
Research Article
Bias Modeling for Distantly Supervised Relation Extraction

Yang Xiang, Yaoyun Zhang, Xiaolong Wang, Yang Qin, and Wenying Han

Key Laboratory of Network Oriented Intelligent Computation, Harbin Institute of Technology Shenzhen Graduate School,
Shenzhen 518055, China

Correspondence should be addressed to Yang Xiang; xiangyang.hitsz@gmail.com

Received 24 March 2015; Accepted 11 August 2015

Academic Editor: Chih-Cheng Hung

Copyright © 2015 Yang Xiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distant supervision (DS) automatically annotates free text with relation mentions from existing knowledge bases (KBs), providing
a way to alleviate the problem of insufficient training data for relation extraction in natural language processing (NLP). However,
the heuristic annotation process does not guarantee the correctness of the generated labels, promoting a hot research issue on
how to efficiently make use of the noisy training data. In this paper, we model two types of biases to reduce noise: (1) bias-dist to
model the relative distance between points (instances) and classes (relation centers); (2) bias-reward tomodel the possibility of each
heuristically generated label being incorrect. Based on the biases, we propose three noise tolerant models:MIML-dist,MIML-dist-
classify, andMIML-reward, building on top of a state-of-the-art distantly supervised learning algorithm. Experimental evaluations
compared with three landmark methods on the KBP dataset validate the effectiveness of the proposed methods.

1. Introduction

With the explosion of web resources, traditional supervised
machine learning, which relies on a small set of manually
annotated training samples, may not be able to catch up
with the up-to-date information needs. Likewise for relation
extraction, a hot research issue in NLP predicts semantic
relations for a pair of name entities.

DS (distant supervision/weak supervision) annotates a
large scale of free text with relation mentions from existing
KBs, providing a way to alleviate the problem of insufficient
training data for relation extraction. DS initially assigns
relation labels to sentences according to relation mentions
when a sentence contains a certain pair of entities but does
not care about whether it actually conveys the corresponding
semantic relation.Therefore, the heuristic annotation process
does not guarantee the correctness of the generated labels,
promoting a hot research issue on how to efficiently make use
of the noisy training data.

For example, suppose a name entity pair ⟨Obama,
Hawaii⟩ has three valid relation labels, travel to,
born in, and study in; according to the KB (i.e.,
Freebase), multiple sentences containing this entity pair
from large-scale free text will be marked to convey either of

the three relations (see S1–S3 in Table 1). However, we are
not able to decide the specific relation label for each sentence
in advance according to these annotations. Therefore, it is
difficult for traditional supervised learning algorithms to
learn directly from these heuristically annotated sentences.
In addition, due to the incompleteness problem of either the
KB or the free text, false negatives (FNs) and false positives
(FPs) are inevitable, giving rise to noisy training labels. For
example, at least one sentence in S1–S3 (Table 1) should
be labeled with study in according to the heuristics for
DS, but actually none of them conveys this relation due to
the incompleteness of free text. Similarly, because of the
incompleteness of the KB, we can hardly find any relation
from the KB that S3 can express.

Previous researches presented several methods to utilize
the heuristically generated labels and train weak classifiers
to predict unseen relations: single-instance learning (SIL) [1],
multi-instance learning (MIL) [2], multi-instance multilabel
learning (MIML) [3, 4] and some related extensions [5, 6], the
embeddingmodel [7] and thematrix factorizationmethod [8,
9], and so on. Among them, multi-instance multilabel learn-
ing for relation extraction (MIML-RE) proposed by [4] is one
of the state-of-the-art learning paradigms. MIML-RE treats
multiple sentences (i.e., S1–S3) that contain a certain pair of

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 969053, 10 pages
http://dx.doi.org/10.1155/2015/969053



2 Mathematical Problems in Engineering

Table 1: Examples for DS annotated sentences.

⟨Obama,Hawaii⟩ Latent label

Relations from the KB
travel to ⟨O,H⟩

born in ⟨O,H⟩

study in ⟨O,H⟩

—

Annotated sentences

S1. President Obama will
again travel to Hawaii for
his annual holiday
tradition.

travel to

S2. Born in Honolulu,
Hawaii, Obama is a
graduate of Columbia
University and Harvard
Law School.

born in

S3. Obama plays golf nearly
every day while in Hawaii. —

name entity as a bag (multi-instance) and has all possible
labels (i.e., travel to, born in, and study in)marked
to these sentences (multilabel). Through modeling the dis-
tantly labeled data from the bag-level as well as the instance-
level, MIML-RE transfers the data to styles that traditional
supervised learning algorithms can easily deal with (seemore
details in Section 4).

Nevertheless, as mentioned above, the data generated
by DS heuristics contain noises such as wrong labels; it
is necessary to equip the learning algorithms with noise
reduction methods. In addition, we argue that the instance
diversity problem is prevalent for training weak classifiers.
That is, we cannot guarantee that all the instanceswe collected
and labeled through the DS heuristics are of high quality just
like those labeled by human labelers.

The noisy problem can also be learned about from
previous researches such as [10]. In [10], the authorsmanually
annotated over 1800 sentences from free text and compared
them to the KB. They finally got 5.5% FNs and 2.7% FPs,
which is a good evidence for using noisy reduction strategies.
Besides, from our observations toward the training data, we
found that the instance diversity problem is remarkable in
the dataset, reflected by the distributions for expectations (see
Figure 2).

In this paper, we model two types of biases for noise
reduction: (1) bias-dist tomodel the relative distance between
points (instances) and classes (relation centers); (2) bias-
reward to model the possibility of each heuristically gener-
ated label being incorrect. Bias-dist is modeled to weaken
the maximum probability assumption (the class with the
maximum probability should be assigned) during the EM
process in MIML-RE, so that it is not always true that the
class with the maximum probability is accepted. This bias
is proposed according to the diverse qualities of training
instances. Bias-reward is modeled to weaken the impact of
wrong labels, resulting in the case that wrong labels would be
with low predicting confidence. This bias aims at efficiently
modeling the noisy group-level labels. Based on the biases,
we propose three methods, MIML-dist (multi-instance mul-
tilabel learning with distance), MIML-dist-classify (multi-
instance multilabel learning with distance for classification),

and MIML-reward (multi-instance multilabel learning with
reward), building on top of theMIML-RE framework.There-
fore, this work can be seen as an extension of MIML-RE.

We set up experiments on one of the most popular
benchmark datasets, the KBP dataset built by Surdeanu et
al. [4]. Evaluation results compared with three landmark
algorithms validate the effectiveness of the proposed meth-
ods. Particularly, MIML-dist-classify is built in the predicting
phase, which is simple and fast to complete, boosting the
𝐹1 from the baseline 27.3% to 29.03%. MIML-dist-reward
converges much faster than the original algorithm which
reaches 29.01% on 𝐹1.

The contributions of this paper can be summarized as
follows: (1)We are the first to explicitly model the bias related
to the instance diversity problem and gain considerably
better results; (2) the modeling methods toward the two
types of biases are both validated to be efficient through the
experiments.

The rest of the paper is organized as follows: Section 2
briefly introduces the literature; Section 3 describes the two
types of biases; the models are detailedly described in
Section 4. Sections 5 and 6 are the implementations and
experiments. Discussion and conclusion are arranged at last.

2. Related Work

In this section, we briefly introduce the literature of distantly
supervised relation extraction and the noise reduction meth-
ods for it.

2.1. Relation Extraction. Relation extraction (RE) is a hot
research issue in NLP. In early researches, various approaches
based on rich syntactic and semantic features were proposed.
For example, Zelenko et al. introduced various subtree
kernels with Support Vector Machine and Voted Perceptron
learning algorithms [11]. In [12], the authors proposed three
types of subsequence kernels for RE on protein-protein
interactions and top-level relations from newspapers. Zhou
et al. used tree kernel-based method with rich syntactic and
semantic information and a context-sensitive convolution
tree kernel [13]. Recent work focused mostly on deep neural
network based structures, that is, single convolutional deep
neural network based model [14, 15] and the combination of
recursive neural network and convolutional neural network
based model [16].

2.2. Distant Supervision for Relation Extraction. Distant
supervision was firstly introduced in the biomedical domain
by mapping databases to medical texts [17]. Since then, DS
gained much attention in both information extraction (IE)
and further RE. Most of the earlier researches include [18, 19]
used single-instance learning according to the assumption
that one pair of entity only corresponds to a single relation.
In recent years, distant supervision is widely used in open
IE to map Wikipedia infoboxes to wiki contents or web-
scale texts [20, 21]. For RE, distant supervision is also
employed for mapping Freebase relations to large scales of
free text (i.e., New York Times) and predicting relations for
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unseen entity pairs [1–4]. Most aforementioned work used
SIL, MIL, or MIML to train classifiers, which set strong
baselines in this field. In addition, recent researches also
include embedding basedmodels that transferred the relation
extraction problem into a translation model like ℎ + 𝑟 ≈

𝑡 [22–24], nonnegative matrix factorization (NMF) models
[8, 9] with the characteristics of training and testing jointly,
integrating active learning and weakly supervised learning
[25], integer linear programming (ILP) [26], and so on.

2.3. Noise Reduction Methods for DS. One type of noise is
that we cannot decide the actual label for each instance
and can only estimate them according to some constrains.
At-least-one is a representative constrain which considers
that one relation label is positive when at least one of the
mentions in the bag gets the label but discards the others.
Related work directly modeled the noisy training data with
multi-instance frameworks and learned model parameters
through several times of EM iterations [2–4]. Intxaurrondo
et al. [27] employed several heuristic strategies to remove
useless mentions. Xu et al. [10] employed a passage retrieval
model to expand the training data from instances with high
confidence. Takamatsu et al. [28] directly model the patterns
that express the same relation. Another type of noise is the
wrong bag-level labels due to the incompleteness of either
the KB or the textual corpus. Min et al. [5] put another layer
to the MIML-RE architecture to model the true labels of
a bag to model the incompleteness of the KB. Ritter et al.
[6] added two parameters to directly model the missing of
texts and the missing of KBs and set them with fixed values;
they considered some side information such as popularity of
entities as well. Fan et al. [9] added a bias factor 𝑏 in their
model to represent the noises. The idea of considering the
instance diversity problemwhich relates to data quality in this
work is a bit similar to Xu’s passage retrieval model [10] but
we are from a distinct perspective. The bias modeling idea is
something like [6] but we model the missing in an indirect
way which employs ranking-based measures.

3. Biases

In this section, we generally describe the two types of biases
we propose.

3.1. Bias-Dist. Bias-dist (bias related to distance) aims at
tackling the instance diversity problem rising from the DS
annotation process. In traditional supervised machine learn-
ing, when human annotators label training instances, they
incline to label those instances that they are confident of and
discard the others so that a pure training set can be created.
A typical example is the annotation agreement standard for
evaluating a corpus and the instances whose labels are with
hardly any disagreements are usually considered as being of
high quality. On the contrary, there is no human intervention
for the DS annotation; hence the quality of training samples
cannot be guaranteed. As a result, when we use the classifier
to assign relation labels to instances, it is likely that the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

x

y

p(x)

q(x)

Figure 1: Gaussian distributions for illustrating the instance diver-
sity problem.

predicting score for the true relation label is lower than that
for a false label.

More clearly, we assume that the predicting scores for
the instances from two relation classes are drawn from
two individual Gaussian distributions and show the case
described above in Figure 1. Suppose 𝑝(𝑥) and 𝑞(𝑥) are two
Gaussian distributions with expectations 𝜇𝑝 and 𝜇𝑞 (0 <

𝜇𝑝 < 𝜇𝑞 < 1), respectively. We further assume that the
predicting scores for class 𝑝 and class 𝑞 follow these two
distributions. The 𝑥-axis of Figure 1 denotes the predicting
probabilities (scores) which range from 0 to 1. Suppose that
a point 𝑡𝑖 (i.e., 𝑖 = 0.8) on the 𝑥-axis indicates a high
probability (score) when predicting a certain instance 𝑚

using a multiclass classifier. For both of the two classes, 𝑡𝑖
may be an acceptable predicting score based on which we
can classify the corresponding instance 𝑚 into the positive
areas for both of them. However, the distances from 𝑡𝑖 to
𝜇𝑝 and 𝜇𝑞 reflect that distribution 𝑞(𝑥) has much stronger
ability to generate 𝑡𝑖 than 𝑝(𝑥). Thus in this case, according
to the predicting score 𝑡𝑖 and the mean for the two classes,
the instance𝑚 should be classified to 𝑞 rather than 𝑝.

To conclude, if the predicting scores for instances on
different relation classes distribute diversely, the maximum
probability assumption may not work well. Bias-dist is
proposed to weaken this assumption through replacing the
absolute predicting score to a relative form.

3.2. Bias-Reward. Bias-reward (bias according to label
reward) is proposed to model the incompleteness of the
KB and the textual corpus. The most typical setting for
multi-instance learning in the literature is the training bags;
that is, multiple instances containing a certain pair of name
entities would fall into the same bag and share the same sets
of labels.
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As illustrated in Table 1, the bag-level labels come from
the KB and would endure the incompleteness problem of
the KB or free text. Further, many works [4, 29, 30] define
bag-level positive labels as those from the KB and negative
labels as the relations that the key entity (the first name entity
in the pair) does not have according to the KB. As crucial
constraints for distant supervision, noisy bag-level labels have
bad effect on the models. Much formally, the constraints
emphasize that

(𝑧
𝑚

𝑖
= 𝑙 : ∀𝑙 ∈ 𝑃𝑖, ∃𝑚 ∈ x𝑖)

∧ (𝑧
𝑚
󸀠

𝑖
= 𝑙
󸀠
: ∀𝑙
󸀠
∈ 𝑁𝑖, ¬∃𝑚

󸀠
∈ x𝑖) ,

(1)

where x𝑖 stands for the 𝑖th bag, 𝑃𝑖 and 𝑁𝑖 denote the positive
and negative label sets for this bag, and 𝑧

𝑚

𝑖
is the relation

label for the𝑚th instance in the bag. If the KB is incomplete,
the bag would have wrong negative labels. And if the textual
corpus is not complete, the bagmay be associated with wrong
positive labels.

The problem of incompleteness is inevitable and has
become a popular issue for distant supervision. We also take
the entity Barak Obama as an example. If the KB we refer to
is a year 2005’s version but the free texts are recently collected,
it is likely that the relation president of ⟨Obama, U.S.⟩
is a wrong label and the sentences containing Obama
and U.S. would be divided into the negative instances for
the relation president of.

To reduce the bad effects by incorrect negative labels, we
add a reward to each bag-level negative label and multiply it
by a weighting factor that reflects the likelihood of being non-
negative. Meanwhile, we add a penalty to each positive label
and a weighting factor that reflects the likelihood of being
nonpositive. We use a ranking-based method to determine
the likelihood by computing rankings among all possible
labels. More details would be described in Section 4.4.

4. Bias Modeling for Multi-Instance
Multilabel Learning

In this section, we introduce the details of our methods for
bias modeling.

4.1. Notations and Concepts. MIML takes a number of bags
as the training data, learns a two-layer (the instance-level
and the bag-level) weak classifier, and predicts relations for
unseen sentences. For an easier description ofMIML-RE and
ourmethods, we define the following notations and concepts:

(i) D, the whole textual corpus;
(ii) R, the set of all known relation labels;
(iii) L, the set of known relations for a certain entity (the

first/key entity in a pair) from KB;
(iv) instance, sample, a sentence that contains the target

entity pair and its quantized version for classification,
respectively;

(v) bag/group, a set of instances that contain the same
entity pair;

(vi) w𝑧, the instance-level classifier (𝑧-classifier), a multi-
class classifier;

(vii) w𝑦, the bag-level classifier (𝑦-classifier), a set of binary
classifiers;

(viii) 𝜇𝑘, the expectation/mean of the probability distribu-
tion on predicting scores for relation 𝑘;

(ix) 𝜎𝑘, the variance of the probability distribution on
predicting scores for relation 𝑘;

(x) 𝑥, an instance in the dataset;

(xi) x𝑖, the 𝑖th bag;

(xii) 𝑃𝑖, the positive label set of the 𝑖th bag;

(xiii) 𝑁𝑖, the negative label set of the 𝑖th bag.

In addition, we use 𝑙, 𝑧, 𝑟, and 𝑦 to denote class labels
and 𝜏, 𝑐, 𝑡, 𝛼, 𝛽, 𝛾, 𝜂, and 𝜃 for predefined constants.
Thus, the training data for MIML-RE is constructed as the
following: multiple instances containing the same pair of
entities constitute a bag x𝑖, with all possible relations for the
pair as its positive label set 𝑃𝑖 andL \ 𝑃𝑖 as the negative label
set 𝑁𝑖.

4.2. MIML-Dist. We construct two individual models based
on bias-dist: (1) MIML-dist adds bias-dist to the training
steps of MIML-RE and updates the label assignment process
(𝐸-step); (2) MIML-dist-classify simply adds bias-dist in the
testing step for predicting new sentences. Following MIML-
RE, MIML-dist uses the maximum likelihood estimation
(MLE) to model the whole training data (2) and the hard
expectationmaximization (EM) algorithm to learn themodel
parameters (w𝑦 and w𝑧) iteratively ((3)–(6)). Consider

𝑝 (D) =

𝑛

∏
𝑖=1

𝑝 (y𝑖 | x𝑖,w𝑦,w𝑧)

=

𝑛

∏
𝑖=1

𝑝 (y𝑖, z𝑖 | x𝑖,w𝑦,w𝑧) ,

𝑝 (y𝑖 | x𝑖,w𝑦,w𝑧)

=

𝑀
𝑖

∏
𝑚=1

𝑝 (𝑧
𝑚

𝑖
| w𝑧) ∏
𝑟∈𝑃
𝑖
∪𝑁
𝑖

𝑝 (𝑦
𝑟

𝑖
| z𝑖,w

𝑟

𝑦
) .

(2)

E-Step. For each instance in a bag, its label is decided by both
the instance-level classifier and the bag-level classifier. One
has

𝑧
𝑚

𝑖
= arg max

𝑧

𝑝 (𝑧 | 𝑥
𝑚

𝑖
,w𝑦,w𝑧, 𝜇𝑧)

= arg max
𝑧

𝑝 (𝑧 | 𝑥
𝑚

𝑖
,w𝑧, 𝜇𝑧) ∏

𝑟∈𝑃
𝑖
∪𝑁
𝑖

𝑝 (𝑦
𝑟

𝑖
| z󸀠
𝑖
,w𝑟
𝑦
) ,

(3)
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where z󸀠
𝑖
denotes the bag labels in which the label for the

current instance 𝑚 has been updated by the 𝑧-classifier and
𝑥
𝑚

𝑖
stands for the𝑚th instance in the 𝑖th bag. Consider

log𝑝 (𝑧 | 𝑥
𝑚

𝑖
,w𝑧, 𝜇𝑧)

= 𝛾 log𝑝 (𝑙 | 𝑥
𝑚

𝑖
,w𝑧)

+ (1 − 𝛾) log𝑝 [𝑝 (𝑙 | 𝑥
𝑚

𝑖
,w𝑧) | 𝜇𝑧]

𝑡
,

(4)

where 𝜇𝑧 is the mean value of the predicting scores for class
𝑧 and

𝑝 [𝑝 (𝑧 | 𝑥,w𝑧) | 𝜇𝑧] = [𝑝 (𝑧 | 𝑥,w𝑧) − 𝜇𝑧]
𝑡
. (5)

We assume that the predicting scores for each relation
follow a Gaussian distribution and 𝜇𝑧 is its expectation. The
variance𝜎𝑘 had little effect on the result according to our early
experiments so we discard it.

Then the model parameters are updated through the 𝑀-
step by (6).

M-Step. Consider the following:

w∗
𝑧
= arg max

w

𝑛

∏
𝑖=1

∏
𝑚∈𝑀

𝑖

𝑝 (𝑧
𝑚

𝑖
| 𝑥
𝑚

𝑖
,w) ,

w𝑟
∗

𝑦
= arg max

w
∏

1≤𝑖≤𝑛,𝑟∈𝑃
𝑖
∪𝑁
𝑖

𝑝 (𝑦
𝑟

𝑖
| z∗
𝑖
,w) .

(6)

The following two equations are used to infer the
instance-level and bag-level labels through corresponding
classifiers.

Inference. Consider the following:

𝑧𝑖
𝑚
∗

= arg max
𝑧

𝑝 (𝑧 | 𝑥
𝑚

𝑖
,w𝑧) ,

𝑦
𝑟

𝑖
= arg max
{0,1}

𝑝 (𝑦 | 𝑧
∗

𝑖
,w𝑟
𝑦
) .

(7)

In the testing phase, similar toMIML-RE,MIML-dist also
employs aNoisy-ormodel instead of at-least-one to avoid data
sparsity.

Noisy-or Model. Consider the following:

Noisy-or (𝑟)𝑖 = 1 − ∏
𝑚∈𝑀

𝑖

[1 − 𝑝 (𝑧 | 𝑥
𝑚

𝑖
,w𝑧)] . (8)

We show MIML-dist in Algorithm 1 (the procedures of
MIML-dist-classify and MIML-reward are similar except for
several tiny steps). The expectation 𝜇𝑘 for each class 𝑘 is
computed and stored after each label update in training (1.6-
1.7 in Algorithm 1).

4.3. MIML-Dist-Classify. Analogous to MIML-dist, MIML-
dist-classify also assumes that the predicting score for each
relation follows a Gaussian-like distribution. The differ-
ence between them is that MIML-dist-classify computes

(1) Training phase:
(1.1) foreach iteration 𝑒 in 𝑇

(1.2) foreach instance 𝑥 in each bag 𝑖

(1.3) foreach label 𝑙 inR

(1.4) 𝑙 = argmax
𝑙

𝑝 (𝑙 | 𝑥,w𝑦,w𝑧, 𝜇𝑙)

= argmax
𝑙

𝑝 (𝑙 | 𝑥,w𝑧, 𝜇𝑙)

× ∏
𝑟∈𝑃𝑖∪𝑁𝑖

𝑝 (𝑦𝑖 = 𝑟 | l󸀠
𝑖
,w𝑟
𝑦
)

(1.5) if 𝑙 != 𝑙org then

(1.6) 𝜇org ←󳨀
𝑁org × 𝜇org − 𝑝 (𝑙org | w𝑧, 𝑥)

𝑁org − 1

(1.7) 𝜇𝑙 ←󳨀
𝑁𝑙 × 𝜇𝑙 + 𝑝 (𝑙 | w𝑧, 𝑥)

𝑁𝑙 + 1
(1.8) end if
(1.9) end foreach
(1.10) 𝑧

∗
= argmax

𝑧

𝑝 (𝑧 | 𝑥,w𝑧)

(1.11) 𝑦
𝑟∗

= argmax
{0,1}

𝑝 (𝑦 | z∗
𝑖
,w𝑟
𝑦
)

(1.12) end foreach

(1.13) w∗
𝑧
= argmax

w

𝑛

∑
𝑖=1

∑
𝑚∈𝑀𝑖

log𝑝 (𝑙
𝑚∗

𝑖
| 𝑥
𝑚

𝑖
,w)

(1.14) w𝑙∗
𝑦

= argmax
w

∑
𝑖,𝑙

log𝑝 (𝑦
𝑙

𝑖
| 𝑧
∗

𝑖
,w)

(1.15) end foreach
(2) Testing phase:

(2.1) Predict the bag-level labels using Noisy-or model.

Algorithm 1: MIML-dist.

the expectations after all the training iterations and thus is
much easier and simpler than MIML-dist. It normalizes the
predicting probability in the testing phase by

log𝑝 (𝑙 | 𝑥, 𝜇𝑙,w𝑧)

= 𝜏 log𝑝 (𝑙 | 𝑥,w𝑧)

+ (1 − 𝜏) log [𝑝 (𝑙 | 𝑥,w𝑧) − 𝜇𝑙]
𝑡
.

(9)

When comparing MIML-dist with MIML-dist-classify,
from the perspective of time complexity, MIML-dist com-
putes bias-dist of each relation label for each instance, which
costsmuchwhen the scale of the training data is large or labels
are updated frequently. Moreover, the time complexity makes
the parameter tuning process more difficult. Comparatively,
MIML-dist-classify changes very little the original training
process, and if the model is trained (i.e., MIML-RE), it need
not be changed any more. The parameter tuning only locates
in the testing phase which is simple and fast.

To conclude, MIML-dist-classify is a kind of parameter
tuning strategy on the classification hyperplanes. It is efficient
for distant supervision because the training data in this task
suffer from the instance diversity problem much heavier
than most other supervised learning tasks, the training
data of which are carefully polished by annotators. It is
very likely that the probability distribution for each relation
class diversify from each other very much. MIML-dist is
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a more direct way to model bias-dist, in that it changes
the label assignment strategy by considering the impact of
data diversity. Compared with MIML-RE, MIML-dist lowers
down the chances of trapping into local minimums and thus
is expected to perform better than MIML-RE.

4.4. MIML-Reward. Different from the previous two meth-
ods which modify the probabilities produced by the 𝑧-
classifier, MIML-reward updates the probabilities generated
by the 𝑦-classifier. Concretely, the multiplication item in
(3) is updated by bias-reward. As mentioned above, we
import a ranking-based method to determine the likelihood
of each bag-level label being incorrect and add a reward or
penalty from the original probability. Formally, we define the
following notions:

(i) For a positive label, 𝑙-𝑙 is potentially wrong if some
irrelevant (negative or unlabeled) labels have higher ranks
than 𝑙.

(ii) For a negative label, 𝑙󸀠-𝑙󸀠 is potentially wrong if it has
a higher rank than some positive labels.

Moreover, we define 𝐾𝑙 as the instance that has the
maximum predicting confidence for label 𝑙 (the key instance
for 𝑙) in the bag and 𝑅(𝑙) as the number of labels that has a
higher rank than 𝑙:

𝐾𝑙 = arg max
𝑚∈𝑀

𝑖

𝑝 (𝑧
𝑚

𝑖
= 𝑙 | w𝑧, 𝑥

𝑚

𝑖
) ,

𝑅 (𝑙) = ∑

𝑙󸀠∈𝑅

𝐼 [𝑝 (𝐾𝑙󸀠 | w𝑧, x𝑖) > 𝑝 (𝐾𝑙 | w𝑧, x𝑖)]
(10)

in which 𝐼[𝑡] is the indicator function (if 𝑡 > 0, 𝐼[𝑡] = 1) and
𝑅 can be any label set. Intuitively, for a positive label 𝑙 in a bag,
the bigger 𝑅(𝑙) is, the more possible this label is wrong when
setting 𝑅 to be the nonpositive label set, while, for a negative
label 𝑙󸀠, the smaller 𝑅(𝑙

󸀠
) is, the more possible this label tends

to be wrong, when setting 𝑅 to be the positive label set. We
employ two constants, 𝛼 and 𝛽 (𝛼 > 0, 𝛽 > 0), to denote the
intensity of the above tendencies and take them as a reward or
penalty to a single label.Theposterior probabilities at the bag-
level are computed instead by (𝑙 represents a positive label and
𝑙
󸀠 represents a negative label)

log𝑝 (𝑦𝑖 = 𝑙) = log
{

{

{

𝑝(𝑦𝑖 = 𝑙 | z𝑖,w
𝑙

𝑦
)

−
𝛼

Ζ
∑

𝑙󸀠∈𝑅\𝑃
𝑖

𝐼 [𝑝 (𝐾𝑙󸀠 | w𝑧, x𝑖) > 𝑝 (𝐾𝑙 | w𝑧, x𝑖)]

+ 𝜂
}

}

}

,

log𝑝 (𝑦𝑖 = 𝑙
󸀠
) = log

{

{

{

𝑝(𝑦𝑖 = 𝑙
󸀠
| w𝑙
󸀠

𝑦
)

+
𝛽

Ζ
∑
𝑙∈𝑃
𝑖

𝐼 [𝑝 (𝐾𝑙󸀠 | w𝑧, x𝑖) > 𝑝 (𝐾𝑙 | w𝑧, x𝑖)] + 𝜃
}

}

}

,

(11)

where 𝑍 is the normalized factor which is set to be the
number of irrelevant labels (for each positive label) or the
number of positive labels (for each negative label). 𝜂 and 𝜃

are smoothing factors.
To conclude, MIML-reward is proposed to alleviate the

problem of noisy labels. As we can read from (3), the label
assignment is partly contributed by the bag-level labels (the
secondmultiplication item), which is built on the assumption
that all the bag-level labels are correctly annotated. However,
noisy labels are inevitable according to our previous analysis.
The penalty and reward mechanism for bias-reward is to
weaken the assumption, allowing that some labels could be
wrong and can be discovered and considered during training.
Similar ideas can be seen in [6, 8] who also took into account
the incorrectness of bag-level labels.

5. Implementation Details

For a fair comparison, most of the settings in implementation
followMIML-RE including the number of training iterations
𝑇 for EM (up to 8 times) and the number of folds 𝐹 for cross
validation to avoid overfitting (𝐹 = 3). The constants 𝛾 and
𝜏 were optimized on the developing set and were finally set
to be 0.7 and 0.5 for MIML-dist and MIML-dist-classify, and
the constant 𝑡 was set to be 2 for both the two methods. The
penalty and reward parameters 𝛼 and 𝛽 were set to be 0.2
and 0.2, respectively. For the smoothing parameters 𝜂 and
𝜃 in MIML-reward, we simply set them to 0.01. In addition,
we use the same features as MIML-RE which takes multiple
syntactic and semantic 𝑧-level features anddependency based
𝑦-level features. In addition, we added bias-dist only on those
positive labels but discarded the negative label NIL. We also
sampled 5% negative examples for training.

6. Experiments

6.1. Dataset Description. We test on the KBP dataset, one
of the benchmark datasets in this literature constructed
by Surdeanu et al. [4]. The resources are mainly from the
TAC KBP 2010 and 2011 slot filling shared tasks [25, 26]
which contain 183,062 and 3,334 entity pairs for training and
testing. The free texts come from the collection provided by
the shared task, which contains approximately 1.5 million
documents from a variety of sources, including newswire,
blogs, and telephone conversation transcripts. The KB is a
snapshot of the English version of Wikipedia. After the DS
annotation, we finally got 524,777 bags including 950,102
instances for training. For testing, 200 queries (a querymeans
a key entity) from the TAC KBP 2010 and 2011 shared tasks
containing 23 thousand instances are adopted, in which 40
queries constitute the developing set. The relation labels
include slots of person (per) and organization (org), and the
total number of labels is 41.

6.2. Experiments. We will show the evaluation metrics,
experiment results, and some observations from the data in
this section.
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6.2.1. Evaluation Metrics

P/R Curve. Following previous work, we report the stability
of the algorithms by figuring 𝑃/𝑅 curves. A 𝑃/𝑅 curve
is generated through computing precision and recall by
selecting different proportions of the testing data. Generally,
the higher the position of a 𝑃/𝑅 curve is in the figure, the
more stable the corresponding algorithm is.

Final Precision, Recall, and F1. The metrics precision, recall,
and 𝐹1 are used to evaluate the performance of the models
on the whole testing dataset. And we denote them by Final
P, Final R, and Final F1 to distinguish them from other PRFs
with part of the testing data.

To specify, the testing set has the same data format as
the training set which is constituted by groups. And the
above metrics are computed according to the KBP slot filling
tasks [31, 32] (on the entity level) rather than sentential
classification.

6.2.2. Expectations for Each Relation. To show the inspira-
tions for proposing bias-dist, we computed the expectations
(means) for each relation after initialization (before training
epochs denoted by mean b) as well as at the end of training
(denoted bymean e).The values were computed by averaging
all the predicting scores for those instances that are classified
to that relation.This process was carried out onMIML-RE to
show the instance diversity problem that the algorithm may
suffer from. We report the distributions of expectations with
an error bar (Figure 2). In the figure, each circle denotes the
average predicting expectation among all the training epochs
for the relation corresponding to the 𝑥-axis, and the upper
error and the lower error stand for the maximum and the
minimum expectations during training. Thus, the uneven
curve shows the diversities between relations. We see that
the maximum average expectation is about 0.94 (index =
2, per:date of birth) but the minimum one is only 0.3
(index = 25, org:members). Since the 𝑧-classifier considers
only the absolute predicting confidence (both in training and
testing), it is likely that the actual relation label for an instance
just gets a small predicting score. Hence, a relative predicting
score is necessary due to the diversity.

Another interesting thing we observe is the upper and
lower errors.The distance between the upper and lower error
for one relation indicates the change of class center and
members during training. We see that several relations have
their predicting expectations almost unchanged during the
whole training process. We guess one reasonable explanation
is that the instances of these relations are indeed pure enough
for classification, so that the labels for these instances may
hardly change during EM.

6.2.3. Baselines. We compare our models with three base-
lines: Hoffmann, Mintz++, and MIML-RE. Hoffmann is one
of the representative MIML-based algorithms which uses
deterministic-or decision instead of relation classifiers and it
also enables relation overlaps [3]. Minz++ [4] is a modified
version of the originalMintzmodel [1] inwhich eachmention
is treated independently andmultiple predictions are enabled
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Figure 2: Diversities on expectations for different relations (rela-
tions that have no instances have been removed).
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Figure 3: 𝑃/𝑅 curves of MIML-dist-classify and baselines.

by applying Noisy-or. The performance of Mintz++ signifi-
cantly outperforms the original Mintz model. As to MIML-
RE, we choose the better model (also named as MIML-RE
in [4]), which contains a modified version of 𝑦-level features
from at-least-one.

6.2.4. Results. We firstly report the 𝑃/𝑅 curves of our pro-
posed models compared with the three baseline methods
mentioned above (Figures 3–5). The curves of the proposed
methods are generated after tuning parameters on the devel-
oping set, aiming at maximizing Final 𝐹1.

For comparison, the best curve of MIML-dist-classify is
tuned only based on the model generated by the last training
epoch (𝑇 = 8). From Figure 3 we read that MIML-dist-
classify has higher precision scores in both the low and the
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Figure 4: 𝑃/𝑅 curves of MIML-dist and baselines.
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Figure 5: 𝑃/𝑅 curves of MIML-reward and baselines.

high recall proportions compared with the baselines but is
worse than Mintz++ in the low recall proportion (0.05∼0.1).
However, the precision of Mintz++ drops down fast when
recall goes beyond 0.1, not as stable as the other methods.
Thuswe conclude that althoughMIML-dist-classify is simple,
it shows that bias-dist is beneficial to the final results.

MIML-dist has considerable good performance as
MIML-dist-classify (Figure 4) especially in the low recall
region (<0.15). We notice that when we fix the recall in
0.05–0.1, the precision of MIML-dist can be 5–10% points
higher than MIML-RE. Other than MIML-dist-classify, the
curve of MIML-dist has better overall performance than
Mintz++.

Figure 5 shows the results generated by MIML-reward.
We see that MIML-reward gains considerable improvements
compared to MIML-RE in the low-recall region (<0.1) but
falls beneath the model as the recall increases. Similar to
MIML-dist, MIML-reward performs better than Hoffmann
and Mintz++ almost over all the recall proportions.

Final𝑃, Final𝑅, and Final𝐹1 aremetrics that evaluate the
methods on the whole testing set, which are also important
performance measures in this literature. We can read from
Table 2 that MIML-dist-classify improves the baselines by
nearly 4% on recall while still keeping a relatively high
precision. MIML-dist improves both precision and recall and
achieves themaximumFinal𝑃 among all themodels.MIML-
reward has the maximum Final 𝑅 but its performance is
at the cost of some precision points. We noticed that all
the three methods we propose can enhance the baseline
MIML-RE on 𝐹1 by over 1.5%. And compared with the other
baselines, Hoffman and Mintz++, we observed that Final 𝐹1
is significantly improved by the proposed methods.

6.2.5. Case Study. We analyzed the predicted results of the
proposed methods and compare them with those predicted
byMIML-RE, which is a direct baseline of our work. Tomake
it clear, we show inwhat kinds of cases ourmethods canmake
up the deficiency of the baseline.

Take one of the testing samples as an example: a sentence
is predicted to org:city of headquarterswith the prob-
ability of 0.56 and to the negative class label NIL with the
probability of 0.43. According to the center of the positive
class (0.82) which is far from 0.56, the sentence will not be
predicted to the class any more after being normalized by
bias-dist. We also figured that several positive predictions
were directly replaced by the negative class after adding bias-
dist, which is a contribution to the overall precision.

The effect of bias-reward can be indirectly read from
the training bags to some extent since it depends on the
bag-level labels which cannot be extracted from the testing
set. According to the EM algorithm in MIML, the only
supervision (weak supervision) is the bag-level labels, and the
algorithm follows: if a label is positive in a bag, its ranking
is higher than any other label. Hence, if the bag-level label
is potentially wrong, it is likely that the algorithm falls into
local minimums. We counted the number of different label
assignments in each training epoch for MIML-reward and
MIML-RE and found that it is really a large number (i.e.,
352,192 different assignments in 950,102 when 𝑇 = 1). We
believe that this large number of differences can easily lead the
training algorithm to converge to distinguishing directions.

Another thing we found is that the improvements dis-
tributed a bit evenly rather than focusing only on several
specific relation labels. This indicates that the biases we
propose are reasonable and efficient to all relations.

7. Discussion

We see that the proposed models work well on the whole
testing dataset (Table 2) but from the 𝑃/𝑅 curves we realize
(Figures 3–5) that the improvements on different proportions
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Table 2: Best KBP2010 scores generated by the models.

Final
𝑃%

Final
𝑅%

Final
𝐹1%

Hoffmann 30.65 19.79 23.97
Mintz++ 26.24 24.83 24.97
MIML-RE 30.56 24.68 27.30
MIML-dist-classify 29.60 28.47 29.03
MIML-dist 31.42 26.58 28.79
MIML-reward 27.20 31.08 29.01

of testing data are not so consistent, especially for MIML-
dist and MIML-reward which perform much better at the
low recall proportion but get a bit depressing when recall
increases. We argue that there are several possible reasons:
(1) the parameters (i.e., constants or biases) are tuned on
the developing set to maximize the performance on Final
𝐹1 but not the 𝑃/𝑅 curve. So it is possible that other sets of
parameters that donot performwell on Final𝐹1may generate
a better curve (we indeed validated this through changing the
parameter 𝑇); (2) the cases of each relation are a bit different
that a fixed parameter toward all relation classes is not quite
appropriate (i.e.,𝛼 and𝛽 inMIML-reward); it is likely that the
parameters only work well over all the testing set rather than
some proportion. We need to further improve the learning
algorithm so thatmore noises can be reduced or discarded. In
addition, the hard EM training process suffers from the local
minimum problem and how to tackle it should be further
developed.

Another phenomenon we notice is that MIML-dist and
MIML-reward have lower time complexity than MIML-RE.
MIML-dist achieves the best result when 𝑇 = 6 and MIML-
reward gets the optimum when 𝑇 = 2. It is believed that
the biases especially bias-reward heavily change the label
assignments so that the algorithm can converge much faster.
As a result, we improve the time efficiency of the MIML
algorithm. MIML-reward only needs 4-5 hours’ running
time, compared with MIML-RE whose training may last
about 20 hours according to the authors.

Sometimes a simple method can achieve a good result,
such as MIML-dist-classify, which only modifies the label
assignment process in testing but boosts MIML-RE by 1.7%
on 𝐹1. Besides, bias-dist can be applied in any probability
classification model and bias-reward can also be integrated
in anyMIL framework which takes a bag as the basic training
unit. However, we realize that there is still a long way for weak
(distant) supervision to go since the results are still far behind
what those supervised learningmethods can achieve. Perhaps
some more work can be down on either feature engineering
or parameter selection.

8. Conclusion

In this paper, we propose three methods for distantly super-
vised relation extraction based on two types of biases. Among
them, MIML-dist-classify and MIML-dist aim at tackling
the instance diversity problem for different relations via

adding bias items either in the testing step or in the training
step. MIML-reward is introduced to model the bag-level
label noise by adding rewards for wrong negative labels and
penalties for wrong positive labels. Experimental results on
a landmark dataset validate the effectiveness of the proposed
methods, boosting Final𝐹1 by 1.5%–1.7%. In the future, more
flexible approaches would be researched to model the noises
caused by DS.
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