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Optimization and control of stiffness for parallel kinematicmechanisms (PKM) are critical issues because stiffness is directly related
to the precision and response characteristics of the end-effector of PKMs. Unlike nonredundant PKMs, redundant PKMs have
additional actuators exceeding their essential degrees-of-freedom (DOF), resulting in an increase in the redundancy of control.
The stiffness of redundant PKMs is divided into passive and active stiffness. Active stiffness is changeable even in cases of fixed
kinematic parameters and end-effector posture. However, it is not easy and intuitive to control the active stiffness of redundant
PKMs for the complexity of Hessianmatrix operations.This paper describes a new decoupling method for explicit stiffness analysis
of redundant PKM with the well-known two-DOF and one-redundant planar five-bar PKM. Three actuating joints are decoupled
to three groups containing two actuating joints. With this mathematical configuration, the stiffness matrix for one-redundant
actuation is also divided into three stiffness matrices for nonredundant actuation, and the contribution of each actuator can be
intuitively investigated. Stiffness matrices for the original and decoupled cases are compared in detail. In particular, this decoupling
method is applicable to redundant PKMs with many passive joints. Finding optimal joints for one- or two-redundant actuation
with various candidates is more intuitive with this decoupling method.

1. Introduction

In many applications of parallel kinematic mechanisms
(PKMs), the magnitude and isotropy of stiffness matrices are
investigated as primary concerns. Stiffness is directly related
to the precision of machining of machine tools and to the
response characteristics of the end-effector of haptic devices.
Optimization of stiffness, for example, maximizing stiffness
in all directions [1], maximizing stiffness in one direction [2],
securing a minimally required magnitude of stiffness, and
increasing the isotropy of stiffness [3] are still critical issues
according to the objectives of PKM applications.

Redundantly actuated PKMs have additional actua-
tors exceeding their essentially required degrees-of-freedom
(DOF), which increase the redundancy of control [4]. This
feature serves as an advantage over nonredundant PKMs such

as internal preload control for backlash avoidance, removing
singularities to enlarge the usable workspace, and stiffness
enhancements [5]. In designing the PKM for machine tools,
the stiffness better be uniformwith respect to any direction of
external forces [6]. Through the appropriate torque distribu-
tion with respect to the position and orientation of the PKM,
the total stiffness can be increased or decreased [7].

Stiffness of PKMs is divided into passive and active
stiffness [8]. Passive stiffness is decided during the design
process of the PKM and only changes according to the end-
effector position and orientation if there is no additional
changes in link length and actuator specifications such as
torsional stiffness of motors and reducers. On the other hand,
active stiffness can be controlled by the generation of internal
preload torque distribution even though the design process is
already finished.
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Figure 1: Kinematic structure for the planar five-bar redundant parallel kinematic mechanism.

Stiffness is investigated, characterized, and optimized for
practical applications. Arsenault and Boudreau [9] intro-
duced a reliable synthesis method capable of selecting opti-
mal geometrical parameters of planar parallel mechanisms
for considering workspaces, dexterity, stiffness, and singu-
larity avoidance. Alici and Shirinzadeh [10] presented the
enhanced stiffness modeling and analysis of robot manip-
ulators and a methodology for their stiffness identification
and characterization. Liu et al. [11] showed various opti-
mization examples by applying global conditioning, global
velocity, global payload, and global stiffness indexes. Lee et
al. [12] performed kinematic and stiffness analyses including
optimizations for maximizing active stiffness of the five-
bar planar PKM. Kock and Schumacher [13] presented
singularity configuration and stiffness analyses for 3-DOF
redundantly actuated planar PKM and implemented the
control for securing the minimum required stiffness. Li and
Xu [14] investigated the stiffness behavior of the PKM via
eigenscrew decomposition of the stiffness matrix. Pashkevich
et al. [15] presented a methodology to enhance the stiffness
analysis of serial and parallel manipulators with passive
joints. The methodology directly takes into account the
loading influence on the manipulator configuration as well
as on its Jacobians and Hessians. Chakarov [16] discussed
antagonistic stiffness of a parallel manipulator and showed
that the maximum compliance in a random direction could
be reduced by controlling the internal preload of linear
actuators. Zhang and Gosselin [17] discussed a kinetostatic
model for the Tricept machine tool based on lumped flexibil-
ity method. In their work, the optimization of the stiffness
was performed using a genetic algorithm. Kim and Tsai
[18] introduced a 3-DOF translational parallel manipulator,
Cartesian parallel manipulator. An optimization method to
maximize the stiffness is investigated in order to minimize
the deflection at the joints caused by external forces exerted.

However, stiffness optimization is not a simple problem
in redundantly actuated PKMs. It is not easy to intuitively
understand the contributions of individual actuators towards
improving active stiffness due to the coupling effect of

internal preload torques in the active stiffness matrix in case
of the redundantly actuated PKMs.

In this study, a decouplingmethod for the stiffnessmatrix
is presented. The objective of the method is to solve mathe-
matical problems in stiffness analysis and torque distributions
of redundant PKM by decoupling its stiffness matrix to
three (or more) linearly independent stiffness matrices of
nonredundant cases to more clearly identify the contribution
of individual actuators. One-redundant five-bar planar PKM
is investigated. The PKM has two DOFs and three actuators
for redundant actuation.Three actuating joints are decoupled
into three groups containing two actuating joints. With this
approach, the passive and active stiffness are analyzed and the
analysis results are compared to original redundant cases.

This paper is organized as follows. In Section 2, kine-
matic configuration for the planar five-bar redundant parallel
kinematic mechanism is introduced. Stiffness for the PKM is
investigated in Section 3 with two cases: nonredundant and
redundant cases. Decoupling of the kinematic stiffnessmatrix
of the PKM is presented in Section 4. In Section 5, verification
of the kinematic stiffness decoupling in the active and passive
stiffnesswith various conditions is shown. Finally, concluding
remarks are provided in Section 6.

2. Kinematic Structure of Five-Bar
Redundant Planar PKM

The planar five-bar parallel kinematic mechanism is a well-
known PKM. As shown in Figure 1, it has a relatively simple
kinematic structure comprising five bars (in other word,
links), five joints, and one end-effector. Typically, the base
frame is considered one bar.

Its DOF of end-effector are two and the required number
of actuators at joints is also two. However, one or more
actuators can be equipped with the remaining passive joints
of the five-bar PKM to eliminate singularity and to increase
stiffness. 𝐿

𝑖
(𝑖 = 1∼5) indicates a bar, 𝐴

𝑖
(𝑖 = 1∼5) indicates a

joint, 𝜃
𝑖
(𝑖 = 1∼4) is the joint angle, and 𝑃 is the end-effector.
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The left and right sides of 𝑃 construct two kinematic open
chains. Except for the joint assigned to the end-effector, it is
possible to attach four actuators to the four joints. As a result,
up to two-redundant actuations can be implemented in this
PKM.

3. Stiffness of a Symmetric Five-Bar Planar
Parallel Mechanism

Stiffness can be defined as the ratio of the exerted force
to an infinitesimal displacement. The stiffness matrix 𝐾 is
composed of two parts. One is the active stiffness matrix
and the other is the passive stiffness matrix. In this section,
stiffness analyses for the nonredundant and redundant cases
are presented.

3.1. Nonredundant Case (𝑞
𝑢
= 𝐴
1
and 𝐴

2
Joints)

3.1.1. Forward Kinematics and Jacobian. Forward kinematics
is analyzed to determine the final position and orientation
of the end-effector for given displacements of actuators.
Forward kinematics is also applied to stiffness analysis.
Forward Jacobian is included in both passive and active
stiffness terms. 𝑥- and 𝑦-coordinates of the end-effector
position are represented by 𝐴

1
and 𝐴

2
joint angles:

𝑃 (𝑥, 𝑦) = [

𝑥

𝑦
] = [

[

𝐿
1
𝐶
1
+ 𝐿
3
𝐶
13
−
𝐿
5

2

𝐿
1
𝑆
1
+ 𝐿
3
𝑆
13

]

]

. (1)

In (1), 𝐶
1
and 𝐶

13
stand for shorthand of cosine theta 1

and cosine theta 1 plus theta 3, respectively. This relationship
is obtained from the left chain of the end-effector. By
differentiation with respect to time, we get (2). 𝐽

𝑓
is the

forward Jacobian and it relates the velocity of the joint angle
to the velocity of the end-effector position:

𝑃̇ = 𝐽
𝑓
̇𝜃. (2)

3.1.2. Constraint Jacobians. The constraint Jacobian is
obtained from the kinematic constraint equations. The
kinematic constraints are established from the fact that the
chain composed of five bars is a closed loop. It is assumed that
𝐴
1
and 𝐴

2
are assigned as actuation joints. The formulation

of this constraint can be written as

𝐺
1
(𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
) = 𝐿
1
𝐶
1
+ 𝐿
3
𝐶
13
− 𝐿
2
𝐶
2
− 𝐿
4
𝐶
24

− 𝐿
5
= 0,

𝐺
2
(𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
) = 𝐿
1
𝑆
1
+ 𝐿
3
𝑆
13
− 𝐿
2
𝑆
2
− 𝐿
4
𝑆
24
= 0.

(3)

Time derivative of (3) is shown in the following:

𝑑𝐺

𝑑𝑡
=
𝑑𝐺

𝑑𝜃

𝑑𝜃

𝑑𝑡
=
𝑑𝐺

𝑑𝜃

̇𝜃 = 0. (4)

The forward Jacobian is represented by (5). In detail,
the forward Jacobian is composed of two terms. Φ is the
constraint Jacobian:

𝐽
𝑓
= 𝐽
𝑢
+ 𝐽VΦ, (5)

Φ = −𝐺
−1

V 𝐺𝑢 ∈ R
2×2
, (6)

𝐽
𝑢
=

[
[
[
[

[

𝜕𝑃
1

𝜕𝜃
1

𝜕𝑃
1

𝜕𝜃
2

𝜕𝑃
2

𝜕𝜃
1

𝜕𝑃
2

𝜕𝜃
2

]
]
]
]

]

,

𝐽V =
[
[
[
[

[

𝜕𝑃
1

𝜕𝜃
3

𝜕𝑃
1

𝜕𝜃
4

𝜕𝑃
2

𝜕𝜃
3

𝜕𝑃
2

𝜕𝜃
4

]
]
]
]

]

,

𝐺
𝑢
=

[
[
[
[

[

𝜕𝐺
1

𝜕𝜃
1

𝜕𝐺
1

𝜕𝜃
2

𝜕𝐺
2

𝜕𝜃
1

𝜕𝐺
2

𝜕𝜃
2

]
]
]
]

]

,

𝐺V =
[
[
[
[

[

𝜕𝐺
1

𝜕𝜃
3

𝜕𝐺
1

𝜕𝜃
4

𝜕𝐺
2

𝜕𝜃
3

𝜕𝐺
2

𝜕𝜃
4

]
]
]
]

]

.

(7)

Because we selected𝐴
1
and𝐴

2
as the independent joints,

the joint rearrangement matrix 𝑈 and the actuator selection
matrix 𝑉 is represented as below:

𝑞all = 𝑈 [𝑞𝑢 𝑞V]
𝑇
󳨐⇒ 𝑈

12
=

[
[
[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]
]
]
]
]

]

∈ R
4×4
,

𝑞
𝑟
= 𝑉𝑞all 󳨐⇒ 𝑉

12
= [

1 0 0 0

0 1 0 0
] ∈ R

2×4
.

(8)

𝑞all is joint value vector including all the joints. 𝑞
𝑢

and 𝑞V are independent and dependent joint value vectors,
respectively. 𝑞

𝑟
is actuating joint value vector. Γ is another

constraint Jacobian containing Φ as the matrix element and
it will be used in stiffness analysis. In the nonredundant case,
however, Γ is a two by two identity matrix as shown in the
following:

Γall = 𝑉𝑈

[
[
[
[
[

[

1 0

0 1

Φ
11
Φ
12

Φ
21
Φ
22

]
]
]
]
]

]

= [

1 0 0 0

0 1 0 0
]

[
[
[
[
[

[

1 0

0 1

Φ
11
Φ
12

Φ
21
Φ
22

]
]
]
]
]

]

= [

1 0

0 1
] ∈ R

2×2
.

(9)
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3.1.3. Kinematic Stiffness Analysis with Hessian Matrix. The
relationship between the actuating joint torque of PKMs and
the force exerted on the end-effector of the mechanisms can
be obtained by the virtual work theorem as in the following
[19]:

𝜏
𝑇

𝑟
𝑑𝑞
𝑟
+ 𝑓
𝑇
𝑑𝑥
𝑐
= 0,

𝜏
𝑇

𝑟
Γ𝑑𝑞
𝑢
+ 𝑓
𝑇
𝐽
𝑓
𝑑𝑞
𝑢
= 0,

𝑓 = (Γ𝐽
−1

𝑓
)
𝑇

(−𝜏
𝑟
) = Ψ

𝑇
(−𝜏
𝑟
) ,

(10)

where 𝑑𝑥
𝑐
= 𝐽
𝑓
𝑑𝑞
𝑢
, 𝑑𝑞
𝑟
= Γ𝑑𝑞

𝑢
, Ψ = Γ𝐽−1

𝑓
.

In (10), 𝜏
𝑟
is torque value vector of actuating joint. 𝑓

is exerted force and 𝑥
𝑐
is end-effector position. Inverse of

𝐽
𝑓

exists except for singularity position. Five-bar planar
PKMhas actuator and end-effector singularities.The actuator
singularity is fully eliminated by the redundant actuation.
Moreover, the end-effector is avoidable because it appeared
only at the boundary of workspace. Therefore, it can be
regarded that inverse of 𝐽

𝑓
always exists. Stiffness can be

defined as the ratio of the exerted force to an infinitesimal
displacement:

𝐾
12
=
𝑑𝑓

𝑑𝑥
𝑐

= 𝐾active + 𝐾passive

= 𝐻
𝑇
⊗ 𝜏
𝑢
+ 𝐽
−1𝑇

𝑓
𝑘
𝑢
𝐽
−1

𝑓
.

(11)

𝐻 is Hessian matrix and 𝑘
𝑢
is actuator stiffness matrix.

A two-by-two stiffness matrix, 𝐾
12
, which represents the

stiffness matrix generated by actuating the 𝐴
1
and 𝐴

2
joints,

is composed of active stiffness and passive stiffness as shown
in (11). The first term of (11) is the active stiffness matrix and
the second term is the passive stiffness matrix.

3.2. Redundant Case (𝑞
𝑢
= 𝐴
1
, 𝐴
2
, and 𝐴

3
Joints)

3.2.1. Constraint Jacobians. In this redundant case, 𝐴
1
, 𝐴
2
,

and 𝐴
3
are assigned as actuation joints. The selection matrix

𝑉 is shown in (12) and the constraint Jacobian Γ is different
from the nonredundant case. The dimension of the selection
matrix changes from two-by-four to three-by-four:

𝑞
𝑟
= 𝑉𝑞all 󳨐⇒ 𝑉 =

[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

]
]

]

∈ R
3×4
. (12)

Consequently, Γ containsΦ
11
andΦ

12
as matrix elements

as in (13). This change affects the stiffness matrix, which will
be shown in the next sub sections:

Γ = 𝑉𝑈

[
[
[
[
[

[

1 0

0 1

Φ
11
Φ
12

Φ
21
Φ
22

]
]
]
]
]

]

=
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

]
]

]

[
[
[
[
[

[

1 0

0 1

Φ
11
Φ
12

Φ
21
Φ
22

]
]
]
]
]

]

=
[
[

[

1 0

0 1

Φ
11
Φ
12

]
]

]

∈ R
3×2
.

(13)

3.2.2. Kinematic Stiffness Analysis with Hessian Matrix. The
subscript of 𝐾

123
in (14) represents the stiffness in the case

of one-redundant, three-actuation. Ψ is the product of the
constraint Jacobian Γ and the inverse of the forward Jacobian
𝐽
𝑓
as (10). (Γ𝑇)+ means the pseudoinverse of Γ𝑇:

𝐾
123
=
𝑑𝑓

𝑑𝑥
𝑐

= 𝐾active + 𝐾passive =
𝑑 (Ψ
𝑇
(−𝜏
𝑟
))

𝑑𝑥
𝑐

=
𝑑Ψ
𝑇

𝑑𝑥
𝑐

⊗ (−𝜏
𝑟
) + Ψ
𝑇
𝑑 (−𝜏
𝑟
)

𝑑𝑞
𝑟

𝑑𝑞
𝑟

𝑑𝑥
𝑐

= 𝐻
𝑇
⊗ 𝜏
𝑟
+ Ψ
𝑇
𝑘
𝑟
Ψ,

(14)

where 𝑑𝑞
𝑟
= Ψ𝑑𝑥

𝑐
∈ R2×2, Ψ = Γ𝐽

−1

𝑓
, Γ𝑇𝜏
𝑟
= 𝜏
𝑢
, and 𝜏

𝑟
=

(Γ
𝑇
)
+
𝜏
𝑢
+ (𝐼
𝑛
− (Γ
𝑇
)
+
Γ
𝑇
)𝜀
𝑛
.

In this case, the magnitude of active stiffness can be
controlled by internal preload torque distribution. And the
following equation is for finding the internal torque, which
does not affect the motion of the five-bar planar PKM:

Γ
𝑇
𝜏
𝑟
= [

1 0 Φ
11

0 1 Φ
12

]
[
[

[

𝜏
1

𝜏
2

𝜏
3

]
]

]

= [

0

0
] 󳨐⇒ [

𝜏
1
+ Φ
11
𝜏
2

𝜏
2
+ Φ
12
𝜏
3

]

= [

0

0
] .

(15)

As shown in Figure 2, 𝜏
𝑟
contains not only internal preload

torques that can increase the active stiffness of a one-
redundant PKM, but also the reactive (this case) or motional
torques induced by the external forces. In addition, the
PKMmaintains static equilibrium state, although the internal
preload torques are applied at all actuating joints.Then, addi-
tional torques, reactive torques, are generated by imposing
the external force at the end-effector, and it is directly related
to independent joint torques by Jacobian 𝜏

𝑢
= −𝐽
𝑇
𝑓ext. As a
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Δ𝜏3 = k3q3(internal) + k3(q3i − q3f)

q3i

q3f

Δ𝜏3 = k3(q3i − q3f)

Δ𝜏1 = k1q1(internal) + k1(q1i − q1f)

q1i

q1f

Δ𝜏2 = k2q2(internal) + k2(q2i − q2f)

q2i

q2f

𝜏u = −JTfext
external

force

Figure 2: Reactive torque generated by external force exerted on the end-effector.

result, the stiffnessmatrix can be represented by the following
equation for given external force:

𝐾
123
= 𝐻
𝑇

⊗((Γ
𝑇
)
+

(−𝐽
𝑇
𝑓ext)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏
𝑟,motional

+ (𝐼
𝑛
− (Γ
𝑇
)
+

Γ
𝑇
) 𝜀
𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏
𝑟,internal

)

+Ψ
𝑇
𝑘
𝑟
Ψ.

(16)

4. Decoupling of the Kinematic
Stiffness Matrix of the Redundant
Five-Bar Planar PKM

4.1. Multiplication of the Multidimensional Matrix: Hessian.
In mathematics, the Jacobian matrix, which defines a lin-
ear map R𝑛 → R𝑚, is well known as the best linear
approximation of the function 𝐹 near the point 𝑥. In the
constraint Jacobian Φ, the function 𝐹 denotes the velocity
vector of the independent joint 𝑞

𝑢
and the point 𝑥 denotes the

velocity vector of the dependent joint 𝑞V.Thus, this constraint
Jacobian can be interpreted as the velocity relationship
between the independent joint 𝑞

𝑢
and the dependent joint

𝑞V. This relationship can be obtained by the time derivative
of the geometrical constraint equations. In a similar manner,
the forward Jacobian matrix 𝐽

𝑓
is also used to obtain the

relationship between the active joint torque 𝜏
𝑟
and the

external force 𝑓 exerted at the end-effector.
TheHessian matrix is typically defined as a square matrix

of the 2nd order partial derivatives of a scalar-valued function
inmathematics. In this research, the derivative of the transpo-
sition of the inverse of the forward Jacobian 𝐽

𝑓
with respect to

the end-effector’s position 𝑥
𝑐
denotes the transposition of the

Hessian matrix 𝐻. Physically, the derivative of the Jacobian

Table 1: Mathematical definitions and notations.

Name Operator and dimensions

Jacobian
matrix, 𝐽

𝑑𝑌

𝑑𝑋
= [

𝜕𝑌

𝜕𝑥
1

⋅ ⋅ ⋅
𝜕𝑌

𝜕𝑥
𝑛

] ∈ 𝑅
𝑚×𝑛,

{{

{{

{

𝜕𝑌

𝜕𝑥
1

∈ 𝑅
𝑚×1

𝑌 ∈ 𝑅
𝑚

Hessian
matrix,𝐻

𝑑𝐽

𝑑𝑋󸀠
= [

𝜕𝐽

𝜕𝑥
󸀠

1

⋅ ⋅ ⋅
𝜕𝐽

𝜕𝑥
󸀠

𝑘

] ∈ 𝑅
𝑚×𝑛×𝑘,

{

{

{

𝐽 ∈ 𝑅
𝑚×𝑛

𝑋
󸀠
∈ 𝑅
𝑘

Leibniz’s law
of𝐻 and
vector

[𝐻 ⊗ 𝜏] =

[
[
[
[
[
[
[
[

[

𝑛

∑

𝑖=1

ℎ
1𝑖1
𝜏
𝑖1
⋅ ⋅ ⋅

𝑛

∑

𝑖=1

ℎ
1𝑖𝑘
𝜏
𝑖1

.

.

. d
.
.
.

𝑛

∑

𝑖=1

ℎ
𝑚𝑖1
𝜏
𝑖1
⋅ ⋅ ⋅

𝑛

∑

𝑖=1

ℎ
𝑚𝑖𝑘
𝜏
𝑖1

]
]
]
]
]
]
]
]

]

,

{

{

{

𝐻 ∈ 𝑅
𝑚×𝑛×𝑘

𝜏 ∈ 𝑅
𝑛×1

matrix is related to the stiffness matrix and the active torque.
Nakamura and Ghodoussi [20] defined the Hessian matrix
and suggested the operating method of the Hessian matrix
and vector. The result of Leibniz’s law of the Hessian matrix
and the active torque vector can be defined as the active
stiffness of the mechanism [2].

The detailed definitions of the Jacobian matrix J, Hes-
sian matrix 𝐻, and Leibniz’s law are represented as shown
in Table 1.
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h1,1,k . . . h1,n,k

... ⋱
...

hm,1,k . . . hm,n,k

h1,1,1 . . . h1,n,1

... ⋱
...

hm,1,1 . . . hm,n,1
𝜏1

...

𝜏n

⨂

Figure 3: The schematic of the multiple two-dimensional matrices consisting of the Hessian matrix and vector.

Typically, a matrix with more than two dimensions is
called a multidimensional matrix. An element of the two-
dimensional matrix can be accessed with two subscripts.
The first subscript denotes the row index, and the second
subscript denotes the column index. However, the multidi-
mensional matrix uses an additional subscript for additional
indexing. Figure 3 represents the concept of multiple two-
dimensional matrices of three and higher dimensions.

The proposed Hessian matrix 𝐻 of the forward Jacobian
𝐽
𝑓
is a three-dimensional𝑚×𝑛×𝑘matrix consisting of 𝑘 pages

of𝑚×𝑛matrix as shown in Figure 3. To compute the stiffness
matrix, Leibniz’s law of the Hessian matrix 𝐻 and the active
torque vector 𝜏

𝑟
should be calculated by using the operator ⊗

as shown below:

𝐾 =

𝑑 (𝐽
−1

𝑓
)
𝑇

(−𝜏
𝑟
)

𝑑𝑥
𝑐

=

𝑑 (𝐽
−1

𝑓
)
𝑇

𝑑𝑞
𝑟

𝐽
−1

𝑓
⊗ 𝜏
𝑟
+ (𝐽
−1

𝑓
)
𝑇 𝑑 (−𝜏𝑟)

𝑑𝑞
𝑟

𝐽
−1

𝑓

= 𝐻
𝑇
⊗ 𝜏
𝑟
+ (𝐽
−1

𝑓
)
𝑇

𝑘
𝑟
𝐽
−1

𝑓
, (∵

𝑑𝑞
𝑟

𝑑𝑥
𝑐

= 𝐽
−1

𝑓
) .

(17)

For nonredundant cases of the five-bar planar PKM,

𝐾active = 𝐻
𝑇
⊗ 𝜏
𝑢
∈ 𝑅
2×2
, (18)

where 𝜏
𝑢
= 𝑉
𝜏
[𝜏1 𝜏2 𝜏3]

𝑇
∈ 𝑅
2×1,𝐻𝑇 = (𝑑(𝐽−1

𝑓
)
𝑇
/𝑑𝑞
𝑢
)𝐽
−1

𝑓
∈

𝑅
2×2×2, and 𝑞

𝑢
= 𝑉
𝑞
[𝑞1 𝑞2 𝑞3 𝑞4]

𝑇
∈ 𝑅
2×1.

For redundant cases of onemore actuation for the five-bar
planar PKM,

𝐾active = 𝐻
𝑇
⊗ 𝜏
𝑟
∈ 𝑅
2×2
, (19)

where 𝜏
𝑟
= 𝑉
𝜏
[𝜏1 𝜏2 𝜏3]

𝑇
∈ 𝑅
3×1,𝐻𝑇 = (𝑑(𝐽−1

𝑓
)
𝑇
/𝑑𝑞
𝑟
)𝐽
−1

𝑓
∈

𝑅
2×3×2, and 𝑞

𝑟
= 𝑉
𝑞
[𝑞1 𝑞2 𝑞3 𝑞4]

𝑇
∈ 𝑅
3×1.

4.2. Stiffness Decoupling for Nonredundant and
Redundant Five-Bar Planar PKM

4.2.1. Active Stiffness. It should be noted that all of the actu-
ating joints 𝑞

𝑟
in the redundant actuation can be decoupled

to three or more groups containing two independent joints

𝑞
𝑢
of the nonredundant actuations in the stiffness analysis as

shown in Figure 4.This means that the total sum of the active
stiffness matrices in all possible groups of nonredundant
actuations is exactly equal to a resultant active stiffnessmatrix
of the redundant actuation:

𝐾active, redundant = ∑

{𝑠∈𝑈}

𝐻
𝑇

𝑠
⊗ 𝜏
𝑠

= ((
𝜕Ψ
𝑇

𝜕𝑞
𝑢

+
𝜕Ψ
𝑇

𝜕𝑞V
Φ)𝐽
−1

𝑓
) ⊗

[
[

[

𝜏
1

𝜏
2

𝜏
3

]
]

]

,

(20)

where ∑
{𝑠∈𝑈}

𝐻
𝑇

𝑠
⊗ 𝜏
𝑠
= [𝐻
𝑇

12
⊗ 𝜏
12
+ 𝐻
𝑇

23
⊗ 𝜏
23
+ 𝐻
𝑇

31
⊗ 𝜏
31
],

𝐻
𝑇

12
≡ (𝜕(𝐽

−1

12
)
𝑇
/𝜕𝑞
12
+(𝜕(𝐽

−1

12
)
𝑇
/𝜕𝑞
34
)Φ
12
)𝐽
−1

12
, 𝜏
12
= [𝜏1 𝜏2]

𝑇,
𝑞
𝑢
= [𝑞1 𝑞2 𝑞3]

𝑇, and 𝑞V = 𝑞4.
First of all, the nonredundant five-bar planar PKM can

fully manipulate the position of the platform in the 𝑥𝑦-plane
by using two active joints; thus the required number of active
joints should be two. With one more actuator assigned as an
additional active joint, it is possible that the magnitude of
active stiffness of the five-bar planar PKM can be changed by
the torque distributions, because there are infinite numbers
of possible combinations of the active joints’ torque-like
indeterminate forms. Physically, there are infinite numbers
of sets of torque distributions for individual active joints
even though all motions in the platform, links, and joints are
the same. So, with three active joints for the one-redundant
five-bar planar PKM, there must exist three combinations of
nonredundant actuation as shown in (20). The summation
index is an element 𝑠 of the set 𝑈 = {(1, 2), (2, 3),

(3, 1)}.
From the perspective of stiffness decoupling with redun-

dancy in the torque distribution, (21) represents the cal-
culation formula for the active stiffness according to one-
redundant actuation by using [𝑞

1
, 𝑞
2
, 𝑞
3
]
𝑇. The first and

second equations in (21) show that the sum of the individual
active stiffness matrices of nonredundant actuations should
be equal to a resultant active stiffness matrix of the one-
redundant actuation. In addition, the distribution of three
active torques for individual nonredundant actuation can
vary in the range that meets the given constraint related to
torque distribution.That is, the active joint torques calculated
by the torque distribution can be successfully reallocated
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Figure 4: Schematic diagram of the three-independent joint set.

to individual nonredundant actuation. In particular, mathe-
matical sense becomes more apparent in the third equation.
The matrix equations can be interpreted as linear combina-
tions of three active torque vectors:

𝐾active, redundant = ((
𝜕Ψ
𝑇

𝜕𝑞
𝑢

+
𝜕Ψ
𝑇

𝜕𝑞V
Φ)𝐽
−1

𝑓
) ⊗

[
[

[

𝑤
1
𝜏
1

𝑤
2
𝜏
2

𝑤
3
𝜏
3

]
]

]

Nonredundant

=

{{{{{{{

{{{{{{{

{

𝐻
𝑇

12
⊗ [

[

𝑤
1,1
𝜏
1

𝑤
2,1
𝜏
2

]

]

+ 𝐻
𝑇

23
⊗ [

[

𝑤
2,2
𝜏
2

𝑤
3,1
𝜏
3

]

]

+ 𝐻
𝑇

31
⊗ [

[

𝑤
3,2
𝜏
3

𝑤
1,2
𝜏
1

]

]

𝐻
𝑇

12
⊗ [

[

𝑤
1
𝜏
1

0

]

]

+ 𝐻
𝑇

23
⊗ [

[

𝑤
2
𝜏
2

0

]

]

+ 𝐻
𝑇

31
⊗ [

[

𝑤
3
𝜏
3

0

]

]

,

where, 𝑤
𝑖
=

2

∑

𝑗=1

𝑤
𝑖,𝑗
.

(21)

Since each element of the Hessian matrix can be consid-
ered a constant matrix, the resultant active stiffness matrix

of one-redundant actuation can be obtained by superposi-
tion of three linearly independent active stiffness matrices
in nonredundant actuations. Finally, this explicit stiffness
decoupling method using the third equation of (21) allows
us to understand which active joint’s torque is more sensitive
and contributes the most to improving and controlling the
magnitude and isotropy of the active stiffness of one- or
two-redundant actuation without using the matrix with the
complex coupling effects of all internal torques.

4.2.2. Passive Stiffness. Passive stiffness of the one-redundant
actuation PKM can also be decoupled into three groups
containing two-torsional stiffness of the active actuators
as shown in (22). The passive stiffness is composed of
the actuators’ torsional stiffness matrix, the product of the
constraint Jacobian Γ, and the inverse of the forward Jaco-
bian 𝐽

𝑓
as in (14). That is, the resultant passive stiffness

matrix is a constant if the position and orientation of the
platform of PKM and the actuators’ torsional stiffness are
determined. The passive stiffness matrix is perfectly inde-
pendent because it is not dependent on internal preload
torques.
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Finally, using this stiffness decoupling method allows us
to figure out which torsional stiffness of the active actuators
is more sensitive and contributes most to improving and
controlling the magnitude and isotropy of the total stiffness

of one- or two-redundant actuation without using the matrix
with the complex coupling effects of all torsional stiffness and
kinematic parameters:

𝐾passive, redundant = Ψ
𝑇
[
[
[

[

(𝑤
1,1
+ 𝑤
1,2
) 𝑘
1

0 0

0 (𝑤
2,1
+ 𝑤
2,2
) 𝑘
2

0

0 0 (𝑤
3,1
+ 𝑤
3,2
) 𝑘
3

]
]
]

]

Ψ

Nonredundant

=

{{{{{{{{{

{{{{{{{{{

{

(𝐽
−1

12
)
𝑇
[

[

𝑤
1,1
𝑘
1

0

0 𝑤
2,1
𝑘
2

]

]

𝐽
−1

12
+ (𝐽
−1

23
)
𝑇
[

[

𝑤
2,2
𝑘
2

0

0 𝑤
3,1
𝑘
3

]

]

𝐽
−1

23
+ (𝐽
−1

31
)
𝑇
[

[

𝑤
3,2
𝑘
3

0

0 𝑤
1,2
𝑘
1

]

]

𝐽
−1

31

(𝐽
−1

12
)
𝑇[
[
[

[

(

2

∑

𝑗=1

𝑤
1,𝑗
)𝑘
1
0

0 0

]
]
]

]

𝐽
−1

12
+ (𝐽
−1

23
)
𝑇[
[
[

[

(

2

∑

𝑗=1

𝑤
2,𝑗
)𝑘
2
0

0 0

]
]
]

]

𝐽
−1

23
+ (𝐽
−1

31
)
𝑇[
[
[

[

(

2

∑

𝑗=1

𝑤
3,𝑗
)𝑘
3
0

0 0

]
]
]

]

𝐽
−1

31
,

where, 𝑤
𝑖
=

2

∑

𝑗=1

𝑤
𝑖,𝑗
, 𝑘
𝑖
: actuators’ torsional stiffness.

(22)

5. Verification of the Stiffness
Decoupling Method

In this section, the proposed stiffness decoupling method is
fully verified by applying distributed internal preload torques
for the one-redundant actuation of five-bar planar PKM to its
three groups of nonredundant actuation cases as represented
in (21) and (22).

As mentioned earlier, the active stiffness of a redundant
PKM can be changed by not only the motional torques
but also the internal preload torques. That is, the torques
distributed to calculate the active stiffness should not be the
motional torques, but the internal preload torques.Thus, this
can be obtained from the following relationship in case of the
one-redundant actuation:

Γ
𝑇
𝜏
𝑟
= [

1 0 Φ
11

0 1 Φ
12

]
[
[

[

𝜏
1

𝜏
2

𝜏
3

]
]

]

= [

0

0
] ,

𝜏
1
= −Φ
11
𝜏
3
, 𝜏
2
= −Φ
12
𝜏
3
.

(23)

To verify the proposed explicit stiffness decoupling
method, the internal preload torque of the first active joint is
set to fifty percent of its maximum torque after gear reduction
with the motional torque taken into consideration, and then
the second and third active torque are obtained from the
relationship of (23). As a result, the distributed joint torques,
𝜏
1
, 𝜏
2
, and 𝜏

3
, are successfully obtained as shown in Table 2.

The active stiffness of the one-redundant actuation is
calculated by substituting the torques in the first equation of

(21) to the 𝜏
1
, 𝜏
2
, and 𝜏

3
as the conventional method. And,

as shown in Table 3, it is confirmed that the resultant active
stiffness calculated from the second and third equations
of (21) is exactly equal to the active stiffness of the one-
redundant actuation for two cases. Similarly, in case of
the passive stiffness, it is also confirmed that the resultant
passive stiffness is calculated from the first, second, and third
equations of (22).

For all cases, it is confirmed that the total sum of
decoupled three active andpassive stiffnessmatrices is exactly
equal to the stiffness matrices of one-redundant actuation,
respectively. From this result, the contributions of all indi-
vidual internal preload torques and torsional stiffness of the
three active stiffnessmatrices in the total stiffness analysis can
be intuitively discovered.

We performed additional simulations for verification of
case-I by applying commercial dynamics simulation software,
DAFUL. DAFUL implements a dynamic analysis algorithm
based on the implicit method. According to the proposed
theorem, the five-bar planar PKM will maintain static equi-
librium only if external forces exerted on the end-effector
and actuation torques are related by forward Jacobian, 𝐽

𝑓
.

The three decoupled groups are put under the actuation
torques calculated from internal preload torque distribution
and corresponding external force as shown in Table 5. All
kinematic parameters are set to be the same as 1-m and the
position of end-effector is set to be [0-m, 1.5388-m]. As shown
in Figure 5, the simulation results show that the 𝑥- and 𝑦-
axis position of the end-effector does not change because the
external forces applied at the end-effector and the torques
applied at actuating joints are in static equilibrium. Three
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Figure 5: Verification results obtained from DAFUL simulation.

Table 2: Simulation conditions for the stiffness decoupling.

Parameters Case-1 Case-2
Kinematic parameters [m] [1, 1, 1, 1, 1]

Weight factors
𝑤
1,1
, 𝑤
1,2

[0.25 0.75] [1 0]

𝑤
2,1
, 𝑤
2,2

[0.75 0.25] [0 1]

𝑤
3,1
, 𝑤
3,2

[0.25 0.75] [1 0]

Joints’ torsional stiffness [𝑘
1
, 𝑘
2
, 𝑘
3
] = [10, 10, 10]

Joints’ active torques [N⋅m]
𝜏
1

65.00
𝜏
2

−51.22
𝜏
3

26.27

decoupled nonredundant cases and redundant case (right-
lower case in Figure 5) show the same 𝑦-axis position. These
results mean that the proposed decoupling method turned
out to be valid in mathematical and mechanical points of
view.

6. Conclusions

Although the kinematic stiffness is not the actual stiffness
of PKM, numerous researches have already proved that the

Table 3: Simulation results of the active stiffness decoupling.

Kinds of actuation and
cases

Elements of stiffness matrices [N/m]
𝑘
11

𝑘
12
, 𝑘
21

𝑘
22

Nonredundant
𝑞
1
and 𝑞

2
actuation

Case-1
Case-2

−34.7261
−41.2902

6.6080
−19.3766

−149.5999
−177.8776

Nonredundant
𝑞
2
and 𝑞

3
actuation

Case-1
Case-2

2.3697
−32.5381

11.1586
15.2695

−1.2604
−140.1739

Nonredundant
𝑞
3
and 𝑞

1
actuation

Case-1
Case-2

0.5451
42.0169

7.4912
29.3649

−32.0588
135.1325

Redundant actuation
Case-1
Case-2 −31.8114 25.2578 −182.9190

kinematic stiffness is worthy in design, analysis, and opti-
mization processes for the PKMs. Thus, this paper describes
a new explicit stiffness decoupling method for kinematic
stiffness analysis of kinematically redundant PKM with two-
DOF and one-redundant five-bar planar PKM. The stiffness
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Table 4: Simulation results of the passive stiffness decoupling.

Kinds of actuation and
cases

Elements of stiffness matrices [N/m]
𝑘
11

𝑘
12
, 𝑘
21

𝑘
22

Nonredundant
𝑞
1
and 𝑞

2
actuation

Case-1
Case-2

7.2688
7.2688

−4.0493
8.0986

9.0231
9.0231

Nonredundant
𝑞
2
and 𝑞

3
actuation

Case-1
Case-2

2.8354
7.2688

1.4985
−8.0986

14.4458
9.0231

Nonredundant
𝑞
3
and 𝑞

1
actuation

Case-1
Case-2

8.5063
4.0730

16.6434
14.0925

43.3375
48.7602

Redundant actuation
Case-1
Case-2 18.6106 14.0925 66.8065

Table 5: Detailed conditions and results of verification for case-I of active stiffness decoupling.

Actuating joints Actuating torques [Nm] External forces [N] End-effector position [m]
[𝜏
1
, 𝜏
2
, 𝜏
3
] [𝑓

𝑥
, 𝑓
𝑦
] [𝑥, 𝑦]

Nonredundant
[𝑞
1
and 𝑞

2
]

[0.25 ⋅ 𝜏
1
, 0.75 ⋅ 𝜏

2
] [18.86, −33.78] [0, 1.5388]

Nonredundant
[𝑞
2
and 𝑞

3
]

[0.25 ⋅ 𝜏
2
, 0.75 ⋅ 𝜏

3
] [21.25, 23.97] [0, 1.5388]

Nonredundant
[𝑞
3
and 𝑞

1
]

[0.25 ⋅ 𝜏
3
, 0.75 ⋅ 𝜏

1
] [−38.02, −19.50] [0, 1.5388]

Redundant actuation [𝜏
1
, 𝜏
2
, 𝜏
3
] [2.09, −29.32] [0, 1.5388]

Distributed joints’ torques [𝜏1, 𝜏2, 𝜏3] = [65.00, −51.22, 26.27].
End-effector’s position means resultant position when the joint torques and external forces of each case are applied to the PKM, simultaneously.

analyses for two cases are performed: nonredundant case
composed of three nonredundant groups and one redundant
case. For the nonredundant case, three actuating joints for
the one-redundant actuation are decoupled to three groups
to realize nonredundant actuation containing two actuating
joints. Consequently, it is confirmed that the active and
passive stiffness of one-redundant PKM are exactly equal
to the total sum of active and passive stiffness of three
nonredundant PKMs.

With this mathematical configuration, the contribution
of each actuator can be intuitively investigated. For compari-
son, elements of stiffness matrices for the one-redundant and
decoupled three nonredundant cases are listed in Tables 3
and 4. Moreover, simulation results by applying the dynamic
simulation tool are presented. This decoupling method is
applicable to redundant PKMs with many passive joints.
Selecting the optimal joint for redundant actuation from
various candidates is more intuitive using this method.
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