schemes than the one depicted in
Figure 1 (including power-imbalanced schemes), the linear
dependence of Δ𝜙 on the single parameter 𝛼 in the proposed
setup strongly facilitates the adjustment procedure of the
transmission function. Besides, strict polarization control
ensures that the transmission function will not drift over
the total measurement time, like it usually happens with
conventional schemes under slow (e.g., thermally driven)
variations of the fiber residual birefringence (proper oper-
ation of the technique will suppose, naturally, that the
transmission function is precisely known and does not vary
over time). Finally, the requirement of a particular input
polarization state may limit the range of applicability of
the technique (e.g., solitons in a bunch may be differently
polarized); on the other hand, the choice of circular input
polarization makes sense considering the recent discovery
that, in a twisted fiber, solitons tend to be circularly polarized
[42, 43].

The method developed here is an extension of a previ-
ously proposed method for determining the temporal profile
of a short optical pulse through measurements of its energy
transmitted through a NOLM with known power transmis-
sion characteristic [44, 45]. Because the pattern of energy
transmission through the NOLM is pulse-shape-dependent,
it contains information that can be exploited to retrieve the
pulse profile. Simply stated, the principle of the method is as
follows. We assume a periodic train of identical short pulses
whose temporal profile is unknown.The energy of the pulses
injected in the NOLM is varied (which can be done using a
variable attenuator or amplifier), and, for each value of input
energy, the pulse energy at the NOLM output is measured,
which can be done using low-frequency electronics. An
energy transfer characteristic is thus obtained this way. If
now the NOLM transmission in power given by (1) (or
equivalently, the instantaneous power transfer characteristic,
𝑃out versus 𝑃in) is known, it can be used to calculate the
energy transfer function for an arbitrary number of profiles.
For proper NOLM adjustments, a different energy transfer
function is obtained for each profile. The profile of the pulses
under study is then determined by comparing the measured
energy transfer characteristic with the calculated ones and
choosing the profile whose curve is closest to the measured
one. In practice, the unknown temporal pulse profile is
approximated as being composed of a few tens of rectangular
sections or “slices,” whose amplitude approaches the pulse
amplitude across the profile. Hence, instead of considering
a continuous pulse profile in function of time, the problem
is made discrete, and only a finite number of amplitudes
have to be found to estimate the profile. The solution can
thus be obtained by resolving a system of algebraic equations.
Whereas the method is able to determine the amplitude
(and even the duration) of the slices, because in nature it is
based on the sole measurement of the overall pulse energy
transmitted through the NOLM, it gives no information
about the relative temporal position of the slices, that is, in
which order the slices should be arranged so as to reproduce
the searched pulse profile. Therefore, pulse profile retrieval is
only possible if some assumption is made on the profile. For

example, if amonotonously decreasing profile is assumed, the
slices should be arranged from the highest to the lowest.

In the present case, where the signal to be characterized
is a bunch of pulses with different amplitudes, each slice will
represent one pulse or,more generally, a subcategory of pulses
in the bunch having very close values of amplitude. As we
are only interested in the statistics of the pulses, the temporal
order of the slices is irrelevant and the technique is naturally
suited for this purpose. Figure 2 illustrates the correspon-
dence between the problem of determining the statistics
of a bunch of pulses and determining a monotonously
decreasing amplitude profile, taking as examples theGaussian
and uniform distributions. The figure also illustrates how
the statistics of the pulses in a bunch affects the energy of
the bunch at the NOLM output; this information can then
be exploited to determine the statistics. In summary, the
problem of determining the statistics of a bunch of pulses is
completely equivalent to that of pulse profile retrieval and can
thus be resolved using a similar approach, with the additional
advantage that no assumption on the order of slices is needed.

3. Development of the Method for
a Bunch of Rectangular Pulses

In a first approximation, we will assume that the bunch
can be viewed as a series of a large number 𝑛 of rectangles
with equal duration and different amplitudes. Similarly to
the case of pulse profile characterization, the technique
relies on the observation that the NOLM energy transfer
characteristic depends on the bunch statistics. As shown in
[45], this dependence is stronger when the phase bias Δ𝜙

in (1) is slightly negative (i.e., when the power transmission
characteristic presents a minimum for some nonzero value
of input power < 𝑃

𝜋
).This is illustrated in Figure 3, where the

transmission in energy of the bunch is plotted in function of
the average power of the slices for a few common statistical
distributions. The transmission in energy is given by

𝑇

𝐸
=

𝐸out
𝐸in

=

∫

+∞

−∞

𝑃out (𝑃in) 𝑑𝑡

∫

+∞

−∞

𝑃in𝑑𝑡
=

∑

𝑛

𝑗=1

𝑇 (𝑝

𝑗
) 𝑝

𝑗

∑

𝑛

𝑗=1

𝑝

𝑗

, (2)

where 𝑝
𝑗
is the amplitude of the 𝑗th slice at the NOLM input

and 𝑛 is the total number of slices.
The technique assumes that we are able to measure 𝑇

𝐸
, or

equivalently the energy transmitted by theNOLM, for several
values of the input energy of the bunch (which can be varied,
e.g., using a variable attenuation or gain). Suchmeasurements
can be performed using a low-frequency detection setup
(low-frequency photodetector and oscilloscope). In most
practical implementations, the different energy measure-
ments will be performed sequentially, which supposes that
the bunch can be reproduced periodically, conserving at
least the same statistics at each period. Let us call 𝑎

𝑖
the

attenuation/amplification coefficient for the 𝑖thmeasurement
and 𝐸

𝑖
the corresponding measured value of output bunch

energy, for 𝑖 = 1 to 𝑀 (𝑀 being the total number of
measurements). We will now model the bunch as consisting
of 𝑁 rectangular “slices,” each of which regroups rectangles
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Figure 2: (a, d) Series of rectangles with random amplitudes obeying (a) a Gaussian distribution with mean 1 and standard deviation 0.4 and
(d) a uniform distribution on the interval [0, 1]; (b, e) when arranged in decreasing order of amplitude, each series tends to a specific intensity
profile (materialized by the dashed curves); (c, f) illustration of the basic principle of the method: for the same energy (shaded area) of the
input bunch, the bunch energy at the NOLM output is very different for each distribution (in this example, it is higher in the uniform case).

from the bunch which have similar amplitudes (each slice
regroups the same number 𝑛/𝑁 of rectangles).The amplitude
𝑝

𝑗
of each slice is thus an approximation of the amplitudes of

the rectangles in that slice. We then have that

𝑁

∑

𝑗=1

𝑇 (𝑎

𝑖
𝑝

𝑗
) 𝑎

𝑖
𝑝

𝑗
=

𝐸

𝑖

Δ𝜏

, 𝑖 = 1, . . . ,𝑀, (3)

where Δ𝜏 = 𝜏

𝑏
/𝑁 is the duration of each slice (𝜏

𝑏
is the

total duration of the bunch), which is supposed to be known.
Equation (3) is a system of 𝑀 nonlinear algebraic equations
in the𝑁 variables 𝑝

𝑗
. If𝑀 ≥ 𝑁 (i.e., if the number of energy

measurements is at least equal to the number of slices), system
(3) can be solved numerically to find the values of 𝑝

𝑗
. Note

that, if 𝜏
𝑏
is unknown, the minimum number of equations is

increased by 1; that is, 𝑀 ≥ 𝑁 + 1; see [44, 45]. System (3)
can be conveniently solved numerically by the least squares
method, by minimizing the expression

𝑀

∑

𝑖=1

[

[

𝑁

∑

𝑗=1

𝑇 (𝑎

𝑖
𝑝

𝑗
) 𝑎

𝑖
𝑝

𝑗
−

𝐸

𝑖

Δ𝜏

]

]

2

.
(4)

In order to keep computational timewithin reasonable limits,
in practice the number 𝑁 of variables (slices) should not

be higher than a few tens, which is usually insufficient to
assess with some precision the statistical distribution. There
are a few ways, however, to increase the volume of the data.
First, more than one set of 𝑀 energy measurements can be
recorded. For example, if the setup is automated (automatic
sweep of the NOLM input energy and automatic output
energy measurement), the number 𝑀 of measured values of
energy𝐸

𝑖
can be readily increased, say an integer number𝐾of

times, totaling𝐾𝑀 values that are then organized into𝐾 sets
of𝑀 values. System (3) is then solved𝐾 times (once for each
set of energy values), yielding𝐾 sets of solutions 𝑝

𝑗
. Besides,

taking advantage of the sensitivity of the result to the initial
estimate, to the degree of overdetermination of the system
(𝑀 − 𝑁), and so forth, different sets of solutions 𝑝

𝑗
can be

obtained even if only one set of measured output energies is
available.

The proposed technique will now be tested numerically
for different statistics of the amplitudes of the rectangles. The
NOLM power transmission is given by (1), with 𝑃

𝜋
= 1 and

Δ𝜙 = −𝜋/5. First, the output energies (which, in a real situa-
tion, would be gathered experimentally) are computed using
(2). In each case, the bunch consists in a large number 𝑛 =

1000 of rectangles, whose amplitudes are random numbers
generated according to a specific distribution.The values of 𝑎

𝑖

are increased until we get slightly beyond theminimumof the
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Figure 3: Transmission in energy of bunches consisting of 𝑛 = 1000

rectangles in function of average peak power 𝑃

𝑝

for a Gaussian
with mean 𝑃

𝑝

and standard deviation 0.2𝑃

𝑝
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𝑝

] (dashed), and chi squared distribution
with 4 degrees of freedom (mean =𝑃

𝑝

, standard deviation =√(2𝑃

𝑝

),
dotted). Inset: power transmission function given by (1). The phase
bias Δ𝜙 = −0.2𝜋 and 𝑃

𝜋

= 1.

curves shown in Figure 3 (for the technique to work properly,
only a fraction of the switching power 𝑃

𝜋
should thus be

reached; in any case, increasing power beyond 𝑃

𝜋
should be

avoided, as it may cause strongly overestimated values of 𝑝
𝑗
).

For each distribution, several sets of 𝑀 = 40–45 values of
energy are calculated, by generating several times the random
amplitudes of the 1000 rectangles that form the bunch and/or
by varying the values of 𝑎

𝑖
. Once the different sets of 𝐸

𝑖
have

been calculated, it is assumed that the distribution of the
bunch is unknown. The bunch is then modeled as a series of
𝑁 = 40 rectangular slices of unknown amplitudes 𝑝

𝑗
(hence,

each slice actually models a subset of 𝑛/𝑁 = 25 rectangles of
the bunch with similar amplitudes). For each set of 𝐸

𝑖
values,

the minimization of (4) is performed several times, varying
the initial estimates of 𝑝

𝑗
(equal values, random values, etc.),

for different degrees of overdetermination in (3), and so forth.
Several tens of sets of values 𝑝

𝑗
are then generated, from

which those associatedwith an anomalously large value of the
residual (meaning bad convergence) are discarded. After this
selection, the remaining data is used to estimate the statistics
of the bunches.

Figure 4 presents the results obtained for 3 common dis-
tributions: Gaussian, uniform, and chi squaredwith 4 degrees
of freedom. It appears from the figure that the method
yields reasonably good estimates of the actual statistics of the
bunches.

4. Generalization of the Technique to
Any Pulse Profile

Although the technique works well to estimate the statistics
of a bunch of rectangles, rectangular pulses are seldom

encountered in practice, and it is clear that the above
technique will not operate properly if the pulses adopt a
different shape, like Gaussian, for example. It is nevertheless
quite straightforward to adapt this technique to any particular
pulse shape. For the moment, we will continue assuming that
all pulses in the bunch have the same duration. It is also
assumed that the pulses are sufficiently separated in time so
that they do not overlap substantially. First, using (1), we will
compute the energy transfer characteristic 𝑇

𝐸1
of a single

pulse adopting the profile under consideration, 𝑝(𝑡), as a
function of input peak power.Defining𝑝(𝑡) as the profilewith
normalized peak power, 𝑇

𝐸1
is written as

𝑇

𝐸1
(𝑃

𝑝
) =

𝐸out
𝐸in

=

∫

+∞

−∞

𝑃out (𝑃𝑝𝑝 (𝑡)) 𝑑𝑡

𝑃

𝑝
∫

+∞

−∞

𝑝 (𝑡) 𝑑𝑡

=

∫

+∞

−∞

𝑇 (𝑃

𝑝
𝑝 (𝑡)) 𝑝 (𝑡) 𝑑𝑡

∫

+∞

−∞

𝑝 (𝑡) 𝑑𝑡

.

(5)

It should be noted that 𝑇
𝐸1

is independent of the duration
of the pulse and only depends on its profile and peak power
𝑃

𝑝
. Indeed, if 𝑝

1
(𝑡) is the profile with unit duration, then

the corresponding profile with duration 𝜏 is given by 𝑝(𝑡) =
𝑝

1
(𝑡/𝜏); after substituting in (5) and proceeding to a change

of variable 𝑡 = 𝑡/𝜏, it appears that 𝑇
𝐸1

remains unchanged
when 𝑝(𝑡) is replaced by 𝑝

1
(𝑡). Hence, using (1) and (5), 𝑇

𝐸1

can be readily computed for a given profile as a function
of peak power. If now we define 𝑏 = ∫𝑝

1
(𝑡)𝑑𝑡, the energy

of a pulse with duration 𝜏 and peak power 𝑃

𝑝
is given by

𝑃

𝑝
∫𝑝(𝑡)𝑑𝑡 = 𝑏𝑃

𝑝
𝜏. Finally, (3) is replaced by

𝑁

∑

𝑗=1

𝑇

𝐸1
(𝑎

𝑖
𝑝

𝑗
) 𝑎

𝑖
𝑝

𝑗
=

𝐸

𝑖

(𝑏Δ𝜏)

, 𝑖 = 1, . . . ,𝑀, (6)

where 𝑝
𝑗
now represent the peak powers of the pulses. Like in

the former case, the bunch ismodeled by a series of𝑁 “slices,”
each of which represents a subset of pulses in the bunch
with similar amplitudes. Like previously, each slice regroups
the same number 𝑛/𝑁 of pulses (hence, Δ𝜏 = 𝑛𝛿𝜏/𝑁,
where 𝛿𝜏 is the duration of individual pulses). Once 𝐸

𝑖
have

been measured, the problem can be solved using the same
procedure as before, replacing (3) by (6); the main difference
is that the NOLM characteristic in (6) is no longer 𝑇, but 𝑇

𝐸1
,

which is profile-dependent.
Once again, we checked the technique numerically.

Bunches of 𝑛 = 1000 Gaussian pulses were generated
according to a few common distributions and were used
to compute the values of energies 𝐸

𝑖
. The energy transfer

function of a Gaussian pulse was then computed according
to (1) and (5), in function of peak power. Equations (6) were
then solved numerically in the same way as previously (a
polynomial fit of 𝑇

𝐸1
was used to improve computational

speed). The obtained results are presented in Figure 5. It can
be seen that they are comparable to those of Figure 4.

Finally, it has to be mentioned that although the above
technique is able to estimate the statistics of a bunch of
pulses, the total number 𝑛 of pulses in the bunch, as well
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Figure 4: Histograms presenting, in 40 ranges of amplitude, the number of slices determined by the technique for three distributions: (a)
Gaussian, (b) uniform, and (c) chi squared with 4 degrees of freedom. The actual distributions that were used to generate the bunches and
compute the 𝐸

𝑖

values are superposed for comparison.

as their duration, remains unknown. This complementary
information could be accessed through an autocorrelation
measurement, for example.

5. Adaptation of the Technique to
the Case of Solitons

An important particular case is that of a bunch of funda-
mental solitons, which can be the result, for example, of the
breaking of a long, ns-long pulse in a dispersive nonlinear
fiber. Applying the technique developed in Section 4 directly
(assuming a sech2 profile) will yield incorrect results, how-
ever, if we disregard the well-known property of first-order
solitons that their duration is inversely proportional to the
squared root of their peak power. In a fiber with anomalous
dispersion 𝛽

2
(in ps2/km) < 0 and nonlinear coefficient 𝛾 (in

rad−1 km−1), 𝑃
𝑝
𝑝(𝑡) = 𝑃

𝑝
× sech2(𝑡/𝜏) is a soliton if [37]

𝜏 =
√









𝛽

2









𝛾

1

√
𝑃

𝑝

. (7)

Therefore, the higher the peak power, the shorter the duration
of the pulse (it has to be clarified here that the pulses are
solitons only in the fiber that originated them, and not, of

course, in the NOLM used for the characterization, which is
still supposed to be dispersion-free). In this section, we will
continue regarding the bunch as a series of𝑁 slices with equal
duration Δ𝜏, which regroup pulses with similar amplitudes.
However, considering (7), the slices will no longer contain
an equal number of pulses: the higher-amplitude slices will
regroup a higher number of solitons than those correspond-
ing to a lower value of amplitude. Hence each slice will now
contain a number of pulses that is proportional to the squared
root of its amplitude:

𝑛

𝑗
=

Δ𝜏

𝛿𝜏

𝑗

= Δ𝜏
√

𝛾









𝛽

2









√
𝑝

𝑗
, 𝑗 = 1, . . . , 𝑁, (8)

where 𝛿𝜏

𝑗
are the durations of the solitons included in

the 𝑗th slice, calculated using (7). Hence, to estimate the
amplitude distribution of a bunch of solitons on the basis
of measurements of energy transmission through a NOLM,
the same procedure as in Section 4 can be applied, based
on (6), to determine the amplitudes 𝑝

𝑗
of the slices. Then,

using (8), the number 𝑛
𝑗
of pulses in each category can be

determined, which finally allows determining the statistics of
the bunch. In addition, the total number of solitons in the
bunch, 𝑛 = ∑𝑛

𝑗
, can also be estimated. Hence, thanks to

the particular relation between amplitude and duration that
prevails in the case of solitons, information such as the total
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Figure 5: Histograms presenting, in 40 ranges of amplitude, the number of “slices” (subsets of Gaussian-shaped pulses) determined by the
technique for three distributions: (a) Gaussian, (b) uniform, and (c) chi squared with 4 degrees of freedom.The actual distributions that were
used to generate the bunches and compute the 𝐸

𝑖

values are superposed for comparison. The phase bias Δ𝜙 = −0.2𝜋 and 𝑃

𝜋

= 1.

number of pulses in the bunch and their duration is accessible
to the measurement.

Finally, we will test numerically the procedure described
above to estimate the statistics of a bunch of solitons. Again,
we will assume that the pulses are sufficiently separated
in the bunch, so that they do not overlap substantially.
In the case of solitons resulting from the process of pulse
breaking in a fiber, this implies that the bunch should be
measured after a sufficiently long distance of propagation
along the fiber, in order to ensure that the process of soliton
formation and separation is completed. Here we will assume
that the “duration of the bunch” 𝜏

𝑏
= 𝑁Δ𝜏 is not known.

Indeed, although in practice the duration of the bunch (ns
or longer) is usually accessible using affordable measurement
optoelectronics, this value encompasses the pulses as well as
the empty intervals separating them,which are not accounted
for in 𝜏

𝑏
(strictly speaking, 𝜏

𝑏
= ∑𝑛

𝑗
𝛿𝜏

𝑗
is the cumulated

duration of all the pulses in the bunch). With Δ𝜏 unknown,
theminimumnumber of (6) to solve the problem is increased
by 1 (i.e.,𝑀 ≥ 𝑁+1). It is then convenient to use one of these
equations, say the 𝑀th, to eliminate Δ𝜏 from the remaining
equations, which then are rewritten as

∑

𝑁

𝑗=1

𝑇

𝐸1
(𝑎
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) 𝑎
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) 𝑎

𝑀
𝑝

𝑗

=

𝐸

𝑖

𝐸

𝑀

, 𝑖 = 1, . . . ,𝑀 − 1. (9)

Once (9) are solved in 𝑝

𝑗
, the value of Δ𝜏 is finally given by

Δ𝜏 =

𝐸

𝑀

2∑

𝑁

𝑗=1

𝑇

𝐸1
(𝑎

𝑀
𝑝

𝑗
) 𝑎

𝑀
𝑝

𝑗

, (10)

where the fact that 𝑏 = 2 for sech2 pulses was taken into
account.

Again, bunches of 𝑛 = 1000 sech2 pulses are generated
according to a few common distributions and are used to
compute the values of energies 𝐸

𝑖
(which, in a real measure-

ment, would be experimental). In addition, we also consider
the distribution defined by Equations (2) and (3) in [14].
This distribution corresponds to the approximate analytical
solution of the pulse breaking problem obtained in the frame
of the work of Zakharov and Shabat [13], when the long
original pulse is nearly rectangular. For each distribution, the
average peak powers of the pulses in the bunch range as a few
tens ofW. For theNOLMparameters, we use𝑃

𝜋
= 125Wand

Δ𝜙 = −𝜋/7 in (1). Such value of critical power is obtained,
for example, using the scheme of Figure 1 with 15m of high
nonlinearity fiber (𝛾 = 10 rad−1 km−1) in the loop.With these
values, only adjustable attenuation is required at the NOLM
input (amplification is not needed; i.e., 𝑎

𝑖
< 1). The energy

transfer function 𝑇

𝐸1
is then computed assuming a sech2

profile and fitted using a polynomial. Equations (9) are then
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Figure 6: Histograms presenting, in 40 ranges of amplitude, the number of pulses determined by the technique, for four distributions: (a)
Gaussian, (b) uniform, (c) chi squared with 4 degrees of freedom, and (d) the statistics derived from the work of Zakharov and Shabat
(see main text for details). The actual distributions that were used to generate the bunches and compute the 𝐸

𝑖

values are superposed for
comparison. The black dot in (d) shows the combined contribution of the rightmost sections of the retrieved histogram (bracket).

solved numerically using the least squares method, yielding
𝑝

𝑗
. We consider 𝑁 = 40 sections. After calculating Δ𝜏

through (10), the number of pulses in each slice is determined
using (8) (the dispersion and nonlinear coefficients are those
of a standard telecommunications fiber at 1550 nm; we used
for the latter 2/3𝛾, corresponding to circularly polarized
solitons). For each distribution, the procedure is repeated
several times, varying the values 𝐸

𝑖
, the initial estimates of

𝑝

𝑗
, the degree of overdetermination of the equations, and so

forth, in order to increase the volume of data. Sets of solutions
associated with significantly higher-than-average values of
residuals are discarded. Finally, the obtained results are
presented in Figure 6. Overall a good agreement is observed
between the estimated and targeted statistical distributions.
Besides, in each case, the estimated total number of solitons
in the bunch is found to be within ∼5% of its actual value,
𝑛 = 1000.

Let us finally provide a few additional details in the case
of Figure 6(d). The bunch is the one that would be formed,
according to [14], from the breaking of a nearly rectangular
pulse with 30W peak power and a duration of 106.8 ns,
in a standard telecommunications fiber (𝛽

2
= −21.7 ps2/km

at 1550 nm and 2/3𝛾 = 1 rad−1 km−1). With these real-
istic values of the parameters, 𝑛 = 1000 solitons are
formed, with amplitudes up to 120W, corresponding to 4
times the amplitude of the original pulse, and durations
down to 0.75 ps (full width at half maximum). Although
the values of amplitudes given by Equations (2) and (3)

in [14] are deterministic and do not define a probability
density function, they yield the distribution shown by the
transparent histograms in Figure 6(d). The reconstructed
data (solid histograms) present a good overall agreementwith
the targeted distribution, although a noticeable discrepancy
appears at the upper end of the distribution: the large number
of pulses in the last category of amplitudes (117–120W)
is strongly underestimated. Instead, the technique finds a
certain number of solitons with amplitudes beyond 120W
(up to ∼150W). It has to be noticed however that if we
sum the heights of all the solid rectangles beyond 117W
and calculate the corresponding average peak power of these
solitons (123.3W), we get values that reproduce reasonably
well both the height and abscissa of the last rectangle in the
targeted distribution (black dot in Figure 6(d)).
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6. Conclusions

In thisworkwepropose anddevelop a technique to character-
ize the statistics of a bunch containing a large number of opti-
cal pulses with random amplitudes. The technique exploits
the nonlinear switching characteristic of a fiber NOLM,
whose ultrafast response time is provided by the optical Kerr
effect. For proper adjustments of the NOLM parameters, the
energy of the bunch transmitted by the device as a function
of input power is specific of the statistics that obey the
amplitudes of the pulses in the bunch.Therefore, on the basis
of the knowledge of the energies of the bunch transmitted by
the NOLM (which are readily measured in practice using a
low-frequency measurement setup), we are able to estimate
through numerical calculations the statistics of the pulses
in the bunch. The method involves estimating the solution
of a system of nonlinear algebraic equations using the least
squares method. The technique is demonstrated numerically
in the case of rectangular pulses, Gaussian pulses, and in the
case of a bunch of solitons. The technique is attractive in
particular in the frame of supercontinuum generation using
ns pulses, in which pulse breaking plays an essential role, and
for the characterization and understanding of the noiselike
pulsing regime in mode-locked fiber lasers.
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Rodŕıguez et al., “Observation of a high grade of polarization of
solitons generated in the process of pulse breakup in a twisted
fiber,” Journal of the Optical Society of America B, vol. 31, no. 4,
pp. 821–826, 2014.

[44] O. Pottiez, E. A. Kuzin, and B. Ibarra-Escamilla, “Retrieving
optical pulse profiles using a nonlinear optical loop mirror,”
IEEE Photonics Technology Letters, vol. 19, no. 18, pp. 1347–1349,
2007.

[45] O. Pottiez, B. Ibarra-Escamilla, and E. A. Kuzin, “Short optical
pulse profile characterization using a nonlinear optical loop
mirror,” Laser Physics, vol. 18, no. 2, pp. 165–174, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


