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The paper presents a novel multiple attribute decision-making (MADM) approach for the problem with completely unknown
attribute weights in the framework of interval-valued intuitionistic fuzzy sets (IVIFS). First, the fuzzy cross entropy and
discrimination degree of IVIFS are defied. Subsequently, based on the discrimination degree of IVIFS, a nonlinear programming
model to minimize the total deviation of discrimination degrees between alternatives and the positive ideal solution PIS as well
as the negative ideal solution (NIS) is constructed to obtain the attribute weights and, then, the weighted discrimination degree.
Finally, all the alternatives are ranked according to the relative closeness coefficients using the extended TOPSIS method, and the
most desirable alternative is chosen. The proposed approach extends the research method of MADM based on the IVIF cross
entropy. Finally, we illustrate the feasibility and validity of the proposed method by two examples.

1. Introduction

The multiple attribute decision-making (MADM) is a com-
mon approach to modeling in the social science, economics,
management, decision making, and some other multidisci-
pline fields. The MADM is based on a set of theories, meth-
ods, and procedures, which are used to solve the problem of
determining a reasonable or optimal alternative from a set of
alternatives faced by the decision maker.

Since the introduction of the fuzzy sets (FS) theory by
Zadeh [1], it has been successfully applied to various fields.
However, the traditional FSs cannot fully describe informa-
tion in some research problems, such as determining towhich
set the membership degree of an element belongs. Another
example of the limitations of the traditional FS theory is that
it cannot work with membership degrees containing certain
hesitation or uncertainty. As a result of these limitations,
Atanassov [2] developed the concept of intuitionistic fuzzy
sets (IFS) in 1986,which generalized the FS theory. An IFS can
be described by a membership degree and nonmembership
degree, which is more flexible and practical than the standard
FS concept. Today the IFS theory is widely used in problems
dealing with vagueness and uncertainty.

In the MADM, due to the usual complexity and uncer-
tainty of the objective world, as well as the limitations of
the knowledge level, and asymmetry and fuzziness of the
information obtained from different decision makers (DM),
sometimes it is hard to use an accurate real value to describe
the membership and nonmembership degrees of IFS. As a
result, the membership and nonmembership degrees often
take the form of interval numbers. Atanassov and Gargov [3]
introduced the concept of interval-valued intuitionistic fuzzy
sets (IVIFS) based on the extended IFS theory, which uses
interval numbers instead of real numbers to denote themem-
bership and nonmembership degrees. IVIFS theory improves
the ability of expressing the uncertainty of information.

In recent years, with the rapid development of the social
economy and increased volume of information, the applica-
tion of the MADM to real world problems has become more
complex, obscure, and uncertain. Many theories and meth-
ods of IFS and IVIFS have been developed and extensively
applied to solve the fuzzy MADM problems, such as group
evaluation [4], logic programming [5], medical diagnosis
[6, 7], and pattern recognition [6, 8].

In the fuzzy set theory, the entropy as a measure of
fuzziness was first used by Zadeh [9], which has become a
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very important notion of measuring the degree of fuzziness
or uncertainty of information [10]. The starting point of the
cross-entropy approach is the information theory developed
by Shannon [11]. Kullback and Leibler [12] proposed a mea-
sure of the “cross-entropy distance” between two probability
distributions. Shang and Jiang [13] developed the fuzzy cross
entropy, which was used to denote the symmetric discrimi-
nation information measure between two FSs. Vlachos and
Sergiadis [14] introduced the concepts of the intuitionistic
fuzzy cross entropy and discrimination information for
IFS. Then Ye [15] developed a MADM method based on
the intuitionistic fuzzy cross entropy (IF cross entropy).
Moreover, Ye [16] introduced the concept of the interval-
valued intuitionistic fuzzy cross entropy (IVIF cross entropy),
analogous to the IF cross entropy.

Although the entropy has drawn the attention of many
researchers, not much effort has been paid to investigate the
application of the IVIF cross entropy, or to avoid information
loss in the process of information aggregation. In particular,
the research related to the direct usage of the IVIF cross
entropy to determine attribute weights and rank alternatives
is at a relatively early stage of development. The goal of the
paper is to propose a novel approach to the MADM problem
based on the IVIF cross entropy used to rank the alternatives
and choose the best alternative, where the information about
attribute weights for alternatives is completely unknown and
the decision matrix is defined in terms of IVIFSs.

The rest of the paper is organized as follows. In Section 2,
a brief introduction to the IFS and IVFS theory and the
fuzzy cross entropy is given. In Section 3, a novel approach
to the MADM problem based on the IVIF cross entropy
is proposed, which allows determination of the completely
unknown attribute weights using both the positive ideal
solution (PIS) and negative ideal solution (NIS) as the object
of reference, to apply the extended TOPSIS to rank all
alternatives. In Section 4, an example is given to illustrate
the proposed MADM method. Finally, Section 5 provides
concluding remarks and suggestions for future research.

2. Preliminaries

In this section, we introduce some basic knowledge and
necessary concepts related to the IFS and IVIFS theories and
the fuzzy cross entropy.

2.1. Intuitionistic Fuzzy Sets (IFS) and Interval-Valued
Intuitionistic Fuzzy Sets (IVIFS)

Definition 1 (see [17]). Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a finite

universal set. An IFS 𝐴 in 𝑋 can be expressed as 𝐴 =

{⟨𝑥
𝑖
, 𝜇
𝐴
(𝑥
𝑖
), V
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}, where 𝜇

𝐴
(𝑥
𝑖
) ∈ [0, 1], V

𝐴
(𝑥
𝑖
) ∈

[0, 1], and 0 ≤ 𝜇
𝐴
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
) ≤ 1 for any 𝑥

𝑖
∈ 𝑋. The num-

bers 𝜇
𝐴
(𝑥
𝑖
) and V

𝐴
(𝑥
𝑖
) denote the membership degree and

nonmembership degree of the element 𝑥
𝑖
in 𝐴, respectively.

If 𝐴𝑐 denotes the complement of 𝐴, then it is defined as
follows:

𝐴
𝑐
= {⟨𝑥

𝑖
, V
𝐴
(𝑥
𝑖
) , 𝜇
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋} . (1)

Definition 2 (see [18]). Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a finite

universal set. An IVIFS 𝐴 in𝑋 is defined as 𝐴 = {⟨𝑥
𝑖
, 𝜇
𝐴
(𝑥
𝑖
),

Ṽ
𝐴
(𝑥
𝑖
)⟩ | 𝑥

𝑖
∈ 𝑋} = {⟨𝑥

𝑖
, [𝜇
𝐿

𝐴
(𝑥
𝑖
), 𝜇
𝑈

𝐴
(𝑥
𝑖
)], [Ṽ𝐿
𝐴
(𝑥
𝑖
), Ṽ𝑈
𝐴
(𝑥
𝑖
)]⟩ |

𝑥
𝑖
∈ 𝑋}, where 𝜇

𝐴
(𝑥
𝑖
) ∈ [0, 1] and Ṽ

𝐴
(𝑥
𝑖
) ∈ [0, 1] hold

for every 𝑥
𝑖
∈ 𝑋. The numbers 𝜇

𝐴
(𝑥
𝑖
) and Ṽ

𝐴
(𝑥
𝑖
) denote

the membership and nonmembership degrees of the element
𝑥
𝑖
in 𝐴, respectively. 𝜇𝐿

𝐴
(𝑥
𝑖
) and 𝜇

𝑈

𝐴
(𝑥
𝑖
) express the lower

and upper bounds of 𝜇
𝐴
(𝑥
𝑖
), respectively; Ṽ𝐿

𝐴
(𝑥
𝑖
) and Ṽ𝑈

𝐴
(𝑥
𝑖
)

express the lower and upper bounds of Ṽ
𝐴
(𝑥
𝑖
), respectively,

with the condition 0 ≤ 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
) ≤ 1.

If 𝐴𝑐 denotes the complement of 𝐴, then it is defined as
follows:

𝐴
𝑐
= {⟨𝑥

𝑖
, Ṽ
𝐴
(𝑥
𝑖
) , 𝜇
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}

= {⟨𝑥
𝑖
, [Ṽ𝐿
𝐴
(𝑥
𝑖
) , Ṽ𝑈
𝐴
(𝑥
𝑖
)] , [𝜇

𝐿

𝐴
(𝑥
𝑖
) , 𝜇
𝑈

𝐴
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋} .

(2)

The expression IVIFS(𝑋) stands for all IVIFSs in𝑋 [19].

Definition 3. 𝑎 = ([𝑎, 𝑏], [𝑐, 𝑑]) is an interval-valued intu-
itionistic fuzzy number (IVIFN) in IVIFS 𝐴, where [𝑎, 𝑏] ⊆
[0, 1] and [𝑐, 𝑑] ⊆ [0, 1], 𝑏 + 𝑑 ≤ 1. 𝑎∗ = ([1, 1], [0, 0]) is the
biggest IVIFN. In particular, when 𝑎 = 𝑏 and 𝑐 = 𝑑, IVIFN 𝑎

degrades into the intuitionistic fuzzy number (IFN).

2.2. IF Cross Entropy

Definition 4 (see [14, 20]). Let 𝐴 and 𝐵 be two IFSs in the
universe 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}, where 𝐴 = {𝐴(𝑥

1
), 𝐴(𝑥

2
), . . . ,

𝐴(𝑥
𝑛
)} and 𝐵 = {𝐵(𝑥

1
), 𝐵(𝑥

2
), . . . , 𝐵(𝑥

𝑛
)}. The IF cross

entropy between 𝐴 and 𝐵 is defined as follows:

𝐼IFS (𝐴, 𝐵) =
𝑛

∑

𝑖=1

[𝜇
𝐴
(𝑥
𝑖
) log
2

2𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)

+ V
𝐴
(𝑥
𝑖
) log
2

2V
𝐴
(𝑥
𝑖
)

V
𝐴
(𝑥
𝑖
) + V
𝐵
(𝑥
𝑖
)
] ,

(3)

where 𝐼IFS(𝐴, 𝐵) is used as the divergence measure between
𝐴 and 𝐵. In fact, 𝐼IFS(𝐴, 𝐵) can also be seen as a distance
measure. However, 𝐼IFS(𝐴, 𝐵) is not symmetric. For this, a
symmetric measure is defined as follows:

𝐷IFS (𝐴, 𝐵) = 𝐼IFS (𝐴, 𝐵) + 𝐼IFS (𝐵, 𝐴) , (4)

where 𝐷IFS(𝐴, 𝐵) is called the symmetric IF cross entropy
between 𝐴 and 𝐵, or the discrimination degree, which is a
symmetric discrimination information measure for IFS [17].

According to Shannon’s inequality (see [21]), it can easily
be verified that 𝐷IFS(𝐴, 𝐵) ≥ 0, 𝐷IFS(𝐴, 𝐵) = 𝐷IFS(𝐵, 𝐴),
𝐷IFS(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵. Moreover, we can easily see that
𝐷IFS(𝐴

𝑐
, 𝐵
𝑐
) = 𝐷IFS(𝐴, 𝐵), and Zhang and Jiang proved that

𝐷IFS(𝐴, 𝐴
𝑐
) = 2𝑛log

2
2 = 2𝑛, which is themaximum [20]; that

is, 0 ≤ 𝐷IFS(𝐴, 𝐵) ≤ 2𝑛, and the maximum divergence mea-
sure between IVIFNs 𝑎 and 𝑏 is 2. The larger the difference
between𝐴 and𝐵 is, the larger𝐷IFS(𝐴, 𝐵) is and vice versa [16].
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2.3. IVIFCross Entropy. How tomeasure the distance between
two IVIFNs is an important subject in the FS theory. Because
the difference between the two systems can be defined by the
cross entropy, the IVIF cross entropy is presented to define
the information measure for the discrimination between two
IVIFSs.

Definition 5. Similar to Zhang and Jiang [20] and Ye [15], we
use the following definition of the IVIF cross entropy.

Let 𝐴 and 𝐵 be two IVIFSs in the universe 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, where

𝐴 = {⟨𝑥
𝑖
, 𝜇
𝐴
(𝑥
𝑖
) , Ṽ
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}

= {⟨𝑥
𝑖
, [𝜇
𝐿

𝐴
(𝑥
𝑖
) , 𝜇
𝑈

𝐴
(𝑥
𝑖
)] , [Ṽ𝐿
𝐴
(𝑥
𝑖
) , Ṽ𝑈
𝐴
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋} ,

𝐵 = {⟨𝑥
𝑖
, 𝜇
𝐵
(𝑥
𝑖
) , Ṽ
𝐵
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}

= {⟨𝑥
𝑖
, [𝜇
𝐿

𝐵
(𝑥
𝑖
) , 𝜇
𝑈

𝐵
(𝑥
𝑖
)] , [Ṽ𝐿
𝐴
(𝑥
𝑖
) , Ṽ𝑈
𝐴
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋} .

(5)

So, the average possible membership degree of element 𝑥
𝑖

in IVIFSs 𝐴 and 𝐵 can be, respectively, defined as [20]

𝜇
𝐴
(𝑥
𝑖
) =

1

2
(

𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
)

2
+ 1 −

Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
)

2
)

=

𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
)

4
,

𝜇
𝐵
(𝑥
𝑖
) =

1

2
(

𝜇
𝐿

𝐵
(𝑥
𝑖
) + 𝜇
𝑈

𝐵
(𝑥
𝑖
)

2
+ 1 −

Ṽ𝐿
𝐵
(𝑥
𝑖
) + Ṽ𝑈
𝐵
(𝑥
𝑖
)

2
)

=

𝜇
𝐿

𝐵
(𝑥
𝑖
) + 𝜇
𝑈

𝐵
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐵
(𝑥
𝑖
) − Ṽ𝑈
𝐵
(𝑥
𝑖
)

4
.

(6)

The average possible nonmembership degree of element
𝑥
𝑖
in IVIFSs 𝐴 and 𝐵 can be, respectively, defined as

V
𝐴
(𝑥
𝑖
) = 1 − 𝜇

𝐴
(𝑥
𝑖
)

=

2 − 𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
)

4
,

V
𝐵
(𝑥
𝑖
) = 1 − 𝜇

𝐵
(𝑥
𝑖
)

=

2 − 𝜇
𝐿

𝐵
(𝑥
𝑖
) − 𝜇
𝑈

𝐵
(𝑥
𝑖
) + Ṽ𝐿
𝐵
(𝑥
𝑖
) + Ṽ𝑈
𝐵
(𝑥
𝑖
)

4
.

(7)

It is natural to define the fuzzy cross entropy between
IVIFSs 𝐴 and 𝐵 as follows.

Definition 6 (see [16, 20]). The IVIF cross entropy between
IVIFSs 𝐴 and 𝐵 in the universe of discourse 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} can be defined as

𝐼IVIFS (𝐴, 𝐵)

=

𝑛

∑

𝑖=1

1

4
(𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
))

⋅ log
2

𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
)

(1/2) ⋅ [(𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
)) + (𝜇

𝐿

𝐵
(𝑥
𝑖
) + 𝜇
𝑈

𝐵
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐵
(𝑥
𝑖
) − Ṽ𝑈
𝐵
(𝑥
𝑖
))]

+

𝑛

∑

𝑖=1

1

4
(2 − 𝜇

𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
))

⋅ log
2

2 − 𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
)

(1/2) ⋅ [(2 − 𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
)) + (2 − 𝜇

𝐿

𝐵
(𝑥
𝑖
) − 𝜇
𝑈

𝐵
(𝑥
𝑖
) + Ṽ𝐿
𝐵
(𝑥
𝑖
) + Ṽ𝑈
𝐵
(𝑥
𝑖
))]

,

(8)

where 𝐼IVIFS(𝐴, 𝐵) is used to describe the discrimination
measure between𝐴 and𝐵, which is also called the divergence
measure between IVIFSs𝐴 and𝐵 [22]. In fact, 𝐼IVIFS(𝐴, 𝐵) can
also be seen as the distance measure. However, 𝐼IVIFS(𝐴, 𝐵)
is not symmetric. For this, it should be modified to the
symmetric fuzzy cross entropy as follows:

𝐷IVIFS (𝐴, 𝐵) = 𝐼IVIFS (𝐴, 𝐵) + 𝐼IVIFS (𝐵, 𝐴) , (9)

where 𝐷IVIFS(𝐴, 𝐵) is called the symmetric interval-valued
intuitionistic fuzzy cross entropy, or the discrimination
degree, which is a symmetric discrimination information
measure for IVIFS.

Similar to 𝐷IFS(𝐴, 𝐵), it can easily be verified that
𝐷IVIFS(𝐴, 𝐵) ≥ 0, and 𝐷IVIFS(𝐴, 𝐵) = 0 when 𝜇

𝐴
= 𝜇
𝐵
and

Ṽ
𝐴
= Ṽ
𝐵
; 0 ≤ 𝐷IVIFS(𝐴, 𝐵) ≤ 2𝑛, and the maximum diver-

gence measure between IVIFNs 𝑎 and �̃� is 2. The larger the
difference between 𝐴 and 𝐵𝑖𝑠, the larger 𝐷IVIFS(𝐴, 𝐵) is and
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vice versa. Additionally, it is immediate that 𝐷IVIFS(𝐴, 𝐵) =

𝐷IVIFS(𝐴
𝑐
, 𝐵
𝑐
), and𝐷IVIFS(𝐴, 𝐵) = 𝐷IVIFS(𝐵, 𝐴).

Usually, the weight of the element 𝑥
𝑖
∈ 𝑋 should be

taken into account, so the IVIF weighted cross entropy and
weighted discrimination degree of 𝐴 from 𝐵 can be defined
as follows.

Definition 7. Assume the weight of the element 𝑥
𝑖
∈ 𝑋 is

𝑤
𝑖
, where ∑𝑛

𝑖=1
𝑤
𝑖
= 1. For two IVIFSs 𝐴 and 𝐵, let the

interval-valued intuitionistic fuzzy cross-entropy weighted

averaging (IVIFIWA) operator be expressed as

IVIFIWA
𝑤
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

(𝑤
𝑖
𝐼IVIFS (𝐴 (𝑥

𝑖
) , 𝐵 (𝑥

𝑖
))) . (10)

In particular, if𝑤
𝑖
= 1/𝑛, the IVIFIWA operator is reduced to

the IVIFIA operator.
So, using the IVIFIWAoperator, 𝐼

𝑤IVIFS(𝐴, 𝐵), as the IVIF
weighted cross entropy between 𝐴 and 𝐵 can be expressed as
follows:

𝐼
𝑤IVIFS (𝐴, 𝐵)

=

𝑛

∑

𝑖=1

𝑤
𝑖
(
1

4
(𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
))

⋅ log
2

𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
)

(1/2) ⋅ [(𝜇
𝐿

𝐴
(𝑥
𝑖
) + 𝜇
𝑈

𝐴
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐴
(𝑥
𝑖
) − Ṽ𝑈
𝐴
(𝑥
𝑖
)) + (𝜇

𝐿

𝐵
(𝑥
𝑖
) + 𝜇
𝑈

𝐵
(𝑥
𝑖
) + 2 − Ṽ𝐿

𝐵
(𝑥
𝑖
) − Ṽ𝑈
𝐵
(𝑥
𝑖
))]

)

+

𝑛

∑

𝑖=1

𝑤
𝑖
(
1

4
(2 − 𝜇

𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
))

⋅ log
2

2 − 𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
)

(1/2) ⋅ [(2 − 𝜇
𝐿

𝐴
(𝑥
𝑖
) − 𝜇
𝑈

𝐴
(𝑥
𝑖
) + Ṽ𝐿
𝐴
(𝑥
𝑖
) + Ṽ𝑈
𝐴
(𝑥
𝑖
)) + (2 − 𝜇

𝐿

𝐵
(𝑥
𝑖
) − 𝜇
𝑈

𝐵
(𝑥
𝑖
) + Ṽ𝐿
𝐵
(𝑥
𝑖
) + Ṽ𝑈
𝐵
(𝑥
𝑖
))]

) .

(11)

Similarly, the interval-valued intuitionistic fuzzy discrim-
ination degree weighted averaging (IVIFDWA) operator is
expressed as

IVIFWDA
𝑤
(𝐴, 𝐵) =

𝑛

∑

𝑖=1

𝑤
𝑖
⋅ 𝐷IVIFS (𝐴 (𝑥

𝑖
) , 𝐵 (𝑥

𝑖
)) . (12)

3. The Novel Approach to MADM Based on
IVIF Cross Entropy

This section introduces a novel approach to theMADMprob-
lem for determining completely unknown attribute weights
using a nonlinear programming model and for ranking all
alternatives based on the weighted symmetric fuzzy cross
entropy (the weighted discrimination degree) and the idea of
using TOPSIS in the IVIF environment.

The main procedure of the decision method proposed is
presented below.

Step 1 (constitute an interval-valued intuitionistic fuzzy deci-
sion matrix �̃�

𝑖𝑗
). Assume that {𝑃

𝑖
| 𝑖 = 1, 2, . . . , 𝑚} is the

set of alternatives and {𝑄
𝑗
| 𝑗 = 1, 2, . . . , 𝑛} is the set of

attributes. Different evaluating values 𝑟𝑘
𝑖𝑗
of 𝑖th alternative 𝑃

𝑖

with respect to 𝑗th attribute 𝑄
𝑗
are provided by the decision

maker based on IVIFNs, in order to constitute the interval-
valued intuitionistic fuzzy decision matrix �̃�

𝑖𝑗
= (𝑟
𝑖𝑗
)
𝑚×𝑛

:

�̃�
𝑖𝑗
= (𝑟
𝑖𝑗
)
𝑚×𝑛

= ([𝜇
𝐿

𝑖𝑗
, 𝜇
𝑈

𝑖𝑗
] , [Ṽ𝐿
𝑖𝑗
, Ṽ𝑈
𝑖𝑗
])
𝑚×𝑛

. (13)

Step 2 (determine the PIS 𝑃+ and the NIS 𝑃−). TOPSIS is a
method to solve MADM problems, which suggests to choose
the alternative with the shortest distance from the PIS and the
farthest distance from the NIS [17].

According to [23], under the IVIF environment, the PIS
and NIS, respectively denoted as 𝑃+ and 𝑃−, are represented
as follows:

𝑃
+
= {⟨𝑄

𝑗
, 𝑟
+

𝑗
(𝑄
𝑗
)⟩ | 𝑄

𝑗
∈ 𝑄}

= {⟨𝑄
𝑗
, ([1, 1] , [0, 0])⟩ | 𝑄𝑗 ∈ 𝑄} ,

𝑃
−
= {⟨𝑄

𝑗
, 𝑟
−

𝑗
(𝑄
𝑗
)⟩ | 𝑄

𝑗
∈ 𝑄}

= {⟨𝑄
𝑗
, ([0, 0] , [1, 1])⟩ | 𝑄

𝑗
∈ 𝑄} .

(14)

Step 3 (calculate the discrimination degree between alterna-
tives𝑃

𝑖
and𝑃+ (𝑃−), which is expressed by𝐷+

𝑖𝑗
(𝐷−
𝑖𝑗
)).Consider

𝐷
+

𝑖𝑗
= [𝐷 (𝑟

𝑖𝑗
, 𝑟
+

𝑗
)]
𝑚×𝑛

, 𝐷
−

𝑖𝑗
= [𝐷 (𝑟

𝑖𝑗
, 𝑟
−

𝑗
)]
𝑚×𝑛

, (15)

where 𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
) (𝐷(𝑟

𝑖𝑗
, 𝑟
−

𝑗
)) denotes the discrimination

degree between alternatives 𝑃
𝑖
and 𝑃

+ (𝑃−) with respect to
𝑗th attribute 𝑄

𝑗
. Also,

𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
) = 𝐼IVIFNs (𝑟𝑖𝑗, 𝑟

+

𝑗
) + 𝐼IVIFNs (𝑟

+

𝑗
, 𝑟
𝑖𝑗
) ,

𝐷 (𝑟
𝑖𝑗
, 𝑟
−

𝑗
) = 𝐼IVIFNs (𝑟𝑖𝑗, 𝑟

−

𝑗
) + 𝐼IVIFNs (𝑟𝑖𝑗, 𝑟

−

𝑗
) .

(16)
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Step 4 (determine the weight vector of attributes 𝜔+ and 𝜔−
with PIS and NIS as reference objects, resp.).

Modeling Principle. Let 𝜔+ = (𝜔
+

1
, 𝜔
+

2
, . . . , 𝜔

+

𝑛
) be the weight

vector of attributes with PIS as the reference object, where
𝜔
+

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, and ∑𝑛

𝑗=1
𝜔
+

𝑗
= 1. Similarly, let 𝜔− =

(𝜔
−

1
, 𝜔
−

2
, . . . , 𝜔

−

𝑛
) be the weight vector of attributes with NIS

as the reference object, where 𝜔−
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, and

∑
𝑛

𝑗=1
𝜔
−

𝑗
= 1.

Generally, the smaller the discrimination degree between
alternatives 𝑃

𝑖
and 𝑃

+ is, that is, 𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
) → 0, the

better the 𝑃
𝑖
is; the larger the discrimination degree between

alternatives 𝑃
𝑖
and 𝑃− is, that is, 𝐷(𝑟

𝑖𝑗
, 𝑟
−

𝑗
) → 2, the better

the 𝑃
𝑖
is. According to this, considering the weight of each

attribute, the deviation of the discrimination degree between
alternatives 𝑃

𝑖
and 𝑃+ with respect to the 𝑗th attribute 𝑄

𝑗
is

defined as 𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
) − 0. The measure of the total deviation

of the discrimination degrees usually takes the form of the
sum of squares. So, the sum of weighted deviations between
alternatives 𝑃

𝑖
and 𝑃

+ with respect to all the attributes is
∑
𝑛

𝑗=1
[𝜔
+

𝑗
(𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
) − 0)]

2
= ∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
[𝜔
+

𝑗
𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)]
2. We

will minimize the sum of weighted deviations in order to
determine the weight vector. To solve for the weights 𝜔+

𝑗
, the

following nonlinear programming model can be established:

min 𝑍 (𝑤
+
) =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

[𝜔
+

𝑗
𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)]
2

st.
{{

{{

{

𝑛

∑

𝑗=1

𝜔
+

𝑗
= 1

𝜔
+

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(17)

Using the Lagrange multiplier conditional extreme value
method, we obtain the following Lagrangian function:

𝐿 (𝑤
+
, 𝜆) =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

[𝜔
+

𝑗
𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)]
2

+ 2𝜆(

𝑛

∑

𝑗=1

𝜔
+

𝑗
− 1) , (18)

where 𝜆 is the Lagrange multiplier. To obtain the weights
𝜔
+

𝑗
, we differentiate (18), 𝑑𝑓(𝐿(𝑤+, 𝜆))/𝑑𝑤+ = 0 and

𝑑𝑓(𝐿(𝑤
+
, 𝜆))/𝑑𝜆 = 0 and obtain the following result:

𝜔
+

𝑗

𝑚

∑

𝑖=1

𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)
2

+ 𝜆 = 0,

𝑛

∑

𝑗=1

𝜔
+

𝑗
− 1 = 0.

(19)

By solving the system, we can obtain the unique weights
𝜔
+

𝑗
:

𝜔
+

𝑗
=

[∑
𝑛

𝑗=1
(∑
𝑚

𝑖=1
𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)
2

)

−1

]

−1

∑
𝑚

𝑖=1
𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)
2

. (20)

Similarly, according to the idea above, considering the
weight of each attribute, the deviation of the discrimination
degree between alternatives 𝑃

𝑖
and 𝑃− with respect to the 𝑗th

attribute 𝑄
𝑗
is defined as𝐷(𝑟

𝑖𝑗
, 𝑟
−

𝑗
) − 2. The total deviation of

the discrimination degrees is usually measured as the sum of
squares. So, the sum of weighted deviation degrees between
alternatives 𝑃

𝑖
and 𝑃

− with respect to all the attributes is
∑
𝑛

𝑗=1
[𝜔
+

𝑗
(𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
) − 2)]

2. It should be minimized in order to
determine the weight vector. To solve for the weights 𝜔+

𝑗
, the

following nonlinear programming model can be established:

min 𝑍 (𝑤
+
) =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

[𝜔
−

𝑗
𝐷(𝑟
𝑖𝑗
, 𝑟
−

𝑗
− 2)]
2

st.
{{

{{

{

𝑛

∑

𝑗=1

𝜔
−

𝑗
= 1

𝜔
+

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(21)

A similar procedure can be easily adapted to obtain the
unique weights 𝜔−

𝑗
:

𝜔
−

𝑗
=

[∑
𝑛

𝑗=1
(∑
𝑚

𝑖=1
(𝐷 (𝑟
𝑖𝑗
, 𝑟
−

𝑗
) − 2)

2

)

−1

]

−1

∑
𝑚

𝑖=1
(𝐷 (𝑟
𝑖𝑗
, 𝑟
−

𝑗
) − 2)

2
. (22)

Step 5 (use the IVIFWDA operator to aggregate 𝜔+ and 𝐷+
𝑖𝑗

(𝜔− and𝐷−
𝑖𝑗
)).The weighted discrimination degrees 𝐺+ (𝐺−)

between 𝑃
𝑖
and 𝑃+ (𝑃−) can be acquired as follows:

𝐺
+
= (𝐺
+

1
, 𝐺
+

2
, . . . , 𝐺

+

𝑚
) ,

where 𝐺+
𝑖
=

𝑛

∑

𝑗=1

𝑤
+

𝑗
× 𝐷(𝑟

𝑖𝑗
, 𝑟
+

𝑗
)

𝐺
−
= (𝐺
−

1
, 𝐺
−

2
, . . . , 𝐺

−

𝑚
) ,

where 𝐺−
𝑖
=

𝑛

∑

𝑗=1

𝑤
−

𝑗
× 𝐷(𝑟

𝑖𝑗
, 𝑟
−

𝑗
) .

(23)

Step 6 (rank all alternatives). In general, based on the TOPSIS,
a relative closeness coefficient is defined to determine the
ranking order of all alternatives. In the paper, we order all
alternatives according to the relative closeness coefficient (𝑔

𝑖
)

obtained using the extended TOPSIS. The equation for the
relative closeness coefficient is as follows:

𝑔
𝑖
=

𝐺
+

𝑖

𝐺
+

𝑖
+ 𝐺
−

𝑖

. (24)

The smaller 𝑔
𝑖
, the better the alternative 𝑃

𝑖
.

4. Some Examples to Illustrate the Approach

Recently, the IVIFS, as a useful tool to deal with imperfect
facts and data, as well as imprecise knowledge, has been used
to solve MADM problems related to the field of engineering
[24]. So, in this section, we provide two examples of MADM
problems in the engineering to demonstrate the application
of the proposedmethod, as well as its effectiveness. Example 1
about the evaluation of the security of a wireless sensor net-
work (WSN) and Example 2 about the problem of choosing
the best suppliers are described below.
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4.1. Description and Decision Model

Example 1. WSN, as an integrated network which can per-
form information gathering, processing, and delivering, can
connect the real and logistic information worlds. It greatly
changes the interaction between people and the nature.
There are many potential applications for WSN, such as
in the industry, agriculture, military affairs, environment
monitoring, biomedicine, city management, and disaster
emergencies. The data privacy protection is essential for
widespread deployment ofWSN.However, the characteristics
of a WSN make it a serious challenge, which attracted more
attention recently [24].

The data privacy protection protocols in WSN tend to
aim at a particular data operation. Only a few specific
data operations are supported; therefore, the operation types

supported by the protocols must be taken into account. Due
to the WSN resource restrictions and the demand from
applications for the precision of the queried and gathered
data, the algorithm performance and outcome precision
should be considered as well. Assume there is a certain
corporation plan to pick the best WSN among five potential
candidates 𝑃

𝑖
(𝑖 = 1, 2, 3, 4, 5) from the perspective of the

data privacy protection ability. Based on the above, there are
five attributes 𝑄

𝑗
(𝑗 = 1, 2, 3, 4, 5) to evaluate alternatives:

𝑄
1
is the operation types supported; 𝑄

2
is the precision of

gathering and querying; 𝑄
3
is the privacy protection ability;

𝑄
4
is the algorithmperformance;𝑄

5
is the outcomeprecision.

The decision maker provides the evaluation information on
alternatives with regard to attributes using IVIFNs in the
following decision-making matrix �̃�

𝑖𝑗
:

�̃�𝑖𝑗

=(

𝑄1 𝑄2 𝑄3 𝑄4

𝑃1 ([0.4, 0.5] , [0.32, 0.4]) ([0.67, 0.78] , [0.14, 0.2]) ([0.5, 0.65] , [0.13, 0.22]) ([0.45, 0.6] , [0.3, 0.35])

𝑃2 ([0.52, 0.6] , [0.1, 0.17]) ([0.56, 0.68] , [0.23, 0.28]) ([0.65, 0.7] , [0.2, 0.25]) ([0.56, 0.62] , [0.2, 0.28])

𝑃3 ([0.62, 0.72] , [0.2, 0.25]) ([0.35, 0.45] , [0.33, 0.43]) ([0.55, 0.63] , [0.28, 0.32]) ([0.45, 0.62] , [0.19, 0.3])

𝑃4 ([0.4, 0.48] , [0.4, 0.5]) ([0.4, 0.5] , [0.2, 0.5]) ([0.5, 0.8] , [0.1, 0.2]) ([0.55, 0.75] , [0.15, 0.25])

𝑃5 ([0.4, 0.5] , [0.4, 0.5]) ([0.3, 0.6] , [0.3, 0.4]) ([0.6, 0.7] , [0.05, 0.25]) ([0.6, 0.7] , [0.1, 0.3])

𝑄5

([0.6, 0.65] , [0.18, 0.3])

([0.55, 0.68] , [0.15, 0.28])

([0.63, 0.67] , [0.16, 0.2])

([0.45, 0.65] , [0.25, 0.35])

([0.5, 0.6] , [0.2, 0.4])

).

(25)

We then calculate the discrimination degree between each
alternative and 𝑃+ (𝑃−):

𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)

=(

(

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑃
1
0.5531 0.2426 0.3384 0.4729

𝑃
2
0.3225 0.3610 0.3068 0.3708

𝑃
3
0.3099 0.6068 0.4107 0.4107

𝑃
4
0.6305 0.5456 0.2912 0.3225

𝑃
5
0.6226 0.5456 0.2759 0.3068

𝑄
5

0.3480

0.3384

0.2943

0.4209

0.4380

)

)

,

𝐷(𝑟
𝑖𝑗
, 𝑟
−

𝑗
)

=(

(

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑃
1
0.6959 1.1633 0.9868 0.7916

𝑃
2
1.0136 0.9504 1.0409 0.9351

𝑃
3
1.0354 0.6385 0.8757 0.8757

𝑃
4
0.6147 0.7043 1.0689 1.0136

𝑃
5
0.6226 0.7043 1.0976 1.0409

𝑄
5

0.9711

0.9868

1.0633

0.8613

0.8376

)

)

.

(26)

Applying (20) and (22), the vector of weights 𝜔+ (𝜔−) of
𝑃
𝑖
(𝑖 = 1, 2, . . . , 5) is as follows:

𝜔
+
= (𝜔
+

1
, 𝜔
+

2
, . . . , 𝜔

+

5
)

= (0.1225, 0.1372, 0.2940, 0.2174, 0.2289) ,

𝜔
−
= (𝜔
−

1
, 𝜔
−

2
, . . . , 𝜔

−

5
)

= (0.1616, 0.1710, 0.2452, 0.2085, 0.2137) .

(27)

Applying (23), the weighted arithmetic degree of discrim-
ination is as follows:

𝐺
+
= (𝐺
+

1
, 𝐺
+

2
, . . . , 𝐺

+

5
)

= (0.3830, 0.3373, 0.3986, 0.4042, 0.3992) ,

𝐺
−
= (𝐺
−

1
, 𝐺
−

2
, . . . , 𝐺

−

5
)

= (0.9259, 0.9874, 0.9010, 0.8773, 0.88620) .

(28)

Finally, applying (24), we obtain 𝑔
1

= 0.2926, 𝑔
2

=

0.2546,𝑔
3
= 0.3067,𝑔

4
= 0.3154, and𝑔

5
= 0.3106. According

to the values of 𝑔
𝑖
, the ranking order of the five alternatives

is 𝑃
2
≻ 𝑃
1
≻ 𝑃
3
≻ 𝑃
5
≻ 𝑃
4
, and thus the most desirable

alternative is 𝑃
2
.

Example 2. In the supply chain environment, more enter-
prises have recently started paying attention to the selection
of suppliers. It is important for the supply chain management
to reasonably select suppliers in a scientific way. A famous
nuclear power equipment manufacturing enterprise desires
selecting the most appropriate supplier for one of its most
critical parts used in its assembling process. In order to solve
the problem, after the preevaluation, four suppliers 𝑃

𝑖
(𝑖 =

1, 2, 3, 4) have been selected as alternatives for further eval-
uation. To evaluate alternative suppliers, the enterprise must
make a decision according to the following four attributes:
𝑄
1
is the product quality, 𝑄

2
is the relationship closeness,

𝑄
3
is the delivery performance, 𝑄

4
is the overall cost of the

product, where 𝑄
1
, 𝑄
2
and 𝑄

3
are the benefit attributes,

and 𝑄
4
is the cost attribute. The decision maker provides

the evaluation information on alternatives with regard to
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attributes using IVIFNs as the following decision-making
matrix �̃�

𝑖𝑗
:

�̃�
𝑖𝑗
=(

(

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑃
1
([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.2, 0.4]) ([0.3, 0.4] , [0.4, 0.5]) ([0.5, 0.6] , [0.1, 0.3])

𝑃
2
([0.5, 0.6] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3]) ([0.5, 0.6] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2])

𝑃
3
([0.3, 0.5] , [0.3, 0.4]) ([0.1, 0.3] , [0.5, 0.6]) ([0.2, 0.5] , [0.4, 0.5]) ([0.2, 0.3] , [0.4, 0.6])

𝑃
4
([0.2, 0.5] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2]) ([0.4, 0.5] , [0.3, 0.5]) ([0.5, 0.8] , [0.1, 0.2])

𝑃
5
([0.3, 0.4] , [0.1, 0.3]) ([0.7, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.4]) ([0.6, 0.7] , [0.1, 0.2])

)

)

. (29)

We then calculate the degree of discrimination between
alternatives and 𝑃+ (𝑃−):

𝐷(𝑟
𝑖𝑗
, 𝑟
+

𝑗
)

=(

(

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑃
1
0.5456 0.4729 0.7043 0.3708

𝑃
2
0.4040 0.3384 0.4729 0.3384

𝑃
3
0.5835 0.9351 0.7043 0.8376

𝑃
4
0.6226 0.3384 0.5835 0.2759

𝑃
5
0.5088 0.2161 0.4380 0.2759

)

)

,

𝐷(𝑟
𝑖𝑗
, 𝑟
−

𝑗
)

=(

(

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑃
1
0.7043 0.7916 0.5456 0.9351

𝑃
2
0.8854 0.9868 0.7916 0.9868

𝑃
3
0.6628 0.3708 0.5456 0.4380

𝑃
4
0.6226 0.9868 0.6628 1.0976

𝑃
5
0.7472 1.2200 0.8376 1.0976

)

)

.

(30)

Applying (20) and (22), the vector of weights 𝜔+ (𝜔−) of
𝑃
𝑖
(𝑖 = 1, 2, . . . , 5) is as follows:

𝜔
+
= (𝜔
+

1
, 𝜔
+

2
, . . . , 𝜔

+

𝑛
)

= (0.2386, 0.2515, 0.1976, 0.3124) ,

𝜔
−
= (𝜔
−

1
, 𝜔
−

2
, . . . , 𝜔

−

𝑛
)

= (0.2250, 0.2714, 0.2083, 0.2953) .

(31)

Applying (23), the weighted arithmetic degree of discrim-
ination is as follows:

𝐺
+
= (𝐺
+

1
, 𝐺
+

2
, . . . , 𝐺

+

𝑚
)

= (0.5041, 0.3806, 0.7752, 0.4351, 0.3484) ,

𝐺
−
= (𝐺
−

1
, 𝐺
−

2
, . . . , 𝐺

−

𝑚
)

= (0.7631, 0.9234, 0.4927, 0.8701, 0.9978) .

(32)

Finally, applying (24), we obtain 𝑔
1

= 0.4117, 𝑔
2

=

0.2987,𝑔
3
= 0.6055,𝑔

4
= 0.3494, and𝑔

5
= 0.2698. According

to the values of 𝑔
𝑖
, the ranking order of the five alternatives

is 𝑃
5
≻ 𝑃
2
≻ 𝑃
4
≻ 𝑃
1
≻ 𝑃
3
, and thus the most desirable

alternative is 𝑃
5
.

4.2. Comparative Analysis and Discussion. In this subsection,
the comparative analysis is conducted in order to validate
the results of the proposed approach and compare it to other
approaches and to illustrate the most important characteris-
tics of our approach.

To conduct the comparative analysis, we apply the meth-
ods described in [25–27] to the same decision-making prob-
lems mentioned in Section 4.1. According to all the methods,
the ranking order of Example 1 is 𝑃

2
≻ 𝑃
1
≻ 𝑃
3
≻ 𝑃
5
≻ 𝑃
4
,

and the most desirable alternative is 𝑃
2
; the ranking order of

Example 2 is 𝑃
5
≻ 𝑃
2
≻ 𝑃
4
≻ 𝑃
1
≻ 𝑃
3
, and the most desirable

alternative is𝑃
5
.These ordering results are in accordancewith

the results obtained by the proposed method in the paper.
From the results, the proposed decision-making method in
this paper can be suitably utilized to solve the IVIF MADM
problems with completely unknown attribute weights.

Although the decision results obtained by the approaches
in [25–27] are the same as using our proposed method, the
decision principles and processes are remarkably different.
First, with respect to the determination of the completely
unknown attribute weights, the methods in [25–27] all use
the IVIF entropy. In our paper, the completely unknown
attribute weights are obtained using the IVIF cross entropy.
The former simply takes into account the ambiguity of the
evaluation information itself to determine attribute weights.
The latter takes into consideration the differences between the
evaluation information and IVIF PIS, as well as IVIF NIS.
This can be seen as the information measure of the discrim-
ination between two IVIFSs, used to determine the attribute
weight vectors 𝜔+ and 𝜔− with PIS and NIS as the reference
object, respectively, using the IVIF cross entropy. Second,
with respect to the ranking of all alternatives, in [25], all alter-
natives are ranked using theweighted correlation coefficients;
in [26], all alternatives are ranked based on the TOPSIS by
using theweighted distancemeasure; and, in [27], the authors
calculated the weighted arithmetic average for each alterna-
tive using the IVIF weighted arithmetic average operator and
then ranked all alternatives according to the score function.
However, the proposed approach in the paper is to rank all
alternatives directly using the fuzzy cross entropy of IVIFSs.
From this point of view, using any approach described in
[25–27] makes the process of decision making more time-
consuming. Besides, Wang et al. [28] and Ye [29] pointed out
that the score function in [27] has some limitations under cer-
tain conditions; for example, the isotonicity of the alternatives
does not hold. These drawbacks of the approaches proposed
in [25–27] make our approach more suitable in practice.
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In addition, the information about attribute weights in
most papers is usually completely known [30–33] or incom-
pletely known [23, 29, 34, 35] because of the time pressure,
lack of knowledge or data, and expert’s limited expertise in the
problem domain. However, when the information about the
weights of the attributes is completely unknown, themethods
described above will not work well. In our paper, we propose
a method to determine the attributes’ weights. Thus, our
method can be considered to be complement to the methods
in [23, 29–35].

To sum up, the proposed method has the following
characteristics. First, since the proposed approach aims to
minimize the total deviation of the discrimination degree
between each alternative and the PIS (NIS), it is intuitive and
easy to understand. Second, we propose a novel approach
to obtain completely unknown attribute weights with PIS
(NIS) as the reference object using the IVIF cross entropy.
Finally, the proposed approach has clear concept and simple
calculations and provides a new idea for solving decision-
making problems under the IVIF environment, so it can be
easily used in many areas for practical decision problems
that involve choosing an optimal alternative from a list of
alternatives when multiple attributes must be considered.

5. Conclusion

The IVIFS and entropy theories, as very important notions
in the fuzzy set theory, have drawn the attention of many
researchers to deal with MADM problems in different fields.
However, there is little research directly using the IVIF cross
entropy to determine the attribute weights and rank alter-
natives. Attribute weights perform an important function in
MADM problems, for the variation in attribute weights may
lead to different ranking orders of alternatives. We present
a novel MADM approach for the problem with completely
unknown attribute weights in the framework of IVIFS. First,
the fuzzy cross entropy and discrimination degree of IVIFS
are defined. Subsequently, based on the discrimination degree
of IVIFS, a nonlinear programming model to minimize the
total deviation of discrimination degrees between alternatives
and the PIS (NIS) is constructed to obtain the attribute
weights and, then, the weighted discrimination degree.
Finally, all the alternatives are ranked according to the relative
closeness coefficients using the extended TOPSIS method,
and the most desirable alternative is chosen. We illustrate
the feasibility and validity of the proposed method by two
examples.

The paper extends the theory and methodology of the
MADM analysis using the IVIF cross entropy. The main
advantage of the proposed method is its ability to handle the
decision-making problems in which the ratings of alterna-
tives with respect to completely unknown attribute weights
are represented by IVIFSs. At the same time, the method
proposed in the paper can be used to solve MADM problems
with completely unknown attribute weights under IF envi-
ronments, as well as with complete weight information under
IF or IVIF environments. In addition, we present a com-
parative study with some existing decision-making methods.
Compared to the existing methods, our proposed approach

has characteristics and advantages and can provide a useful
technique to efficiently assist the DMs. The plan of our
future work is to apply the proposed method to some other
practical decision-making problems, such as the performance
evaluation, water resource schedule, and risk investment.
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