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The analysis and design of traditional networked control systems focused on single closed-loop scenario. This paper introduces a
distributed control approach for the networked control systems (NCSs)withmultiple subsystems based on a time-triggered network
protocol. Firstly, some basic ideas of the time-triggered protocol are introduced and a time schedule scheme is employed for the
NCS. Then, a novel model is proposed to the NCS regarding the network-induced delay. The resulting closed-loop system is time-
delay linear system considering a distributed control law. A sufficient condition to𝐻

∞
consensus control is present based on the

Lyapunov-Krasovskii function. Also, the controller design approach towards the given 𝐻
∞

performance index is given by a cone
complement linearization and iterative algorithm. Finally, numerical examples are given to validate the approach.

1. Introduction

Networked control systems (NCSs) are a class of closed-
loop control systems in which sensors, controllers, and actu-
ators are connected over network (see [1]). In recent years,
NCSs have received increasing attention due to the broad
application in industrial areas. The induced network brings
about many advantages, such as low installation and mainte-
nance costs, high reliability, and increased system flexibility.
But, simultaneously, network-induced imperfections, such as
time delays, packet losses and disorder, time-varying packet
transmission/sampling intervals, and competition ofmultiple
nodes accessing network, will decrease the performance of
NCSs (see [2]). More seriously, some imperfections may
cause instability. During the past decades, many researchers
have studied the NCSs, and variousmethodologies have been
proposed on themodeling (see [3, 4]), scheduling (see [5, 6]),
analysis, and control design (see [7–11]).

When the plant ismultiple-input-multiple-output (MIMO),
the NCS is called MIMO NCSs. Because the nodes should
compete to access not only outside nodes, but also other
nodes inside, the research of MIMO NCSs is a more chal-
lenging job when compared with the so-called single-input-
single-output (SISO) NCSs. Yan et al. [12] presented a con-
tinuous time model of MIMO NCSs with distributed time

delays and uncertainties and gave delay-dependent stability
criteria in terms of linear matrix inequalities (LMIs). Xia
et al. [13] presented a discrete-time model of MIMO NCSs
with multiple time-varying delays, and the design of output
feedback controllers is proposed in terms of matrix inequal-
ities, together with an iterative algorithm. Okajima et al.
[14] proposed a design method for feedback-type dynamic
quantization in a MIMO NCS, which is extended from SISO
NCSs. Guan et al. [15] studied the optimal tracking perform-
ance for MIMO LTI discrete-time control systems with com-
munication constraints in feedback path and how the band-
width and AWGN of the communication channel affected
the tracking capability. Jiang et al. [16] studied the optimal
tracking performance of MIMO NCSs with AWGN channel
between the controller and the plant and concluded that
the optimal tracking performance was closely dependent on
nonminimum phase zeros, unstable poles of the plant, and
characteristics of the signals and channel. Cao et al. [17]
presented delay dependant stability criteria for MIMO NCSs
with nonlinear perturbation and delay, which gave much less
conservative maximum allowable delay bound. Li et al. [18]
modeled theMIMONCSwithmultichannel packet disorder-
ing, packet dropout, and bounded time-varying transmission
delay, as a jump linear system subject to Markovian chains,
and a real-time controller was proposed such that the cost
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Figure 1: Structure of the networked control systems.

Figure 2: The Baggage Handling System.

function value is lower than a specified upper bound. Du et
al. [19]modeledMIMONCSs as unknown switched sequence
and proposed a sufficient condition to be asymptotically
stable in terms of a set of bilinear matrix inequalities. In
the above reference, only one controller node is in the NCS,
which is not a good choice for many real applications.

Actually, the distributed control using multiple controller
nodes is a more interesting topic on the MIMO NCSs. But,
until now, there are few articles published. Hirche et al. [20]
introduced a novel distributed controller approach forNCS to
achieve finite gain L2 stability independent of constant time
delay, which consisted two parts. One was a local controller
designed without network; the other was a remote part to
compensate the network-induced delay to keep stability. But,
actually, here the controller was divided into two separated
parts, which was not so-called distributed control. In this
paper, we consider a class of MIMO networked control
systems with multiple subsystems, multiple sensor nodes,
controller nodes, and actuator nodes, whose subsystems
exchange information through network. Figure 1 gives the
common structure of the NCSs. It is clear that the NCS is
a distributed system over the network channel. This kind of
system can be easily found, such as Baggage Handling Sys-
tems (BHS, as in Figure 2), product line systems, and Multi-
joint Robots. For these systems, all subsystems are essentially

required to be stable. Furthermore, there are usually some
special requirements. Take BHS as an example; one BHS often
has a few branches, which contain dozens of motors. While
transplanting baggage, the velocity of motors in each branch
should be consistent. Otherwise, the baggage may collide
because of different velocity. For more details, the consensus
control in NCSs means consensus not only in steady state,
but also in transient response; that is, when the reference
signal changes or disturbance occurs, the output signal of the
subsystems is required to change simultaneously.

The consensus control of NCSs is an interesting prob-
lem and is different from that in multivehicle cooperative
control, because the dynamic of each subsystem is different
from the others. Some effective conclusions in multivehicle
cooperative control cannot be used directly in this situation.
Conditions to consensus control need to be investigated.

In this paper, we focus on the modeling and consensus
control of the NCSs with time-triggered protocol and dis-
tributed control law. The contributions are as follows:

(i) Firstly, the time-triggered protocol is introduced and
employed to the NCSs; a scheduling scenario which
reduces the network-induced delay within each sub-
system is introduced.

(ii) Secondly, a model for the NCSs with time-triggered
protocol and short time-varying network-induced
delays is proposed, while the distributed controllers
which use the feedback information from the subsys-
tem neighbors are used.

(iii) Thirdly, the sufficient conditions for asymptotical sta-
bility and 𝐻

∞
consensus control of the NCSs are

obtained by Lyapunov-Krasovskii function. The con-
ditions guarantee all subsystems reach consensus
while satisfying the desired 𝐻

∞
performance on the

fixed time-triggered protocol. Also, an iterative algo-
rithm is given for distributed controller gain matrix.

The rest of this paper is organized as follows. Section 2 in-
troduces the protocol of theNCSs, the feature of the network-
induced delay, and the mathematical model. Section 3 deals
with𝐻

∞
consensus control problem for NCSs. Some numer-

ical examples are given in Section 4 to demonstrate the effec-
tiveness of the proposed design technique. The conclusion is
provided in Section 5.
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2. Modeling of the NCSs

2.1. Protocol of theNetwork. Consider theNCSswithmultiple
subsystems in Figure 1. The sensor nodes and the controller
nodes will access the network after sampling or calculation,
respectively. As we know, their authorities to access network
depend on the protocol. In addition, the features of network-
induced delay and data loss also depend on the protocol.

Network protocols can be classified into time-triggered
protocol or event-triggered protocol. Time-triggered proto-
col allows the node to access network in certain time slot,
such as Ether-CAT, FlexRay, and Time-Triggered CAN, while
the nodes in event-triggered protocol access the network
whenever they are ready for transmission, such as TCP/IP,
CAN. Most communication networks adopt event-triggered
protocol, because the protocol is efficient while nodes join
and quit frequently. But the situation is different in con-
trol systems. Few nodes in control systems will join or
exit frequently while working, unless the node is down or
crashed. Moreover, event-triggered protocol brings about
many uncertainties to the system, because of the random
access. In [21], it is concluded that, compared with event-trig-
gered protocol, the time-triggered protocol brought about
more convenience to design and analysis. So we discuss the
NCSs based on the time-triggered protocol. In order tomodel
the NCSs, we introduce some important features of time-
triggered protocol.

Usually, a basic cycle exists in time-triggered protocol
network, which means that a basic period for all important
nodes has at least one chance to transfer data. For example,
a basic cycle of TTCAN [22] is shown in Figure 3. A basic
cycle begins with a reference message, which is sent by a
special node and can be identified by all participants. A basic
cycle usually consists of several time windows (or slots) of
different length and offers the necessary time for the mes-
sage to be transmitted. The exclusive window is a time slot
for periodic messages, while the arbitrating window is for
aperiodic messages. Free window is reserved for further
extensions. An exclusive window allows only one node to
send a frame. In the arbitrating windows, these nodes that
need to send frames are allowed to compete for network
access as in event-triggered protocol. The end of an arbitrat-
ing window is always predictable. Thus, the advantages of
event-triggered communication can be combined with those
of time-triggered communication.

Of course, the sequence of these windows in a basic
cycle can be designed according to scheduling strategy. For
example, the sequence can be designed as in Figure 4 to
reduce network-induced delay within each subsystem when
it is used for NCS with four subsystems.

Ref. Sen. Sen.CTD
#1#1

CTD
#2#2

Sen. CTD
#3#3

Sen. CTD
#4#4 Arbitration

Figure 4: Basic cycle of NCS with four subsystems based on
TTCAN.

Furthermore, the reference message also gives some
important information, including a global time stamp, where
participants can achieve a synchronization accuracy of 1𝜇s.
Thatmeans the time jitter between all nodes can be negligible,
unless the main time constant of the system is shorter than
microseconds.

2.2. Modeling of the NCSs. According to the facts in
Section 2.1, we can give the following reasonable assump-
tions.

Assumption 1. The sensor nodes and controller nodes are all
time triggered.

Remark 2. According to the time-triggered protocol, the
intelligent nodes access the network in appointed time slots.
So it is reasonable to set sensor nodes and controller nodes
to be time triggered. And they should be idle at rest time
to reduce power consumption. The actuator nodes are either
time triggered or event triggered, because the data packets
from controller nodes arrive at almost the same time in each
basic cycle.

Remark 3. For time-triggered protocol, little conflictions
occur during transmission. It is reasonable to assume little
data loss. So, we do not consider data loss in this paper.

By Assumption 1, the network-induced time delay 𝜏
𝑖
=

𝜏
𝑖,𝑠𝑐
+ 𝜏
𝑖,𝑐𝑎

is constant, where 𝜏
𝑖,𝑠𝑐

is time delay between the
sensor node and controller node of the 𝑖th subsystem and 𝜏

𝑖,𝑐𝑎

is time delay between the controller node and actuator node.
Also, we have 𝜏

𝑖
< 𝑇, where 𝑇 is the basic cycle time.

Suppose that the plant of any subsystem is LTI and is
described as space state equation:

�̇�
𝑖
(𝑡) = 𝐴

𝑝𝑖
𝑥
𝑖
(𝑡) + 𝐵

𝑝𝑖
�̂�
𝑖
(𝑡) + 𝜔

𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶

𝑝𝑖
𝑥
𝑖
(𝑡) ,

(1)

where 𝑥
𝑖
(𝑡) ∈ R𝑛 is the state vector of the 𝑖th plant, 𝑖 =

1, . . . , 𝑁. �̂�
𝑖
(𝑡) ∈ R𝑚 is the control input vector, 𝑦

𝑖
(𝑡) ∈ R𝑟

is the output vector, 𝜔
𝑖
(𝑡) ∈ R𝑞 is the external disturbance,

and 𝐴
𝑝𝑖
∈ R𝑛×𝑛, 𝐵

𝑝𝑖
∈ R𝑛×𝑚, and 𝐶

𝑝𝑖
∈ R𝑟×𝑛 are known real

constant matrices.



4 Mathematical Problems in Engineering

t

Neighbor sensor node 1

Neighbor sensor node Ni

...

t k
+
1t k

t k
+
𝜏
1
,s
c

t k
+
𝜏
i,
sc

t k
+
𝜏
i,
c

t k
+
𝜏
i

Actuator node i
Controller node i

Sensor node i

Figure 5: Data flow of 𝑖th subsystem.

We use 𝑥
𝑖
to denote the sampled data in the receiver of the

𝑖th controller node; 𝑢
𝑖
denotes the control variable calculated

by the 𝑖th controller node.
By (1), the NCS can be described in discrete time as

𝑥
𝑖
(𝑡
𝑘+1
) = 𝐴

𝑖
𝑥
𝑖
(𝑡
𝑘
) + 𝐵
𝑖1
�̂�
𝑖
(𝑡
𝑘
) + 𝐵
𝑖2
�̂�
𝑖
(𝑡
𝑘
+ 𝜏
𝑖
)

+ 𝜔
𝑖
(𝑡
𝑘
) ,

𝑦
𝑖
(𝑡
𝑘
) = 𝐶
𝑖
𝑥
𝑖
(𝑡
𝑘
) ,

(2)

where 𝐴
𝑖
= 𝑒
𝐴𝑝𝑖𝑇, 𝐵

𝑖1
= ∫

𝜏𝑖

0

𝑒
𝐴𝑝𝑖𝑠
𝑑𝑠𝐵
𝑝𝑖
, and 𝐵

𝑖2
=

∫

𝑇

𝜏𝑖

𝑒
𝐴𝑝𝑖𝑠
𝑑𝑠𝐵
𝑝𝑖
. 𝐴
𝑖
, 𝐵
𝑖𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, 2, are known

matrices for 𝜏
𝑖
is constant.

Since NCSs are usually large scale, it is not advisable
to employ centralized control. In this paper, we employ a
distributed control law as (3) for the NCS:

𝑢
𝑖
= 𝐾
𝑖
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) , (3)

where 𝐾
𝑖
∈ R𝑚×𝑛 is gain of 𝑖th controller node. The control

law (3) means each subsystem controller uses both its own
feedback and also datum from its neighbors.

The data flow of the 𝑖th subsystem is shown in Figure 5;
𝑡
𝑘
+ 𝜏
𝑖,𝑐
is the moment the controller node calculates control

variable. So the plant input is

�̂�
𝑖
(𝑡)

=

{
{

{
{

{

𝐾
𝑖
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡
𝑘
) − 𝑥
𝑗
(𝑡
𝑘
)) , 𝑡 ∈ (𝑡

𝑘
+ 𝜏
𝑖
, 𝑡
𝑘+1
]

�̂�
𝑖
(𝑡
𝑘
) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘
+ 𝜏
𝑖
] ,

(4)

where 𝑡
𝑘
, 𝑡
𝑘+1

are the 𝑘th and (𝑘 + 1)th sampling time, 𝑡
𝑘+1
−

𝑡
𝑘
= 𝑇. Suppose the cycle time in Figure 4 is used in the

NCS; when the 𝑖th subsystem calculates the control variable,
(𝑘+1)th, . . . , 𝑁th subsystems have not sent their data packets.
That means the neighbor of the 𝑖th subsystem is𝑁

𝑖
= {V
𝑙
, V
𝑗
∈

𝐸, 𝑗 < 𝑖}.
Using (2) and (4), the closed-loop system can be de-

scribed as

𝑥
𝑖
(𝑡
𝑘+1
) = (𝐴

𝑖
+ 𝐵
𝑖2
𝐾
𝑖
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
)𝑥
𝑖
(𝑡
𝑘
)

+ 𝐵
𝑖1
𝐾
𝑖
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑥
𝑖
(𝑡
𝑘−1
)

− 𝐵
𝑖2
𝐾
𝑖
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑥
𝑗
(𝑡
𝑘
)

− 𝐵
𝑖1
𝐾
𝑖
∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
𝑥
𝑗
(𝑡
𝑘−1
) + 𝜔
𝑖
(𝑘) .

(5)

Considering that the consensus control is also an objec-
tive, we define a novel controlled output as follows:

𝑧
𝑖
(𝑡
𝑘
) = 𝑥
𝑖+1
(𝑡
𝑘
) − 𝑥
1
(𝑡
𝑘
) , 𝑖 = 2, . . . , 𝑁. (6)

Let 𝜉(𝑘) = (𝑥𝑇
1
(𝑡
𝑘
), . . . , 𝑥

𝑇

𝑁
(𝑡
𝑘
))
𝑇

∈ R𝑁𝑛, 𝑧(𝑘) = (𝑧𝑇
1
(𝑡
𝑘
),

. . . , 𝑧
𝑇

𝑁
(𝑡
𝑘
))
𝑇; we have the following model by (5):

𝜉 (𝑘 + 1) = (𝐴 + 𝐵
2
𝐾𝐿) 𝜉 (𝑘) + 𝐵

1
𝐾𝐿𝜉 (𝑘 − 1)

+ 𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐻𝜉 (𝑘) ,

(7)

where 𝐴 = diag(𝐴
1
, . . . , 𝐴

𝑁
), 𝐵
𝑖
= diag(𝐵

1𝑖
, . . . , 𝐵

𝑁𝑖
), 𝑖 =

1, 2,𝐻 = (
−𝐼 𝐼 0

.

.

. d
−𝐼 0 𝐼

), 𝐾 = diag(𝐾
1
, . . . , 𝐾

𝑁
), and 𝐿 = ⌊𝑙

𝑖𝑗
⌋ is

the Laplacian matrix, 𝑙
𝑖𝑗
= {−𝑎

𝑖𝑗
, 𝑗 ̸= 𝑖; ∑

𝑗∈𝑁𝑖
𝑎
𝑖𝑗
, 𝑗 = 𝑖}.

From the above, the objective is to design distributed
controller (3) such that

(1) the control law asymptotically solves the consensus
problem; that is, the states of subsystems satisfy

lim
𝑘→∞

(𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)) = 0; (8)

(2) the closed-loop system satisfies the following dissipa-
tion inequality:

‖𝑧 (𝑘)‖
2

2

‖𝜔 (𝑘)‖
2

2

=

∑
∞

𝑘=0
𝑧
𝑇

(𝑘) 𝑧 (𝑘)

∑
∞

𝑘=0
𝜔
𝑇
(𝑘) 𝜔 (𝑘)

< 𝛾
2

,

𝜔 (𝑘) ∈ 𝐿
2

[0,∞) .

(9)

3. Main Results

Firstly, some useful lemmas are given.

Lemma4 (see [23]). Assume𝑥(𝑘) ∈ R𝑛; then, for anymatrices
𝑋 > 0,𝑀

1
,𝑀
2
∈ R𝑛×𝑛 and a scalar function ℎ := ℎ(𝑘) ≥ 0,

the following inequality holds:

−

𝑘−1

∑

𝑖=𝑘−ℎ

𝜂
𝑇

(𝑖) 𝑋𝜂 (𝑖)

≤ 𝜁
𝑇

(𝑘)(Λ + ℎ[

𝑀
𝑇

1

𝑀
𝑇

2

]𝑋
−1

[𝑀
1
𝑀
2
]) 𝜁 (𝑘) ,

(10)
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whereΛ = [𝑀
𝑇

1
+𝑀1 −𝑀

𝑇

1
+𝑀2

∗ −𝑀
𝑇

2
−𝑀2

], 𝜁(𝑘) = [ 𝑥(𝑘)
𝑥(𝑘−ℎ)

], and 𝜂(𝑖) = 𝑥(𝑖+
1) − 𝑥(𝑖).

Using Lemma 4, we have the following lemma.

Lemma 5. Assume 𝜔(𝑘) = 0, if there exist symmetric positive
definitematrices𝑃,𝑄, and𝑍 andmatrices𝑀

1
,𝑀
2
, and𝐾 such

that

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑄 +𝑀
𝑇

1
+𝑀
1

−𝑀
𝑇

1
+𝑀
2

𝑀
𝑇

1
(𝐴 + 𝐵

2
𝐾𝐿 − 𝐼)

𝑇

(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

∗ −𝑄 −𝑀
𝑇

2
−𝑀
2
𝑀
𝑇

2
(𝐵
1
𝐾𝐿)

𝑇

(𝐵
1
𝐾𝐿)

𝑇

∗ ∗ −𝑍 0 0

∗ ∗ ∗ −𝑍
−1

0

∗ ∗ ∗ ∗ −𝑃
−1

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (11)

The NCS (7) is asymptotically stable.

Proof. For system (7), define 𝑦(𝑘) = 𝜉(𝑘) − 𝜉(𝑘 − 1). Choose
Lyapunov-Krasovskii function as follows:

𝑉 (𝑘) = 𝜉
𝑇

(𝑘) 𝑃𝜉 (𝑘) + 𝜉
𝑇

(𝑘 − 1)𝑄𝜉 (𝑘 − 1)

+ 𝑦
𝑇

(𝑘) 𝑍𝑦 (𝑘) .

(12)

Then, the difference of 𝑉(𝑘) is

Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘)

= 𝜉
𝑇

(𝑘 + 1) 𝑃𝜉 (𝑘 + 1) + 𝜉
𝑇

(𝑘) 𝑄𝜉 (𝑘)

+ 𝑦
𝑇

(𝑘 + 1) 𝑍𝑦 (𝑘 + 1) − 𝜉
𝑇

(𝑘) 𝑃𝜉 (𝑘)

− 𝜉
𝑇

(𝑘 − 1)𝑄𝜉 (𝑘 − 1) − 𝑦
𝑇

(𝑘) 𝑍𝑦 (𝑘)

= 𝜉
𝑇

(𝑘) [(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

𝑃 (𝐴 + 𝐵
2
𝐾𝐿)] 𝜉 (𝑘)

+ 2𝜉
𝑇

(𝑘) [(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿)] 𝜉 (𝑘 − 1)

+ 𝜉
𝑇

(𝑘 − 1) [(𝐵
1
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿)] 𝜉 (𝑘 − 1)

+ 𝜉
𝑇

(𝑘) 𝑄𝜉 (𝑘) + 𝑦
𝑇

(𝑘 + 1) 𝑍𝑦 (𝑘 + 1)

− 𝜉
𝑇

(𝑘) 𝑃𝜉 (𝑘) − 𝜉
𝑇

(𝑘 − 1)𝑄𝜉 (𝑘 − 1)

− 𝑦
𝑇

(𝑘) 𝑍𝑦 (𝑘) .

(13)

Aimed at the term 𝑦𝑇(𝑘 + 1)𝑍𝑦(𝑘 + 1), using (7),

𝑦
𝑇

(𝑘 + 1) 𝑍𝑦 (𝑘 + 1)

= (𝜉 (𝑘 + 1) − 𝜉 (𝑘))
𝑇

𝑍 (𝜉 (𝑘 + 1) − 𝜉 (𝑘))

= 𝜉
𝑇

(𝑘) [(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)] 𝜉 (𝑘)

+ 2𝜉
𝑇

(𝑘) [(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍(𝐵
1
𝐾𝐿)] 𝜉 (𝑘 − 1)

+ 𝜉
𝑇

(𝑘 − 1) [(𝐵
1
𝐾𝐿)

𝑇

𝑍(𝐵
1
𝐾𝐿)] 𝜉 (𝑘 − 1) .

(14)

By Lemma 4, the inequality holds:

− 𝑦
𝑇

(𝑘) 𝑍𝑦 (𝑘) ≤ [𝜉
𝑇

(𝑘) 𝜉
𝑇

(𝑘 − 1)]{Λ

+ [

𝑀
𝑇

1

𝑀
𝑇

1

]𝑍
−1

[𝑀
1
𝑀
2
]} [

𝜉 (𝑘)

𝜉 (𝑘 − 1)

] ,

(15)

where Λ = [𝑀
𝑇

1
+𝑀1 −𝑀

𝑇

1
+𝑀2

∗ −𝑀
𝑇

2
−𝑀2

]. Then, we have

Δ𝑉 (𝑘) ≤ 𝜉
𝑇

(𝑘) ⌊(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

𝑃 (𝐴 + 𝐵
2
𝐾𝐿)

+ (𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼) − 𝑃 + 𝑄⌋

⋅ 𝜉 (𝑘) + 2𝜉
𝑇

(𝑘) [(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿)

+ (𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍(𝐵
1
𝐾𝐿)] 𝜉 (𝑘 − 1) + 𝜉

𝑇

(𝑘

− 1) [(𝐵
1
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿) + (𝐵

1
𝐾𝐿)

𝑇

𝑍(𝐵
1
𝐾𝐿)

− 𝑄] 𝜉 (𝑘 − 1) + [𝜉
𝑇

(𝑘) 𝜉
𝑇

(𝑘 − 1)]{Λ

+ [

𝑀
𝑇

1

𝑀
𝑇

1

]𝑍
−1

[𝑀
1
𝑀
2
]} [

𝜉 (𝑘)

𝜉 (𝑘 − 1)

]

= [𝜉
𝑇

(𝑘) 𝜉
𝑇

(𝑘 − 1)]{Φ + Λ

+ [

𝑀
𝑇

1

𝑀
𝑇

1

]𝑍
−1

[𝑀
1
𝑀
2
]} [

𝜉 (𝑘)

𝜉 (𝑘 − 1)

] ,

(16)
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where Φ = [ 𝜙11 𝜙12
𝜙
𝑇

12
𝜙22

], and

𝜙
11
= (𝐴 + 𝐵

2
𝐾𝐿)

𝑇

𝑃 (𝐴 + 𝐵
2
𝐾𝐿)

+ (𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼) − 𝑃

+ 𝑄,

𝜙
12
= (𝐴 + 𝐵

2
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿)

+ (𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍(𝐵
1
𝐾𝐿) ,

𝜙
22
= (𝐵
1
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿) + (𝐵

1
𝐾𝐿)

𝑇

𝑍(𝐵
1
𝐾𝐿)

− 𝑄.

(17)

Hence, (7) is stable if the following matrix inequality holds:

Φ + Λ + [

𝑀
𝑇

1

𝑀
𝑇

1

]𝑍
−1

[𝑀
1
𝑀
2
] < 0. (18)

By Schur complements, inequality (18) is equivalent to

[

[

[

[

𝜙
11
+𝑀
𝑇

1
+𝑀
1
𝜙
12
−𝑀
𝑇

1
+𝑀
2
𝑀
𝑇

1

∗ 𝜙
22
−𝑀
𝑇

2
−𝑀
2
𝑀
𝑇

2

∗ ∗ −𝑍

]

]

]

]

< 0. (19)

That is equivalent to

[

[

[

[

[

(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

𝑃 (𝐴 + 𝐵
2
𝐾𝐿) − 𝑃 + 𝑄 +𝑀

𝑇

1
+𝑀
1
(𝐴 + 𝐵

2
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿) −𝑀

𝑇

1
+𝑀
2
𝑀
𝑇

1

∗ (𝐵
1
𝐾𝐿)

𝑇

𝑃 (𝐵
1
𝐾𝐿) − 𝑄 −𝑀

𝑇

2
−𝑀
2
𝑀
𝑇

2

∗ ∗ −𝑍

]

]

]

]

]

+

[

[

[

[

[

(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

(𝐵
1
𝐾𝐿)

𝑇

0

]

]

]

]

]

𝑍 [(𝐴 + 𝐵
2
𝐾𝐿 − 𝐼) (𝐵

1
𝐾𝐿) 0] < 0.

(20)

By Schur complements, we have

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑄 +𝑀
𝑇

1
+𝑀
1

−𝑀
𝑇

1
+𝑀
2

𝑀
𝑇

1
(𝐴 + 𝐵

2
𝐾𝐿 − 𝐼)

𝑇

∗ −𝑄 −𝑀
𝑇

2
−𝑀
2
𝑀
𝑇

2
(𝐵
1
𝐾𝐿)

𝑇

∗ ∗ −𝑍 0

∗ ∗ ∗ −𝑍
−1

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

(𝐵
1
𝐾𝐿)

𝑇

0

0

]

]

]

]

]

]

]

]

𝑃 [(𝐴 + 𝐵
2
𝐾𝐿) (𝐵

1
𝐾𝐿) 0 0] < 0.

(21)

Then, we have inequality (11). This completes the proof.

Theorem 6. With the distributed control law (3), the NCS (7)
achieves consensus with a given 𝐻

∞
disturbance attenuation

index 𝛾, if there exist symmetric positive definite matrices 𝑃,𝑄,
and 𝑍 and matrices𝑀

1
,𝑀
2
, and 𝐾, such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑄 +𝑀
𝑇

1
+𝑀
1
+ 𝐻
𝑇

𝐻 −𝑀
𝑇

1
+𝑀
2

0 𝑀
𝑇

1
(𝐴 + 𝐵

2
𝐾𝐿 − 𝐼)

𝑇

(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

∗ −𝑄 −𝑀
𝑇

2
−𝑀
2

0 𝑀
𝑇

2
(𝐵
1
𝐾𝐿)

𝑇

(𝐵
1
𝐾𝐿)

𝑇

∗ ∗ −𝛾
2

𝐼 0 𝐼 𝐼

∗ ∗ ∗ −𝑍 0 0

∗ ∗ ∗ ∗ −𝑍
−1

0

∗ ∗ ∗ ∗ ∗ −𝑃
−1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (22)

And if the matrix inequality is feasible, the feedback matrix of
the consensus protocol is 𝐾.

Proof. Let Lyapunov-Krasovskii function as (12). Using (7)
and Lemmas 4 and 5, we have
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Δ𝑉 (𝑘) ≤ [𝜉
𝑇

(𝑘) 𝜉
𝑇

(𝑘 − 1) 𝜔
𝑇

(𝑘)] Φ̂
[

[

[

𝜉 (𝑘)

𝜉 (𝑘 − 1)

𝜔 (𝑘)

]

]

]

,

Φ̂ =

[

[

[

[

𝜙
11
+𝑀
𝑇

1
+𝑀
1
+𝑀
𝑇

1
𝑍
−1

𝑀
1
𝜙
12
−𝑀
𝑇

1
+𝑀
2
+𝑀
𝑇

2
𝑍
−1

𝑀
1
𝜙
13

∗ 𝜙
22
−𝑀
𝑇

2
−𝑀
2
+𝑀
𝑇

2
𝑍
−1

𝑀
2
𝜙
23

∗ ∗ 𝑃 + 𝑍

]

]

]

]

,

𝜙
13
= (𝐴 + 𝐵

2
𝐾𝐿)

𝑇

𝑃 + (𝐴 + 𝐵
2
𝐾𝐿 − 𝐼)

𝑇

𝑍,

𝜙
23
= (𝐵
1
𝐾𝐿)

𝑇

(𝑃 + 𝑍) .

(23)

Firstly, from condition (22), we have (11), so the NCS (7) is
asymptotically stable. Then, we have

lim
𝑘→∞

(𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)) = 0. (24)

Then, we find𝐻
∞

performance index.
For any 𝑘 > 0, consider the following cost function:

𝐽 =

∞

∑

𝑘=0

[𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘)] . (25)

By the zero initial condition (𝑉(0) = 0), we have

𝐽 =

∞

∑

𝑘=0

[𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) + Δ𝑉 (𝑘)]

− 𝑉 (∞) + 𝑉 (0)

≤

∞

∑

𝑘=0

[𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) + Δ𝑉 (𝑘)] ,

(26)

for

𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝜔
𝑇

(𝑘) 𝜔 (𝑘) + Δ𝑉 (𝑘)

= [𝜉
𝑇

(𝑘) 𝜉
𝑇

(𝑘 − 1) 𝜔
𝑇

(𝑘)]Θ
[

[

[

𝜉 (𝑘)

𝜉 (𝑘 − 1)

𝜔 (𝑘)

]

]

]

,

(27)

where

Θ =

[

[

[

[

𝜙
11
+𝑀
𝑇

1
+𝑀
1
+𝑀
𝑇

1
𝑍
−1

𝑀
1
+ 𝐻
𝑇

𝐻 𝜙
12
−𝑀
𝑇

1
+𝑀
2
+𝑀
𝑇

2
𝑍
−1

𝑀
1

𝜙
13

∗ 𝜙
22
−𝑀
𝑇

2
−𝑀
2
+𝑀
𝑇

2
𝑍
−1

𝑀
2

𝜙
23

∗ ∗ 𝑃 + 𝑍 − 𝛾
2

𝐼

]

]

]

]

. (28)

According to Schur complements, condition (22) is equiva-
lent to Θ < 0. That is,

∞

∑

𝑘=0

𝑧
𝑇

(𝑘) 𝑧 (𝑘) < 𝛾
2

∞

∑

𝑘=0

𝜔
𝑇

(𝑘) 𝜔 (𝑘) , (29)

so the robust 𝐻
∞

consensus control is achieved. This com-
pletes the proof.

Note that condition (22) is nonconvex as it contains 𝑃,
𝑃
−1, 𝑍, and 𝑍−1. Using cone complement linearization [24],

we have the following corollary.

Corollary 7. With the distributed control law (3), the NCS (7)
achieves consensus with a given 𝐻

∞
disturbance attenuation

index 𝛾, if there exist symmetric positive definite matrices 𝑃,𝑄,
𝑍, 𝑆, and 𝑇 and matrices𝑀

1
,𝑀
2
, and 𝐾, such that

min
𝑃,𝑄,𝑀1,𝑀2 ,𝐾

[tr (𝑍𝑆 + 𝑃𝑇)]

𝑠.𝑡.

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑃 + 𝑄 +𝑀
𝑇

1
+𝑀
1
+ 𝐻
𝑇

𝐻 −𝑀
𝑇

1
+𝑀
2

0 𝑀
𝑇

1
(𝐴 + 𝐵

2
𝐾𝐿 − 𝐼)

𝑇

(𝐴 + 𝐵
2
𝐾𝐿)

𝑇

∗ −𝑄 −𝑀
𝑇

2
−𝑀
2

0 𝑀
𝑇

2
(𝐵
1
𝐾𝐿)

𝑇

(𝐵
1
𝐾𝐿)

𝑇

∗ ∗ −𝛾
2

𝐼 0 𝐼 𝐼

∗ ∗ ∗ −𝑍 0 0

∗ ∗ ∗ ∗ −𝑆 0

∗ ∗ ∗ ∗ ∗ −𝑇

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(30)
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[

𝑍 𝐼

𝐼 𝑆

] ≥ 0, (31)

[

𝑃 𝐼

𝐼 𝑇

] ≥ 0. (32)

If the matrix inequality is feasible, then the feedback matrix of
the consensus protocol is 𝐾.

The proof is omitted.
In order to design distributed control law (3), we present

an iterative algorithm as follows.

Algorithm 8. (1) For (30)–(32), find a feasible solution:𝑃0,𝑄0,
𝑍
0,𝑀0
1
,𝑀0
2
, 𝐾0, 𝑆0, and 𝑇0, and let ℎ = 0.

(2) Set 𝑃ℎ+1 = 𝑃ℎ, 𝑍ℎ+1 = 𝑍ℎ, 𝑆ℎ+1 = 𝑆ℎ, and 𝑇ℎ+1 = 𝑇ℎ,
and solve the following optimal problem:

min [tr (𝑍ℎ𝑆 + 𝑆ℎ𝑍 + 𝑃ℎ𝑇 + 𝑇ℎ𝑃)]

subject to (30) , (31) , (32) .

(33)

(3) If a stopping criterion given in advance is satisfied, the
iteration ends.

Otherwise, go to Step (2).

Remark 9. A simple stopping criterion is that 𝑃ℎ, 𝑍ℎ provide
a feasible solution to inequality (30). And using LMI toolbox,
it is easily confirmed.

4. Numerical Examples

Example 1. We use the DCmotors of [25] as the plants of the
NCS in Figure 1, where the transfer function of the DCmotor
is

𝐺 (𝑠) =

2029.826

(𝑠 + 26.29) (𝑠 + 2.296)

. (34)

The DC motor model is rewritten in state space as

�̇� (𝑡) = [

0 1

−60.3756 −28.586

] 𝑥 (𝑡)

+ [

0

2029.826

] 𝑢 (𝑡) ,

𝑦 (𝑡) = [1 0] 𝑥 (𝑡) .

(35)

And, in this example, the basic cycle time is chosen as 𝑇 =
0.005 s, there are three DC motors connected by the Time-
Triggered CAN, and the total network-induced delay of each
closed loop is 𝜏

1
= 0.001 s, 𝜏

2
= 0.002 s, and 𝜏

3
= 0.003 s.

Then, we have the parameters in (7) as follows:

𝐴 =

[

[

[

[

[

[

[

[

[

[

[

[

0.9993 0.004658

−0.2812 0.8861

0.9993 0.004658

−0.2812 0.8861

0.9993 0.004658

−0.2812 0.8861

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐵
1
=

[

[

[

[

[

[

[

[

[

[

[

[

0.001

2.001

0.0040

3.946

0.0089

5.836

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐵
2
=

[

[

[

[

[

[

[

[

[

[

[

[

0.0231

7.454

0.202

5.509

0.0153

3.6190

]

]

]

]

]

]

]

]

]

]

]

]

,
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𝐿 =

[

[

[

[

[

[

[

[

[

[

[

[

1

1

−1 1

−1 1

−1 1

−1 1

]

]

]

]

]

]

]

]

]

]

]

]

.

(36)

Here, we just consider the stability of the whole NCS;
then using the matrix inequality in Lemma 5 together with
Algorithm 8, the following feasible solution can be obtained
by MATLAB LMI toolbox:
𝑃

=

[

[

[

[

[

[

[

[

[

[

[

[

0.7331 0.0011 −0.0022 0.0111 −0.0001 −0.0001

0.0011 0.8764 0.0037 −0.0140 0.0001 0.0002

−0.0022 0.0037 0.7252 0.0253 −0.0017 0.0064

0.0111 −0.0140 0.0253 0.8117 0.0024 −0.0097

−0.0001 0.0001 −0.0017 0.0024 0.7239 0.0301

−0.0001 0.0002 0.0064 −0.0097 0.0301 0.7989

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑄

=

[

[

[

[

[

[

[

[

[

[

[

[

0.4566 0.0114 −0.0121 0.0142 0.0001 −0.0007

0.0114 0.5985 0.0164 −0.0211 −0.0001 0.0010

−0.0121 0.0164 0.4484 0.0223 −0.0114 0.0134

0.0142 −0.0211 0.0223 0.5772 0.0150 −0.0187

0.0001 −0.0001 −0.0114 0.0150 0.4522 0.0184

−0.0007 0.0010 0.0134 −0.0187 0.0184 0.5796

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑍

=

[

[

[

[

[

[

[

[

[

[

[

[

1.0164 0.0003 0.0002 −0.0002 0.0000 0.0000

0.0003 0.9573 −0.0003 0.0156 −0.0000 0.0003

0.0002 −0.0003 1.0174 −0.0011 0.0000 −0.0000

−0.0002 0.0156 −0.0011 0.9825 −0.0001 0.0053

0.0000 −0.0000 0.0000 −0.0001 1.0178 −0.0016

0.0000 0.0003 −0.0000 0.0053 −0.0016 0.9887

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑀
1

=

[

[

[

[

[

[

[

[

[

[

[

[

−0.9176 −0.0010 −0.0035 0.0049 0.0000 −0.0001

−0.0001 −0.8679 0.0047 −0.0191 0.0000 −0.0001

0.0036 −0.0050 −0.9193 0.0017 −0.0043 0.0058

−0.0051 −0.0056 0.0019 −0.8903 0.0057 −0.0120

−0.0000 0.0000 0.0054 −0.0072 −0.9205 0.0040

0.0001 −0.0004 −0.0072 0.0052 0.0029 −0.8969

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑀
2

=

[

[

[

[

[

[

[

[

[

[

[

[

0.8879 −0.0005 0.0045 −0.0060 0.0000 0.0001

−0.0011 0.8353 −0.0061 0.0200 −0.0000 0.0001

−0.0037 0.0050 0.8897 −0.0032 0.0055 −0.0071

0.0053 0.0047 −0.0033 0.8570 −0.0072 0.0134

0.0000 0.0000 −0.0057 0.0075 0.8899 −0.0041

−0.0001 0.0003 0.0078 −0.0060 −0.0031 0.8618

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐾 =
[

[

[

0.0229 −0.0341

0.0117 −0.0164

0.0108 −0.0146

]

]

]

.

(37)

Using above 𝐾, we have the state response curves shown in
Figure 6(a), where the initial state 𝑥𝑇

𝑖
(0) = [−1 1], 𝑥𝑇

𝑖
(−𝑡) =

[0 0], 𝑖 = 1, 2, 3. It is clear that the system is asymptotically
stable.

When we set 𝐿 = [

[

1

1

−1 1

−1 1

−1 0 1

−1 0 1

]

]

, the control gain matrix

is 𝐾 = [ 0.0228 −0.0340 0.0107 −0.0150
0.0105 −0.0144

]. The resulting
state response curve is shown in Figure 6(b), with the same
initial condition as in Figure 6(a).

For we are concerned with the stability only, the con-
trolled output 𝑧(𝑡) cannot converge to zero. That means
consensus is not achieved with above control gains, as shown
in Figure 7, where the input signal is 𝑟(𝑡) = [ 0

1
], 𝑡 > 0.

Example 2. Each subsystem of the NCS in Figure 1 is
described as follows (see [1]):

�̇� (𝑡) = [

0 1

0 −0.1

] 𝑥 (𝑡) + [

0

0.1

] �̂� (𝑡) ,

𝑦 (𝑡) = [1 0] 𝑥 (𝑡) .

(38)

The basic cycle time is chosen as 𝑇 = 1 s; there are
three subsystems in the NCS. The network protocol is Time-
Triggered CAN. And the total network-induced delay of each
subsystem is 𝜏

1
= 0.1 s, 𝜏

2
= 0.2 s, and 𝜏

3
= 0.3 s.

We have the parameters in (7) as follows:

𝐴 =

[

[

[

[

[

[

[

[

[

[

[

[

1 0.9516

0 0.9048

1 0.9516

0 0.9048

1 0.9516

0 0.9048

]

]

]

]

]

]

]

]

]

]

]

]

,
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Figure 6: The state response curve.

𝐵
1
=

[

[

[

[

[

[

[

[

[

0.0005

0.0100

0.0020

0.0198

0.0045

0.0296

]

]

]

]

]

]

]

]

]

,

𝐵
2
=

[

[

[

[

[

[

[

[

[

0.0479

0.0852

0.0464

0.0754

0.0439

0.0656

]

]

]

]

]

]

]

]

]

,

𝐿 = 0.5 ∗

[

[

[

[

[

[

[

[

[

[

[

[

1

1

−1 1

−1 1

−1 1

−1 1

]

]

]

]

]

]

]

]

]

]

]

]

.

(39)

Set 𝛾 = 0.8; then using Corollary 7 and solving LMIs (30),
(31), and (32) with MATLAB YALMIP tools box, it is found
that

𝑃 =

[

[

[

[

[

[

[

[

[

[

[

[

27.7529 60.1707 1.0187 8.0159 −1.3427 0.3512

60.1707 151.6629 3.2651 9.8879 −0.2402 −2.0660

1.0187 3.2651 5.3291 11.7535 −0.0931 0.0056

8.0159 9.8879 11.7535 40.4633 −0.5335 −2.2785

−1.3427 −0.2402 −0.0931 −0.5335 2.3633 2.4611

0.3512 −2.0660 0.0056 −2.2785 2.4611 11.1664

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑄 =

[

[

[

[

[

[

[

[

[

[

[

[

5.5460 13.3815 0.5242 1.8687 −0.0157 0.0613

13.3815 34.2054 0.2486 1.1222 −0.2377 −0.8933

0.5242 0.2486 1.5205 4.8289 −0.0560 −0.2246

1.8687 1.1222 4.8289 16.9049 −0.5001 −2.0982

−0.0157 −0.2377 −0.0560 −0.5001 0.4603 1.4683

0.0613 −0.8933 −0.2246 −2.0982 1.4683 6.3043

]

]

]

]

]

]

]

]

]

]

]

]

,



Mathematical Problems in Engineering 11

𝑍 =

[

[

[

[

[

[

[

[

[

[

[

[

0.1821 0.0955 0.1454 0.0970 0.1446 0.0989

0.0955 0.1005 0.0966 0.1004 0.0976 0.1003

0.1454 0.0966 0.2006 0.0967 0.1235 0.0991

0.0970 0.1004 0.0967 0.1004 0.0983 0.1003

0.1446 0.0976 0.1235 0.0983 0.1997 0.0989

0.0989 0.1003 0.0991 0.1003 0.0989 0.1002

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑇 =

[

[

[

[

[

[

[

[

[

[

[

[

4.0623 −0.9325 1.6962 −0.8017 1.6925 −0.6702

−0.9325 19.6255 −0.6937 −13.4188 −0.6407 3.6191

1.6962 −0.6937 4.3974 −0.9371 1.3467 −0.6085

−0.8017 −13.4188 −0.9371 38.6762 −0.6207 −18.4034

1.6925 −0.6407 1.3467 −0.6207 4.4193 −0.6187

−0.6702 3.6191 −0.6085 −18.4034 −0.6187 87.4037

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑆 =

[

[

[

[

[

[

[

[

[

[

[

[

0.0010 0.0229 −0.0001 −0.0089 −0.0002 −0.0146

0.0229 0.9120 −0.0065 −0.8100 −0.0014 −0.1140

−0.0001 −0.0065 0.0004 0.0162 −0.0000 −0.0099

−0.0089 −0.8100 0.0162 1.3595 −0.0021 −0.5577

−0.0002 −0.0014 −0.0000 −0.0021 0.0002 0.0037

−0.0146 −0.1140 −0.0099 −0.5577 0.0037 0.7012

]

]

]

]

]

]

]

]

]

]

]

]

× 10
5

,

𝑀
1
=

[

[

[

[

[

[

[

[

[

[

[

[

−0.1821 −0.0955 −0.1454 −0.0970 −0.1446 −0.0989

−0.0955 −0.1005 −0.0966 −0.1004 −0.0976 −0.1003

−0.1454 −0.0966 −0.2006 −0.0967 −0.1235 −0.0991

−0.0970 −0.1004 −0.0967 −0.1004 −0.0983 −0.1003

−0.1446 −0.0976 −0.1235 −0.0983 −0.1997 −0.0989

−0.0989 −0.1003 −0.0991 −0.1003 −0.0989 −0.1002

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑀
2
=

[

[

[

[

[

[

[

[

[

[

[

[

0.1821 0.0955 0.1454 0.0970 0.1446 0.0989

0.0955 0.1005 0.0966 0.1004 0.0976 0.1003

0.1454 0.0966 0.2006 0.0967 0.1235 0.0991

0.0970 0.1004 0.0967 0.1004 0.0983 0.1003

0.1446 0.0976 0.1235 0.0983 0.1997 0.0989

0.0989 0.1003 0.0991 0.1003 0.0989 0.1002

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐾 =
[

[

[

−4.2494 −10.9620

−1.98 −6.7336

−1.328 −5.7161

]

]

]

.

(40)

Using above 𝐾, we have the state response curves shown in
Figures 8 and 9.

In Figure 8, the disturbance signal 𝜔(𝑡) = 0, and the
initial state 𝑥𝑇

𝑖
(0) = [−1 1], 𝑥𝑇

𝑖
(−𝑡) = [0 0], 𝑖 = 1, 2, 3.

It is clear that the system is asymptotically stable. And,

in Figure 9, 𝜔(𝑡) = {[1 1]

𝑇

, 𝑡 ∈ [10, 20]; 0, others};
we can see the state will converge to a certain value; 𝐻

∞

performance index is satisfied. In Figure 10, the controlled
outputs converge to zero with 𝜔(𝑡) = {[1 1]

𝑇

, 𝑡 ∈

[10, 20]; 0, others}. When 𝜔(𝑡) = [ 0
1
], 𝑡 > 0, the controlled
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Figure 7: The consensus of Example 1.
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Figure 8: The state response curve without input signal.

output is shown in Figure 11, which means the consensus is
achieved.

5. Conclusions

In this paper, a class of networked control systems with
multiple subsystems is studied, including the modeling and
stability analysis for the massive networked control systems
with multiple subsystems and distributed control law. Firstly,
the time-triggered protocol is introduced to the system,
and the executive windows are scheduled to each intelligent
node, which need to access network for real-time control.
Secondly, while considering the delay, the model of the NCS
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Figure 9: The state response curve with input signal.
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Figure 10: The consensus of Example 2.

with distributed controller is presented.Then,𝐻
∞
consensus

control problem is studied. With the Lyapunov-Krasovskii
functional method, the consensus is analyzed, and the suf-
ficient condition with matrix inequalities is given. Finally,
simulations are given to validate the proposed approach. Our
further work will focus on such problems as tracking control
problems and synchronous coordinative problems.
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