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Based on the extended triangular norm, several new operational laws for linguistic variables and uncertain linguistic variables
(ULVs) are defined. To avoid the limitations of existing linguistic aggregation operators, a series of extended uncertain linguistic
(UL) geometric aggregation operators are proposed on the basis of the extended triangular norm. In addition, amultiattribute group
decision making (MAGDM) method dealing with UL information is developed based on the extended UL geometric aggregation
operators. Finally, an example is presented to show the efficiency of the developed approach in solving MAGDM problems.

1. Introduction

Due to the increasing complexity of the decision problem
and our limited ability, in the multiattribute group decision
making (MAGDM)process, decisionmakers sometimes have
difficulty in providing their opinions with crisp numbers.
Alternatively, by means of linguistic information, they think
they can express their opinions more naturally and straight-
forward. The studies on decision making with linguistic
information have been widely performed and many methods
have been developed to solve the decision making problem
with linguistic information [1–12].

Sometimes, decision makers may feel that they cannot
fully or accurately express their opinions with only one
linguistic term. Xu [13] proposed the concept of ULV which
can be regarded as one linguistic interval and is convenient
for decision makers to better express their opinions. In view
of the key role that aggregation operators always play in the
decision making process, many UL aggregation operators
have been put forward. For instance, Xu [13] introduced the
UL ordered weighted averaging (ULOWA) operator and the
UL hybrid aggregation (ULHA) operator. Xu [14] developed
induced uncertain linguistic OWA (IULOWA) operators,
where the second components are ULVs. Xu [15] defined
the uncertainmultiplicative linguistic preference relation and
proposed several UL geometric operators. Wei [16] proposed

anULhybrid geometricmean (ULHGM)operator. Peng et al.
[17] proposed an uncertain pure linguistic hybrid harmonic
averaging (UPLHHA) operator. Based on the extended trian-
gular conorm, Lan et al. [18] defined some new operational
laws for linguistic variables and put forward several extended
UL aggregation operators. Motivated by Bonferroni mean,
Wei et al. [19] proposed several UL Bonferroni aggregation
operators. Peng et al. proposed [20] some multigranular UL
prioritized aggregation operators based on the prioritized
aggregation operator.

Yager [21] introduced the power-average (PA) operator
and the power OWA (POWA) operator which allow argu-
ments to support each other in the aggregation process. On
this basis, Xu and Yager [22] developed the power geometric
(PG) operator, weighted PG operator, and POWG operator.
Due to special properties of power aggregation operators,
many linguistic power aggregation operators have been
proposed. Zhou and Chen [23] proposed the generalized
linguistic PA operator, the weighted generalized linguistic PA
operator, and the generalized linguistic POWA operator. Xu
and Wang [24] developed 2-tuple linguistic PA operator, 2-
tuple linguistic weighted PA operator, and 2-tuple linguistic
POWA operator. Xu et al. [25] defined the linguistic PA
operator, the linguistic weighted PA operator, the linguistic
POWAoperator, the uncertain linguistic PA operator, and the
uncertain linguistic POWA operator.
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However, most of the abovementioned linguistic and
UL aggregation operators are developed on the basis of
the basic operational laws, by which the computing results
derived sometimes may be beyond the discourse domain
of the original linguistic variable and lead to a question
on how to define the semantics for it. In addition, up to
now, there is no PG operator developed for dealing with
UL decision making problems. To overcome such issues,
motivated by Lan et al. [18], we introduce the extended
triangular norm and propose several uncertain linguistic
PG operators based on the extended triangular norm. This
paper is structured as below. Section 2 briefly introduces the
basic knowledge that will be used in the following sections.
Section 3 proposes several UL geometric operators based on
extended triangular norm. In Section 4, a MAGDM method
dealing with UL information is developed. In Section 5, an
example is presented to show the efficiency of the developed
approach in solving MAGDM problems. Section 6 gives the
conclusions.

2. Preliminaries

Suppose that 𝑆 = {𝑠
𝑖
| 𝑖 = 1, 2, . . . , 𝑡} is a linguistic term

set (LTS), where the odd 𝑡 expresses the cardinality and 𝑠
𝑖

denotes a possible linguistic value. For instance, a LTS with
seven terms is expressed as below.

𝑆 = {𝑠
1
= none, 𝑠

2
= very low, 𝑠

3
= low, 𝑠

4
=

medium, 𝑠
5
= high, 𝑠

6
= very high, 𝑠

7
= perfect} [6].

The LTS has the properties as below [6]:
(1) 𝑠
𝑗
≥ 𝑠
𝑘
, if and only if 𝑗 ≥ 𝑘,

(2) negation operator: Neg(𝑠
𝑗
) = 𝑠
𝑘
such that 𝑘 = 𝑡+1−𝑗.

Xu [26] proposed a continuous LTS 𝑆 = {𝑠
𝛼
| 𝑠
1
≤ 𝑠
𝛼
≤

𝑠
𝑡
, 𝛼 ∈ [1, 𝑡]}, where 𝑠

𝛼
is an original linguistic term if 𝑠

𝛼
∈ 𝑆;

otherwise, 𝑠
𝛼
is a virtual linguistic term.

Suppose that 𝑠
𝛼
, 𝑠
𝛽
∈ 𝑆, and 𝜇, 𝜇

1
, 𝜇
2
∈ [0, 1]; Xu [26] gave

the following operational laws:

(𝑠
𝛼
)
𝜇
= 𝑠
𝛼
𝜇 ,

(𝑠
𝛼
)
𝜇1
⊗ (𝑠
𝛼
)
𝜇2
= (𝑠
𝛼
)
𝜇1+𝜇2

,

(𝑠
𝛼
⊗ 𝑠
𝛽
)
𝜇

= (𝑠
𝛼
)
𝜇
⊗ (𝑠
𝛽
)
𝜇

,

(1)

𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝛽
⊗ 𝑠
𝛼
= 𝑠
𝛼𝛽
. (2)

Besides, Xu [13] defined the ULV with the expression �̃� =
[𝑠
𝛼
, 𝑠
𝛽
], where 𝑠

𝛼
, 𝑠
𝛽
∈ 𝑆, 𝑠
𝛽
and 𝑠
𝛼
denote the upper and lower

bounds, respectively. In particular, the ULV degenerates to
one linguistic variable if 𝛼 = 𝛽. To rank ULVs, Xu [15] gave
the concept of possibility degree.

Definition 1. Let �̃�
1
= [𝑠
𝛼1
, 𝑠
𝛽1
] and �̃�

2
= [𝑠
𝛼2
, 𝑠
𝛽2
] be two

ULVs, and let len(�̃�
1
) = 𝛽

1
− 𝛼
1
and len(�̃�

2
) = 𝛽

2
− 𝛼
2
; the

possibility degree of �̃�
1
≥ �̃�
2
is defined as

𝑝 (�̃�
1
≥ �̃�
2
)

=
max {0, len (�̃�

1
) + len (�̃�

2
) −max (𝛽

2
− 𝛼
1
, 0)}

len (�̃�
1
) + len (�̃�

2
)

.

(3)

If 𝑝(�̃�
1
≥ �̃�
2
) ≥ 0.5, the order between �̃�

1
and �̃�
2
is denoted

by �̃�
1
≻ �̃�
2
.

Obviously, the possibility degree has the following prop-
erties:

(1) 0 ≤ 𝑝(�̃�
1
≥ �̃�
2
) ≤ 1, 0 ≤ 𝑝(�̃�

2
≥ �̃�
1
) ≤ 1;

(2) 𝑝(�̃�
1
≥ �̃�
2
) + 𝑝(�̃�

2
≥ �̃�
1
) = 1. In particular, 𝑝(�̃�

1
≥ �̃�
1
) =

𝑝(�̃�
2
≥ �̃�
2
) = 0.5.

If a series of ULVs �̃�
𝑖
= [𝑠
𝛼𝑖
, 𝑠
𝛽𝑖
] (𝑖 = 1, 2, . . . , 𝑚) should

be ranked, a likelihood matrix is constructed as below:

𝑃 = (𝑝
𝑖𝑗
)
𝑚×𝑚

=

[
[
[
[

[

𝑝
11

𝑝
12

⋅ ⋅ ⋅ 𝑝
1𝑚

𝑝
21

𝑝
22

⋅ ⋅ ⋅ 𝑝
2𝑚

.

.

.
.
.
.

.

.

.
.
.
.

𝑝
𝑚1

𝑝
𝑚2

⋅ ⋅ ⋅ 𝑝
𝑚𝑚

]
]
]
]

]

, (4)

where 𝑝
𝑖𝑗
= 𝑝(�̃�
𝑖
≥ �̃�
𝑗
).

Thus, the order of the ULVs is obtained in accordance
with the values of 𝑝

𝑖
(𝑖 = 1, 2, . . . , 𝑚) [27]:

𝑝
𝑖
=

∑
𝑚

𝑗=1
𝑝
𝑖𝑗
+ 𝑚/2 − 1

𝑚 (𝑚 − 1)
. (5)

Definition 2 (see [28, 29]). A𝑇-norm is amapping𝑇 : [0, 1]×
[0, 1] → [0, 1] satisfying, for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1],

(1) (boundary condition) 𝑇(𝑎, 1) = 𝑎;
(2) (commutativity) 𝑇(𝑎, 𝑏) = 𝑇(𝑏, 𝑎);
(3) (associativity) 𝑇(𝑎, 𝑇(𝑏, 𝑐)) = 𝑇(𝑇(𝑎, 𝑏), 𝑐);
(4) (monotonicity) 𝑇(𝑎, 𝑏) ≤ 𝑇(𝑐, 𝑑) whenever 𝑎 ≤ 𝑐, 𝑏 ≤

𝑑.

Motivated by Lan et al. [18], in what follows, we extend
the 𝑇-norm to interval [1, 𝑡] (𝑡 > 1).

Definition 3. An extended𝑇∗-norm is amapping𝑇∗ : [1, 𝑡]×
[1, 𝑡] → [1, 𝑡] satisfying, for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [1, 𝑡],

(1) (boundary condition) 𝑇∗(𝑎, 𝑡) = 𝑎;
(2) (commutativity) 𝑇∗(𝑎, 𝑏) = 𝑇∗(𝑏, 𝑎);
(3) (associativity) 𝑇∗(𝑎, 𝑇∗(𝑏, 𝑐)) = 𝑇∗(𝑇∗(𝑎, 𝑏), 𝑐);
(4) (monotonicity) 𝑇∗(𝑎, 𝑏) ≤ 𝑇∗(𝑐, 𝑑) whenever 𝑎 ≤ 𝑐,

𝑏 ≤ 𝑑.

Let 𝑓 : [1, 𝑡] → [1, +∞) be a strictly monotone decreas-
ing and continuous function with 𝑓(1) = +∞ and 𝑓(𝑡) = 1.

Lan et al. [18] proposed an interactive method to build
the function of 𝑓; that is, given the utility values of
𝑓(1), 𝑓(2), . . . , 𝑓(𝑡) by decision makers, the nonlinear curve-
fit method is performed to obtain the approximate function
of 𝑓(𝑥). For reason of simplicity, unless otherwise stated, we
suppose𝑓(𝑥) = (𝑡−1)/(𝑥−1) in the following text. Obviously,
𝑓(𝑥) = (𝑡 − 1)/(𝑥 − 1) has the properties that 𝑓(1) = +∞

and 𝑓(𝑡) = 1. Furthermore, we can easily derive the inverse
function of 𝑓(𝑥); that is, 𝑓−1(𝑥) = (𝑥 + 𝑡 − 1)/𝑥.
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Definition 4. Suppose that 𝑇
0
: [1, 𝑡] × [1, 𝑡] → [1, 𝑡] is a

binary operator; for any 𝑎, 𝑏 ∈ [1, 𝑡], 𝑇
0
is defined as

𝑇
0 (𝑎, 𝑏) = 𝑓

−1
(𝑓 (𝑎) ∗ 𝑓 (𝑏)) , (6)

where 𝑓−1 is the inverse function of 𝑓.

Theorem 5. 𝑇
0
(𝑎, 𝑏) is an extended 𝑇∗-norm in [1, 𝑡].

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ [1, 𝑡].

(1) Since 𝑓(𝑡) = 1, we have 𝑇
0
(𝑎, 𝑡) = 𝑓

−1
(𝑓(𝑎) ∗ 𝑓(𝑡)) =

𝑓
−1
(𝑓(𝑎)) = 𝑎.

(2) Consider 𝑇
0
(𝑎, 𝑏) = 𝑓

−1
(𝑓(𝑎) ∗ 𝑓(𝑏)) = 𝑓

−1
(𝑓(𝑏) ∗

𝑓(𝑎)) = 𝑇
0
(𝑏, 𝑎).

(3) Consider 𝑇
0
(𝑎, 𝑇
0
(𝑏, 𝑐)) = 𝑓

−1
(𝑓(𝑎) ∗ 𝑓(𝑓

−1
(𝑓(𝑏) ∗

𝑓(𝑐))) = 𝑓
−1
(𝑓(𝑎)∗𝑓(𝑏)∗𝑓(𝑐)) = 𝑓

−1
(𝑓
−1
(𝑓(𝑓(𝑎)∗

𝑓(𝑏)) ∗ 𝑓(𝑐))) = 𝑇
0
(𝑇
0
(𝑎, 𝑏), 𝑐).

(4) Since 𝑓 is a strictly monotone decreasing and contin-
uous function, then 𝑓−1 is also a strictly monotone
decreasing and continuous function.

If 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, we have 𝑓(𝑎) ≥ 𝑓(𝑐) ≥ 1, 𝑓(𝑏) ≥
𝑓(𝑑) ≥ 1, and so 𝑓(𝑎) ∗ 𝑓(𝑏) ≥ 𝑓(𝑐) ∗ 𝑓(𝑑).

Thus, we obtain𝑓−1(𝑓(𝑎)∗𝑓(𝑏)) ≤ 𝑓−1(𝑓(𝑐)∗𝑓(𝑑)); that
is, 𝑇
0
(𝑎, 𝑏) ≤ 𝑇

0
(𝑐, 𝑑).

With the above analysis, the operational laws based on
extended 𝑇∗-norm can be derived as below.

Definition 6. Suppose that linguistic terms 𝑠
𝛼
, 𝑠
𝛽
∈ 𝑆 = {𝑠

𝛼
|

𝑠
1
≤ 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [1, 𝑡]}, and 𝜇 ∈ (0, +∞); the operational

laws are defined as below:

𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝑇0(𝛼,𝛽)

= 𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽))

,

(𝑠
𝛼
)
𝜇
= 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇
)
,

(7)

where 𝑓 : [1, 𝑡] → [1, +∞) is a strictly monotone decreasing
and continuous function with 𝑓(1) = +∞ and 𝑓(𝑡) = 1.

Theorem 7. Suppose that linguistic terms 𝑠
𝛼
, 𝑠
𝛽
, 𝑠
𝜒
, 𝑠
𝛿
∈ 𝑆 =

{𝑠
𝛼
| 𝑠
1
≤ 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [1, 𝑡]}, and 𝜇, 𝜇

1
, 𝜇
2
∈ (0, +∞); then

the properties of the operational laws are presented as below:

(1) 𝑠
𝛼
⊗ 𝑠
𝑡
= 𝑠
𝛼
;

(2) 𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝛽
⊗ 𝑠
𝛼
;

(3) (𝑠
𝛼
⊗ 𝑠
𝛽
) ⊗ 𝑠
𝜒
= 𝑠
𝛼
⊗ (𝑠
𝛽
⊗ 𝑠
𝜒
);

(4) 𝑠
𝛼
⊗ 𝑠
𝛽
≥ 𝑠
𝜒
⊗ 𝑠
𝛿
, if 𝛼 ≥ 𝜒, 𝛽 ≥ 𝛿;

(5) (𝑠
𝛼
⊗ 𝑠
𝛽
)
𝜇
= (𝑠
𝛼
)
𝜇
⊗ (𝑠
𝛽
)
𝜇;

(6) (𝑠
𝛼
)
𝜇1 ⊗ (𝑠

𝛼
)
𝜇2 = (𝑠

𝛼
)
𝜇1+𝜇2 ;

(7) (𝑠
𝛼
)
𝑤1 ⊗ (𝑠

𝛼
)
𝑤2 ⊗ ⋅ ⋅ ⋅ ⊗ (𝑠

𝛼
)
𝑤𝑛 = 𝑠

𝛼
, if 𝑤
𝑖
∈ [0, 1] and

∑
𝑛

𝑖=1
𝑤
𝑖
= 1.

Proof. (1) Consider 𝑠
𝛼
⊗ 𝑠
𝑡
= 𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝑡))

= 𝑠
𝑓
−1
(𝑓(𝛼))

= 𝑠
𝛼
.

(2) Consider 𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝑇0(𝛼,𝛽)

= 𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽))

=

𝑠
𝑓
−1
(𝑓(𝛽)∗𝑓(𝛼))

= 𝑠
𝛽
⊗ 𝑠
𝛼
.

(3) Consider (𝑠
𝛼
⊗ 𝑠
𝛽
) ⊗ 𝑠

𝜒
= (𝑠

𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽))

) ⊗

𝑠
𝜒

= 𝑠
𝑓
−1
(𝑓(𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽)))∗𝑓(𝜒))

= 𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽)∗𝑓(𝜒))

=

𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝑓

−1
(𝑓(𝛽)∗𝑓(𝜒))))

= 𝑠
𝛼
⊗ (𝑠
𝛽
⊗ 𝑠
𝜒
).

(4) Since 𝛼 ≥ 𝜒 and 𝛽 ≥ 𝛿, we have 𝑓(𝛼) ∗ 𝑓(𝛽) ≤ 𝑓(𝜒) ∗
𝑓(𝛿), and then 𝑓−1(𝑓(𝛼) ∗ 𝑓(𝛽)) ≥ 𝑓−1(𝑓(𝜒) ∗ 𝑓(𝛿)).

Thus, we obtain 𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽))

≥ 𝑠
𝑓
−1
(𝑓(𝜒)∗𝑓(𝛿))

=

𝑠
𝜒
⊗ 𝑠
𝛿
.

(5) By (7), we have

(𝑠
𝛼
⊗ 𝑠
𝛽
)
𝜇

= (𝑠
𝑓
−1
(𝑓(𝛼)∗𝑓(𝛽))

)
𝜇

=
𝑓
−1
((𝑓(𝑓

−1
(𝑓(𝛼)∗𝑓(𝛽))))

𝜇
)
= 𝑠
𝑓
−1
((𝑓(𝛼)∗𝑓(𝛽))

𝜇
)

= 𝑠
𝑓
−1
((𝑓(𝛼)∗𝑓(𝛽))

𝜇
)
= 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇
∗(𝑓(𝛽))

𝜇
)

= 𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛼))

𝜇
))∗𝑓(𝑓

−1
((𝑓(𝛽))

𝜇
)))

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇
)
⊗ 𝑠
𝑓
−1
((𝑓(𝛽))

𝜇
)

= (𝑠
𝛼
)
𝜇
⊗ (𝑠
𝛽
)
𝜇

.

(8)

(6) By (7), we have

(𝑠
𝛼
)
𝜇1
⊗ (𝑠
𝛼
)
𝜇2

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇1 )
⊗ 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇2 )

= 𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛼))

𝜇1 ))∗𝑓(𝑓
−1
((𝑓(𝛼))

𝜇2 )))

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇1∗(𝑓(𝛼))
𝜇2 )

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝜇1+𝜇2 )
= (𝑠
𝛼
)
𝜇1+𝜇2

.

(9)

(7) By (7), we have

(𝑠
𝛼
)
𝑤1
⊗ (𝑠
𝛼
)
𝑤2
⊗ ⋅ ⋅ ⋅ ⊗ (𝑠

𝛼
)
𝑤𝑛

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝑤1 )
⊗ 𝑠
𝑓
−1
((𝑓(𝛼))

𝑤2 )
⊗ ⋅ ⋅ ⋅ ⊗ 𝑠

𝑓
−1
((𝑓(𝛼))

𝑤𝑛 )

= 𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛼))

𝑤1 ))∗𝑓(𝑓
−1
((𝑓(𝛼))

𝑤2 ))∗⋅⋅⋅∗𝑓(𝑓
−1
((𝑓(𝛼))

𝑤𝑛 )))

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝑤1∗(𝑓(𝛼))
𝑤2∗⋅⋅⋅∗(𝑓(𝛼))

𝑤𝑛 )

= 𝑠
𝑓
−1
((𝑓(𝛼))

𝑤1+𝑤2+⋅⋅⋅+𝑤𝑛 )
= 𝑠
𝑓
−1
(𝑓(𝛼))

= 𝑠
𝛼
.

(10)

Having the first four properties above, the operator ⊗ can
be regarded as an extended 𝑇∗-norm in 𝑆.

3. Some Uncertain Linguistic Geometric
Operators Based on Extended 𝑇∗-Norm

The operational laws discussed in Section 2 can be extended
to UL environment.

Definition 8. Suppose that �̃�
1
= [𝑠
𝛼1
, 𝑠
𝛽1
] and �̃�

2
= [𝑠
𝛼2
, 𝑠
𝛽2
]

are two ULVs and 𝜇 ∈ (0, +∞); the operational laws are
expressed as below:
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�̃�
1
⊗ �̃�
2
= [𝑠
𝛼1
, 𝑠
𝛽1
] ⊗ [𝑠
𝛼2
, 𝑠
𝛽2
]

= [𝑠
𝑓
−1
(𝑓(𝛼1)∗𝑓(𝛼2))

, 𝑠
𝑓
−1
(𝑓(𝛽1)∗𝑓(𝛽2))

] ,

(11)

�̃�
1

𝜇
= [𝑠
𝛼1
, 𝑠
𝛽1
]
𝜇

= [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇
)
, 𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇
)
] , (12)

where 𝑓 : [1, 𝑡] → [1, +∞) is a strictly monotone decreasing
and continuous function with 𝑓(1) = +∞ and 𝑓(𝑡) = 1.

Similarly, the operational laws in Definition 8 have the
properties as below.

Theorem 9. Suppose that �̃�
1
= [𝑠
𝛼1
, 𝑠
𝛽1
], �̃�
2
= [𝑠
𝛼2
, 𝑠
𝛽2
],

�̃�
3
= [𝑠
𝛼3
, 𝑠
𝛽3
], and �̃�

4
= [𝑠
𝛼4
, 𝑠
𝛽4
] are ULVs derived from the

continuous LTS 𝑆 = {𝑠
𝛼
| 𝑠
1
≤ 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [1, 𝑡]}, and

𝜇, 𝜇
1
, 𝜇
2
∈ (0, +∞); then some properties of the operational

laws are presented as below:

(1) [𝑠
𝛼1
, 𝑠
𝛽1
] ⊗ [𝑠
𝑡
, 𝑠
𝑡
] = [𝑠
𝛼1
, 𝑠
𝛽1
];

(2) �̃�
1
⊗ �̃�
2
= �̃�
2
⊗ �̃�
1
;

(3) (�̃�
1
⊗ �̃�
2
) ⊗ �̃�
3
= �̃�
1
⊗ (�̃�
2
⊗ �̃�
3
);

(4) �̃�
1
⊗ �̃�
2
≻ �̃�
3
⊗ �̃�
4
, if 𝛼
1
≥ 𝛼
3
, 𝛽
1
≥ 𝛽
3
, 𝛼
2
≥ 𝛼
4
, and

𝛽
2
≥ 𝛽
4
;

(5) (�̃�
1
⊗ �̃�
2
)
𝜇
= �̃�
1

𝜇
⊗ �̃�
2

𝜇;

(6) �̃�
1

𝜇1 ⊗ �̃�
1

𝜇2 = �̃�
1

𝜇1+𝜇2 ;

(7) �̃�
1

𝑤1 ⊗ �̃�
1

𝑤2 ⊗ ⋅ ⋅ ⋅⊗ �̃�
1

𝑤𝑛 = �̃�
1
, if𝑤
𝑖
∈ [0, 1] and∑𝑛

𝑖=1
𝑤
𝑖
=

1.

Proof. We only prove (4), (5), and (6).

(4) By (11), we have

�̃�
1
⊗ �̃�
2
= [𝑠
𝛼1
, 𝑠
𝛽1
] ⊗ [𝑠
𝛼2
, 𝑠
𝛽2
]

= [𝑠
𝑓
−1
(𝑓(𝛼1)∗𝑓(𝛼2))

, 𝑠
𝑓
−1
(𝑓(𝛽1)∗𝑓(𝛽2))

] ,

�̃�
3
⊗ �̃�
4
= [𝑠
𝛼3
, 𝑠
𝛽3
] ⊗ [𝑠
𝛼4
, 𝑠
𝛽4
]

= [𝑠
𝑓
−1
(𝑓(𝛼3)∗𝑓(𝛼4))

, 𝑠
𝑓
−1
(𝑓(𝛽3)∗𝑓(𝛽4))

] .

(13)

Since both 𝑓 and 𝑓−1 are strictly monotone decreasing
functions, we have

𝑓
−1
(𝑓 (𝛼
1
) ∗ 𝑓 (𝛼

2
)) ≥ 𝑓

−1
(𝑓 (𝛼
3
) ∗ 𝑓 (𝛼

4
)) ,

𝑓
−1
(𝑓 (𝛽
1
) ∗ 𝑓 (𝛽

2
)) ≥ 𝑓

−1
(𝑓 (𝛽
3
) ∗ 𝑓 (𝛽

4
)) .

(14)

Let 𝑎 = 𝑓
−1
(𝑓(𝛼
1
) ∗ 𝑓(𝛼

2
)), 𝑏 = 𝑓

−1
(𝑓(𝛽
1
) ∗ 𝑓(𝛽

2
)),

𝑐 = 𝑓
−1
(𝑓(𝛼
3
) ∗𝑓(𝛼

4
)), and 𝑑 = 𝑓−1(𝑓(𝛽

3
) ∗𝑓(𝛽

4
)); then we

have len(�̃�
1
⊗ �̃�
2
) = 𝑏 − 𝑎 and len(�̃�

3
⊗ �̃�
4
) = 𝑐 − 𝑑.

If 𝑑 ≤ 𝑎, then we have max(𝑑 − 𝑎, 0) = 0. Thus, by (3), we
derive 𝑝(�̃�

1
⊗ �̃�
2
≥ �̃�
3
⊗ �̃�
4
) = 1.

If 𝑑 ≥ 𝑎, we can easily get max(𝑑 − 𝑎, 0) = 𝑑 − 𝑎 ≤

(1/2)(len(�̃�
1
⊗�̃�
2
)+len(�̃�

3
⊗�̃�
4
)), so we have𝑝(�̃�

1
⊗�̃�
2
≻ �̃�
3
⊗�̃�
4
) ≥

0.5.
Consequently, we obtain �̃�

1
⊗ �̃�
2
≻ �̃�
3
⊗ �̃�
4
.

(5) By (11) and (12), we have

(�̃�
1
⊗ �̃�
2
)
𝜇
= [𝑠
𝑓
−1
(𝑓(𝛼1)∗𝑓(𝛼2))

, 𝑠
𝑓
−1
(𝑓(𝛽1)∗𝑓(𝛽2))

]
𝜇

= [𝑠
𝑓
−1
((𝑓(𝑓

−1
(𝑓(𝛼1)∗𝑓(𝛼2))))

𝑢
)
,

𝑠
𝑓
−1
((𝑓(𝑓

−1
(𝑓(𝛽1)∗𝑓(𝛽2))))

𝑢
)
]

= [𝑠
𝑓
−1
((𝑓(𝛼1)∗𝑓(𝛼2))

𝑢
)
, 𝑠
𝑓
−1
((𝑓(𝛽1)∗𝑓(𝛽2))

𝑢
)
]

= [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇
∗(𝑓(𝛼2))

𝜇
)
, 𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇
∗(𝑓(𝛽2))

𝜇
)
]

= [𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛼1))

𝜇
))∗𝑓(𝑓

−1
((𝑓(𝛼2))

𝜇
)))
,

𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛽1))

𝜇
))∗𝑓(𝑓

−1
((𝑓(𝛽2))

𝜇
)))
]

= [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇
)
, 𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇
)
]

⊗ [𝑠
𝑓
−1
((𝑓(𝛼2))

𝜇
)
, 𝑠
𝑓
−1
((𝑓(𝛽2))

𝜇
)
] = �̃�
1

𝜇
⊗ �̃�
2

𝜇
.

(15)

(6) By (11) and (12), we have

�̃�
1

𝜇1 ⊗ �̃�
1

𝜇2 = [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇1 )
, 𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇1 )
]

⊗ [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇2 )
, 𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇2 )
]

= [𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛼1))

𝜇1 ))∗𝑓(𝑓
−1
((𝑓(𝛼1))

𝜇2 )))
,

𝑠
𝑓
−1
(𝑓(𝑓
−1
((𝑓(𝛽1))

𝜇1 ))∗𝑓(𝑓
−1
((𝑓(𝛽1))

𝜇2 )))
]

= [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇1∗(𝑓(𝛼1))
𝜇2 )
,

𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇1∗(𝑓(𝛽1))
𝜇2 )
]

= [𝑠
𝑓
−1
((𝑓(𝛼1))

𝜇1+𝜇2 )
, 𝑠
𝑓
−1
((𝑓(𝛽1))

𝜇1+𝜇2 )
]

= �̃�
1

𝜇1+𝜇2 .

(16)

Example 10. Let 𝑆 = {𝑠
𝛼
| 𝑠
1
≤ 𝑠
𝛼
≤ 𝑠
9
, 𝛼 ∈ [1, 9]}, �̃�

1
=

[𝑠
3
, 𝑠
4
], �̃�
2
= [𝑠
4
, 𝑠
6
], �̃�
3
= [𝑠
5
, 𝑠
8
], 𝜇 = 3, and 𝑓(𝑥) = (𝑡 −

1)/(𝑥−1) = 8/(𝑥−1); then𝑓−1(𝑥) = (𝑥+𝑡−1)/𝑥 = (𝑥+8)/𝑥.
By (11) and (12), we have

�̃�
1
⊗ �̃�
2
= [𝑠
3
, 𝑠
4
] ⊗ [𝑠
4
, 𝑠
6
]

= [𝑠
𝑓
−1
(𝑓(3)∗𝑓(4))

, 𝑠
𝑓
−1
(𝑓(4)∗𝑓(6))

]

= [𝑠
1.75
, 𝑠
2.875

] ,

�̃�
1
⊗ �̃�
3
= [𝑠
3
, 𝑠
4
] ⊗ [𝑠
5
, 𝑠
8
]

= [𝑠
𝑓
−1
(𝑓(3)∗𝑓(5))

, 𝑠
𝑓
−1
(𝑓(4)∗𝑓(8))

]

= [𝑠
2
, 𝑠
3.625

] ,
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�̃�
1

𝜇
= [𝑠
3
, 𝑠
4
]
3
= [𝑠
𝑓
−1
((𝑓(3))

3
)
, 𝑠
𝑓
−1
((𝑓(4))

3
)
]

= [𝑠
1.125

, 𝑠
1.422

] .

(17)

It is easy to see that �̃�
1
≺ �̃�
2
≺ �̃�
3
and �̃�
1
⊗ �̃�
2
≺ �̃�
1
⊗ �̃�
3
.

However, if we follow the operational laws defined by (2),
then we have

�̃�
1
⊗ �̃�
2
= [𝑠
3
, 𝑠
4
] ⊗ [𝑠
4
, 𝑠
6
] = [𝑠

12
, 𝑠
24
] ,

�̃�
1
⊗ �̃�
3
= [𝑠
3
, 𝑠
4
] ⊗ [𝑠
5
, 𝑠
8
] = [𝑠

15
, 𝑠
32
] .

(18)

Obviously, the computing results are beyond the dis-
course domain of the linguistic variable. Alternatively, if we
follow the method of Xu [14], then we have

�̃�
1
⊗ �̃�
2
= [𝑠
3
, 𝑠
4
] ⊗ [𝑠
4
, 𝑠
6
]

= [min {𝑠
3×4
, 𝑠
9
} ,min {𝑠

4×6
, 𝑠
9
}]

= [𝑠
9
, 𝑠
9
] ,

�̃�
1
⊗ �̃�
3
= [𝑠
3
, 𝑠
4
] ⊗ [𝑠
5
, 𝑠
8
]

= [min {𝑠
3×5
, 𝑠
9
} ,min {𝑠

4×8
, 𝑠
9
}]

= [𝑠
9
, 𝑠
9
] .

(19)

That is, �̃�
1
⊗ �̃�
2
= �̃�
1
⊗ �̃�
3
, which seem to be counterintuitive

and may not be easily accepted.
On the basis of the operational laws of ULVs, in what

follows, we propose some extended UL geometric operators.

Definition 11. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚)

are a series of ULVs; then the extended UL geometric mean
(EULGM) operator is defined as

EULGM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = (�̃�

1
⊗ �̃�
2
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

𝑚
)
1/𝑚

. (20)

The EULGM operator has the following properties.

Theorem 12. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series of ULVs; then one has

(1) idempotency: if �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] = �̃� = [𝑠

𝛼
, 𝑠
𝛽
], 𝑗 =

1, 2, . . . , 𝑚, then

EULGM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�; (21)

(2) monotonicity: suppose that �̃� 
𝑗
= [𝑠


𝛼𝑗
, 𝑠


𝛽𝑗
] (𝑗 = 1, 2,

. . . , 𝑚) are a series of ULVs. If 𝑠
𝛼𝑗
≥ 𝑠
𝛼𝑗

and 𝑠
𝛽𝑗
≥

𝑠
𝛽𝑗
(𝑗 = 1, 2, . . . , 𝑚), then

EULGM (�̃�


1
, �̃�


2
, . . . , �̃�



𝑚
) ≻ EULGM (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) ; (22)

(3) boundary:

[min
𝑗

𝑠
𝛼𝑗
,min
𝑗

𝑠
𝛽𝑗
] ≺ EULGM (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
)

≺ [max
𝑗

𝑠
𝛼𝑗
,max
𝑗

𝑠
𝛽𝑗
] ;

(23)

(4) commutativity: suppose that (�̃�
1
, �̃�


2
, . . . , �̃�



𝑚
) is any per-

mutation of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
); then

EULGM (�̃�


1
, �̃�


2
, . . . , �̃�



𝑚
) = EULGM (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) . (24)

Definition 13. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series of ULVs, and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 (satisfying 0 ≤

𝑤
𝑗
≤ 1 and∑𝑚

𝑗=1
𝑤
𝑗
= 1) is the weight vector regarding ULVs;

then the extendedULweighted geometricmean (EULWGM)
operator is defined as

EULWGM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�
𝑤1

1
⊗ �̃�
𝑤2

2
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

𝑤𝑚

𝑚
. (25)

If 𝑤
𝑗
= 1/𝑛, 𝑗 = 1, 2, . . . , 𝑚, then the EULGWM operator

degenerates to the EULGMoperator.TheEULWGMoperator
has the properties as below.

Theorem 14. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series of ULVs, and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 (satisfying 0 ≤

𝑤
𝑗
≤ 1 and ∑𝑚

𝑗=1
𝑤
𝑗
= 1) is the weight vector regarding ULVs;

then one derives

(1) idempotency: if �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] = �̃� = [𝑠

𝛼
, 𝑠
𝛽
], 𝑗 =

1, 2, . . . , 𝑚, then

EULWGM (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�; (26)

(2) monotonicity: suppose that �̃�
𝑗
= [𝑠


𝛼𝑗
, 𝑠


𝛽𝑗
] (𝑗 = 1, 2,

. . . , 𝑚) are a series of ULVs. If 𝑠
𝛼𝑗
≥ 𝑠
𝛼𝑗

and 𝑠
𝛽𝑗
≥

𝑠
𝛽𝑗
(𝑗 = 1, 2, . . . , 𝑚), then

EULWGM (�̃�


1
,
2
�̃�


2
, . . . , �̃�



𝑚
) ≻ EULWGM (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) ;

(27)

(3) boundary:

[min
𝑗

𝑠
𝛼𝑗
,min
𝑗

𝑠
𝛽𝑗
] ≺ EULWGM (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
)

≺ [max
𝑗

𝑠
𝛼𝑗
,max
𝑗

𝑠
𝛽𝑗
] .

(28)

Definition 15. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚)

are a series of ULVs; then the extended UL ordered weighted
geometric (EULOGW) operator is defined as

EULOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�
𝑤1

(1)
⊗ �̃�
𝑤2

(2)
⊗ ⋅ ⋅ ⋅ ⊗ �̃�

𝑤𝑚

(𝑚)
, (29)

where �̃�
(𝑗)

is the 𝑗th largest �̃�
𝑖
and 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇

(satisfying 0 ≤ 𝑤
𝑗
≤ 1 and ∑𝑚

𝑗=1
𝑤
𝑗
= 1) is the aggregation-

associated vector.

Theorem 16. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series of ULVs; then one derives

(1) idempotency: if �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] = �̃� = [𝑠

𝛼
, 𝑠
𝛽
], 𝑗 =

1, 2, . . . , 𝑚, then

EULOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�; (30)
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(2) monotonicity: suppose that �̃�
𝑗
= [𝑠


𝛼𝑗
, 𝑠


𝛽𝑗
] (𝑗 = 1, 2, . . . ,

𝑚) are a series of ULVs. If 𝑠
𝛼𝑗
≥ 𝑠
𝛼𝑗
and 𝑠
𝛽𝑗
≥ 𝑠
𝛽𝑗
(𝑗 =

1, 2, . . . , 𝑚), then

EULOWG (�̃�
1
, �̃�


2
, . . . , �̃�



𝑚
) ≻ EULOWG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) ; (31)

(3) boundary:

[min
𝑗

𝑠
𝛼𝑗
,min
𝑗

𝑠
𝛽𝑗
] ≺ EULOWG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
)

≺ [max
𝑗

𝑠
𝛼𝑗
,max
𝑗

𝑠
𝛽𝑗
] ;

(32)

(4) commutativity: suppose that (�̃� 
1
, �̃�


2
, . . . , �̃�



𝑚
) is any

permutation of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
); then

EULOWG (�̃� 
1
, �̃�


2
, . . . , �̃�



𝑚
) = EULOWG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) .

(33)

The above UL aggregation operators do not take the rela-
tionship between theULVs being aggregated into account. To
avoid such limitation, Yager [21] proposed the PA operator
which allows argument values to support each other in the
aggregation process. In addition, Xu and Yager [22] devel-
oped the PG operator, weighted PG operator, and POWG
operator. On the basis of the operational laws of ULVs, in
what follows, we introduce some PG operators for ULVs.

Definition 17. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series ofULVs; then the extendedULPG (EULPG) operator
is defined as

EULPG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) =

𝑚

∏

𝑖=1

�̃�
(1+𝑇(̃𝑠𝑖))/∑

𝑛

𝑖=1
(1+𝑇(̃𝑠𝑖))

𝑖
, (34)

where 𝑇(�̃�
𝑖
) = ∑

𝑚

𝑗=1,𝑗 ̸=𝑖
Su(�̃�
𝑖
, �̃�
𝑗
) and Su(�̃�

𝑖
, �̃�
𝑗
) is the support

for �̃�
𝑖
from �̃�

𝑗
, which meets the following properties [22]:

(1) 0 ≤ Su(�̃�
𝑖
, �̃�
𝑗
) ≤ 1;

(2) Su(�̃�
𝑖
, �̃�
𝑗
) = Su(�̃�

𝑗
, �̃�
𝑖
);

(3) Su(�̃�
𝑖
, �̃�
𝑗
) ≥ Su(�̃�

𝑘
, �̃�
𝑙
), if 𝑆(�̃�

𝑖
, �̃�
𝑗
) ≥ 𝑆(�̃�

𝑘
, �̃�
𝑙
), where 𝑆 is

a similarity measure between ULVs.
In this paper, we defined Su(�̃�

𝑖
, �̃�
𝑗
) as 𝑆(�̃�

𝑖
, �̃�
𝑗
).Without loss

of generality, the similaritymeasure between �̃�
𝑖
= [𝑠
𝛼𝑖
, 𝑠
𝛽𝑖
] and

�̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] is determined based onHamming distance; that

is,

Su (�̃�
𝑖
, �̃�
𝑗
) = 𝑆 (�̃�

𝑖
, �̃�
𝑗
) = 1 −


𝛼
𝑖
− 𝛼
𝑗


+

𝛽
𝑖
− 𝛽
𝑗



2 (𝑡 − 1)
, (35)

where �̃�
𝑖
and �̃�
𝑗
are derived from the continuous LTS 𝑆 = {𝑠

𝛼
|

𝑠
1
≤ 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [1, 𝑡]}.

Obviously, 𝑆(�̃�
𝑖
, �̃�
𝑗
) ∈ [0, 1], where 𝑆(�̃�

𝑖
, �̃�
𝑗
) = 1 if and

only if 𝛼
𝑖
= 𝛼
𝑗
and 𝛽

𝑖
= 𝛽
𝑗
, and 𝑆(�̃�

𝑖
, �̃�
𝑗
) = 0 if and only if

|𝛼
𝑖
−𝛼
𝑗
| = |𝛽
𝑖
−𝛽
𝑗
| = 𝑡 − 1; that is, �̃�

𝑖
= [𝑠
1
, 𝑠
1
] and �̃�

𝑗
= [𝑠
𝑡
, 𝑠
𝑡
]

(or �̃�
𝑖
= [𝑠
𝑡
, 𝑠
𝑡
] and �̃�

𝑗
= [𝑠
1
, 𝑠
1
]), which means there is

no support between �̃�
𝑖
and �̃�
𝑗
in the geometric aggregation

process. In addition, if all the Su(�̃�
𝑖
, �̃�
𝑗
) are equal, then the

EULPG operator degenerates to the EULGM operator.

Theorem 18. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series of ULVs; then one derives

(1) idempotency: if �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] = �̃� = [𝑠

𝛼
, 𝑠
𝛽
], 𝑗 =

1, 2, . . . , 𝑚, then

EULPG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�; (36)

(2) boundary:

[min
𝑗

𝑠
𝛼𝑗
,min
𝑗

𝑠
𝛽𝑗
] ≺ EULPG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
)

≺ [max
𝑗

𝑠
𝛼𝑗
,max
𝑗

𝑠
𝛽𝑗
] ;

(37)

(3) commutativity: suppose that (�̃�
1
, �̃�


2
, . . . , �̃�



𝑚
) is any per-

mutation of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
); then

EULPG (�̃� 
1
, �̃�


2
, . . . , �̃�



𝑚
) = EULPG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) . (38)

If the weights of �̃�
𝑗
(𝑗 = 1, 2, . . . , 𝑚) in the EULPG

operator are taken into account, the extended UL weighted PG
(EULWPG) operator is derived.

Definition 19. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚)

are a series of ULVs; then the extended UL weighted PG
(EULWPG) operator is defined as

EULWPG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) =

𝑚

∏

𝑖=1

�̃�
𝑖

𝑤𝑖(1+𝑇(̃𝑠𝑖))/∑
𝑛

𝑖=1
𝑤𝑖(1+𝑇(̃𝑠𝑖)),

(39)

where 𝑇(�̃�
𝑖
) = ∑

𝑚

𝑗=1,𝑗 ̸=𝑖
𝑤
𝑖
Su(�̃�
𝑖
, �̃�
𝑗
) and 𝑤

𝑖
is the weight of �̃�

𝑖

(satisfying 0 ≤ 𝑤
𝑗
≤ 1 and ∑𝑚

𝑖=1
𝑤
𝑖
= 1).

Obviously, the EULWPGoperator is not commutative but
idempotent and bounded.

Motivated by POWG operator [22], we propose
an extended UL power ordered weighted geometric
(EULPOWG) operator as below.

Definition 20. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚)

are a series of ULVs; then the extended UL power ordered
weighted geometric (EULPOWG) operator is defined as

EULPOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) =

𝑚

∏

𝑖=1

�̃�
𝑢𝑖

(𝑖)
, (40)

where �̃�
(𝑖)
is the 𝑖th largest of �̃�

𝑗
, 𝑢
𝑖
= 𝑔(𝑅

𝑖
/𝑇𝑉)−𝑔(𝑅

𝑖−1
/𝑇𝑉),

𝑅
𝑖
= ∑
𝑖

𝑗=1
𝑉
𝑗
, 𝑇𝑉 = ∑

𝑚

𝑗=1
𝑉
𝑗
, 𝑉
𝑗
= 1 + 𝑇(�̃�

(𝑗)
), 𝑇(�̃�

(𝑗)
) =

∑
𝑚

𝑖=1,𝑖 ̸=𝑗
Su(�̃�
(𝑗)
, �̃�
(𝑖)
), Su(�̃�

(𝑗)
, �̃�
(𝑖)
) is the support for �̃�

(𝑗)
from �̃�

(𝑖)
,

and 𝑔 : [0, 1] → [0, 1] is a basic unit-interval monotonic
function [22] with the following properties: (1) 𝑔(0) = 0; (2)
𝑔(1) = 1; (3) 𝑔(𝑥) ≥ 𝑔(𝑦), if 𝑥 > 𝑦.
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In particular, if 𝑔(𝑥) = 𝑥, then the EULPOWG operator
degenerates to the EULPG operator. By (40), we derive

EULPOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) =

𝑚

∏

𝑖=1

�̃�
𝑔(𝑅𝑖/𝑇𝑉)−𝑔(𝑅𝑖−1/𝑇𝑉)

𝑖

=

𝑚

∏

𝑖=1

�̃�
𝑅𝑖/𝑇𝑉−𝑅𝑖−1/𝑇𝑉

𝑖
=

𝑚

∏

𝑖=1

�̃�
𝑉𝑖/𝑇𝑉

𝑖

=

𝑚

∏

𝑖=1

�̃�
(1+𝑇(�̃�𝑖))/∑

𝑛

𝑖=1
(1+𝑇(�̃�𝑖))

𝑖

= EULPG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) .

(41)

The EULPOWG operator has the properties as below.

Theorem 21. Suppose that �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] (𝑗 = 1, 2, . . . , 𝑚) are

a series of ULVs; then one derives

(1) idempotency: if �̃�
𝑗
= [𝑠
𝛼𝑗
, 𝑠
𝛽𝑗
] = �̃� = [𝑠

𝛼
, 𝑠
𝛽
], 𝑗 =

1, 2, . . . , 𝑚, then

EULPOWG (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
) = �̃�; (42)

(2) boundary:

[min
𝑗

𝑠
𝛼𝑗
,min
𝑗

𝑠
𝛽𝑗
] ≺ EULPOWG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
)

≺ [max
𝑗

𝑠
𝛼𝑗
,max
𝑗

𝑠
𝛽𝑗
] ;

(43)

(3) commutativity: suppose that (�̃� 
1
, �̃�


2
, . . . , �̃�



𝑚
) is any

permutation of (�̃�
1
, �̃�
2
, . . . , �̃�

𝑚
); then

EULPOWG (�̃� 
1
, �̃�


2
, . . . , �̃�



𝑚
) = EULPOWG (�̃�

1
, �̃�
2
, . . . , �̃�

𝑚
) .

(44)

4. MAGDM Method Based on the Extended
Uncertain Linguistic Aggregation Operators

In what follows, a MAGDMmethod presents the application
of the aggregation operators proposed in Section 3.

Let 𝐴 = (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
), 𝐶 = (𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑛
), and

𝐷 = (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑙
) be the sets of alternatives, attributes,

and decision makers, respectively. The attribute weights are
known and satisfy 𝑤

𝑖
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑖
= 1. Let 𝑅

𝑘
=

(𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

be the decision matrix given by 𝐷
𝑘
, where 𝑟𝑘

𝑖𝑗
=

[𝑠
𝑘

𝛼𝑖𝑗
, 𝑠
𝑘

𝛽𝑖𝑗
] expresses the performance value for𝐴

𝑖
with respect

to 𝐶
𝑗
and takes the form of ULV with 𝑠𝑘

𝛼𝑖𝑗
, 𝑠
𝑘

𝛽𝑖𝑗
∈ 𝑆 = {𝑠

𝑖
| 𝑖 =

1, . . . , 𝑡}.

Themain processes of themethod proposed are described
as below.

Step 1. Each decision maker is asked to provide the UL
decision matrix 𝑅

𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

.

Step 2. By the EULPOWG operator, the aggregated decision
matrix 𝑅 = (𝑟

𝑖𝑗
)
𝑚×𝑛

can be derived; that is, 𝑟
𝑖𝑗
= [𝑠
𝛼𝑖𝑗
, 𝑠
𝛽𝑖𝑗
] =

EULPOWG(𝑟1
𝑖𝑗
, 𝑟
2

𝑖𝑗
, . . . , 𝑟

𝑙

𝑖𝑗
).

Step 3. Aggregate 𝑟
𝑖𝑗
to obtain the overall performance values

𝑟
𝑖
for each alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚) based on the

EULWGM operator.

Step 4. Obtain the order of the alternatives by Definition 1.

5. Application Example

To demonstrate the application of the proposedmodel, in this
section, we provide an example where the decision makers
from a manufacturing company have to select a third-party
logistics provider.

With the rapid change of competitive environment, more
and more companies focus on their core competency and
logistics outsourcing has become an important strategy to
promote enterprise’s competitiveness. Within new strate-
gies for purchasing and manufacturing, third-party logistics
providers play a key role in achieving corporate competition.
Particularly for manufacturing companies, the selection of
appropriate third-party logistics provider is of high impor-
tance. Sustainable third-party logistics provider selection
requires the evaluation of providers’ performance from sev-
eral metrics. That is, in the first stage of third-party logis-
tics provider selection, the manufacturing company should
define the qualitative and quantitative attributes which are
taken into account to evaluate and select a supplier. After
full consideration of the long-term strategy, the manufac-
turing company constructs the following evaluation systems
including four aspects (suppose the weight vector is 𝑤 =

(0.3, 0.1, 0.2, 0.4)): 𝐶
1
is the innovation capability; 𝐶

2
is the

sense of social responsibility and environment performance;
𝐶
3
is the ability of sustainability; 𝐶

4
is the quality of service.

Then, the manufacturing company organizes a committee of
experts who are responsible for providing their evaluations
on each supplier with respect to each attribute. Suppose there
are four third-party logistics providers (alternatives: 𝐴

1
, 𝐴
2
,

𝐴
3
, and 𝐴

4
) to be evaluated. In addition, three experts take

part in the decision making and give their evaluations with
the LTS 𝑆 = {𝑠

1
= extremely poor, 𝑠

2
= very poor, 𝑠

3
=

poor, 𝑠
4
= slightly poor, 𝑠

5
= fair, 𝑠

6
= slightly good, 𝑠

7
=

good, 𝑠
8
= very good, 𝑠

9
= extremely good}.

In the existing research on third-party logistics provider
or supplier selection models, although the criteria used by
most of them and performance values given by decision
makers are not completely independent, the dependent and
feedback effects are often neglected. In what follows, we
applied the extended UL geometric aggregation operators to
solve the above MAGDM problem.
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Table 1: The decision matrix 𝑅
1
given by𝐷

1
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

[𝑠
4
, 𝑠
7
] [𝑠

6
, 𝑠
7
] [𝑠

1
, 𝑠
3
] [𝑠

3
, 𝑠
5
]

𝐴
2

[𝑠
5
, 𝑠
7
] [𝑠

2
, 𝑠
4
] [𝑠

3
, 𝑠
4
] [𝑠

4
, 𝑠
6
]

𝐴
3

[𝑠
7
, 𝑠
8
] [𝑠

3
, 𝑠
4
] [𝑠

3
, 𝑠
6
] [𝑠

4
, 𝑠
5
]

𝐴
4

[𝑠
3
, 𝑠
3
] [𝑠

1
, 𝑠
2
] [𝑠

4
, 𝑠
4
] [𝑠

3
, 𝑠
4
]

Table 2: The decision matrix 𝑅
2
given by𝐷

2
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

[𝑠
3
, 𝑠
4
] [𝑠

1
, 𝑠
2
] [𝑠

3
, 𝑠
4
] [𝑠

3
, 𝑠
4
]

𝐴
2

[𝑠
3
, 𝑠
5
] [𝑠

4
, 𝑠
7
] [𝑠

3
, 𝑠
6
] [𝑠

2
, 𝑠
5
]

𝐴
3

[𝑠
4
, 𝑠
7
] [𝑠

6
, 𝑠
7
] [𝑠

2
, 𝑠
5
] [𝑠

5
, 𝑠
8
]

𝐴
4

[𝑠
5
, 𝑠
7
] [𝑠

2
, 𝑠
4
] [𝑠

3
, 𝑠
4
] [𝑠

4
, 𝑠
6
]

Table 3: The decision matrix 𝑅
3
given by𝐷

3
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

[𝑠
4
, 𝑠
6
] [𝑠

3
, 𝑠
5
] [𝑠

4
, 𝑠
6
] [𝑠

1
, 𝑠
4
]

𝐴
2

[𝑠
4
, 𝑠
7
] [𝑠

3
, 𝑠
4
] [𝑠

4
, 𝑠
6
] [𝑠

4
, 𝑠
5
]

𝐴
3

[𝑠
7
, 𝑠
7
] [𝑠

4
, 𝑠
5
] [𝑠

3
, 𝑠
5
] [𝑠

6
, 𝑠
6
]

𝐴
4

[𝑠
5
, 𝑠
6
] [𝑠

2
, 𝑠
2
] [𝑠

4
, 𝑠
6
] [𝑠

3
, 𝑠
6
]

Table 4: The aggregated decision matrix 𝑅.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

[𝑠
3.412

, 𝑠
4.876

] [𝑠
1
, 𝑠
2.987

] [𝑠
1
, 𝑠
3.540

] [𝑠
1
, 𝑠
4.094

]

𝐴
2

[𝑠
3.490

, 𝑠
5.824

] [𝑠
2.409

, 𝑠
4.213

] [𝑠
3.091

, 𝑠
4.779

] [𝑠
2.647

, 𝑠
5.095

]

𝐴
3

[𝑠
5.132

, 𝑠
7.104

] [𝑠
3.521

, 𝑠
4.551

] [𝑠
2.364

, 𝑠
5.099

] [𝑠
4.680

, 𝑠
5.587

]

𝐴
4

[𝑠
3.788

, 𝑠
4.169

] [𝑠
1
, 𝑠
2.124

] [𝑠
3.396

, 𝑠
4.167

] [𝑠
3.091

, 𝑠
4.779

]

Step 1. The decision makers provide their evaluation values
and construct the UL decision matrix 𝑅

𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 =

1, 2, 3) as shown in Tables 1–3, respectively.

Step 2. Suppose that 𝑓(𝑥) = 8/(𝑥 − 1) and 𝑔(𝑥) = 𝑥2; utilize
the EULPOWG operator to derive the aggregated decision
matrix 𝑅 = (𝑟

𝑖𝑗
)
4×4

, which is shown in Table 4.
Taking 𝑟

11
as an example, we have 𝑟

11
= [𝑠
𝛼11
, 𝑠
𝛽11
] =

EULPOWG(𝑟1
11
, 𝑟
2

11
, 𝑟
3

11
), where 𝑟1

11
= [𝑠
4
, 𝑠
7
], 𝑟2
11
= [𝑠
3
, 𝑠
4
],

and 𝑟3
11
= [𝑠
4
, 𝑠
6
].

Then, by Definition 1, we can easily derive 𝑟(1)
11

= 𝑟
1

11
≻

𝑟
(2)

11
= 𝑟
3

11
≻ 𝑟
(3)

11
= 𝑟
2

11
, where 𝑟(𝑖)

11
is the 𝑖th largest of 𝑟𝑗

11
,

𝑖 = 1, 2, 3.
According to Definition 20, we have

𝑇 (�̃�
(1)
) =

3

∑

𝑖=2

Su (�̃�
(1)
, �̃�
(𝑖)
)

= 1 −
|4 − 4| + |7 − 6|

2 × 8
+ 1 −

|4 − 3| + |7 − 4|

2 × 8

= 1.688,

𝑇 (�̃�
(2)
) =

3

∑

𝑖=1
𝑖 ̸=2

Su (�̃�
(2)
, �̃�
(𝑖)
)

= 1 −
|4 − 4| + |6 − 7|

2 × 8
+ 1 −

|4 − 3| + |6 − 4|

2 × 8

= 1.75,

𝑇 (�̃�
(3)
) =

2

∑

𝑖=1

Su (�̃�
(3)
, �̃�
(𝑖)
)

= 1 −
|3 − 4| + |4 − 7|

2 × 8
+ 1 −

|4 − 3| + |6 − 4|

2 × 8

= 1.563,

(45)

and then,

𝑅
1
= 𝑉
1
= 1 + 𝑇 (�̃�

(1)
) = 2.668,

𝑅
2
=

2

∑

𝑗=1

𝑉
𝑗
=

2

∑

𝑗=1

(1 + 𝑇 (�̃�
(𝑗)
)
𝑗
) = 5.438,

𝑇𝑉 =

3

∑

𝑗=1

𝑉
𝑗
=

3

∑

𝑗=1

(1 + 𝑇 (�̃�
(𝑗)
)
𝑗
) = 8.001.

(46)

Thus, we derive 𝑢
1
= 0.111, 𝑢

2
= 0.351, and 𝑢

3
= 0.538.

Consequently, by (40), we obtain

𝑟
11
= EULPOWG (𝑟1

11
, 𝑟
2

11
, 𝑟
3

11
) =

𝑛

∏

𝑖=1

(𝑟
(𝑖)

11
)
𝑢𝑖

= [𝑠
4
, 𝑠
7
]
0.111

⊗ [𝑠
4
, 𝑠
6
]
0.351

⊗ [𝑠
3
, 𝑠
4
]
0.538

= [𝑠
3.412

, 𝑠
4.876

] .

(47)

Step 3. Aggregate 𝑟
𝑖𝑗
(𝑗 = 1, 2, . . . , 4) to yield the overall

performance values 𝑟
𝑖
for each alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 4)

based on the EULWGM operator with the weight vector 𝑤 =
(0.3, 0.1, 0.2, 0.4), as shown in Table 5.

Step 4. By ranking 𝑟
𝑖
(𝑖 = 1, 2, 3, 4) based on Definition 1, the

order of the alternatives can be obtained, which is listed in
Table 5. That is, 𝐴

3
is the best third-party logistics provider

to be selected.
Just as Xu and Yager [22] pointed out, both the EULWPG

and EULPOWG operators take the relationships between
the arguments into account. The difference between such
two operators is that the EULWPG operator stresses the
importance of every ULV, while the EULPOWG operator
emphasizes the importance of the ordered position of every
ULV. In consequence, in the group decision making process,
by using the EULWPG or EULPOWG operator, we can
not only allow individual opinions to support each other
in the aggregation process but also reduce the influence of
excessive low or high evaluation values on the decision result
by assigning them lower weights.
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Table 5: The collective overall preference values and the rankings of alternatives.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

Ranking
[𝑠
1
, 𝑠
4.045

] [𝑠
2.925

, 𝑠
5.131

] [𝑠
4.008

, 𝑠
5.763

] [𝑠
1
, 𝑠
4.065

] 𝐴
3
> 𝐴
2
> 𝐴
4
> 𝐴
1

6. Conclusions

In this paper, the MAGDM problems with UL information
are investigated. Motivated by the ideal of Lan et al. [18], the
extended triangular norm is defined, based on which several
UL geometric aggregation operators are proposed, such as
the EULGM operator, EULWGM operator, EULOGW oper-
ator, EULPG operator, EULWPG operator, and EULPOWG
operator, together with their properties. In the process of
decision making, these UL aggregation operators can avoid
the limitations of existing linguistic aggregation operators;
that is, the results derived in the computing processes
sometimes may be counterintuitive or beyond the discourse
domain of the linguistic variable. As a result, more intuitive
and acceptable results may be obtained by these aggregation
operators proposed.
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