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This paper proposes adaptive sliding mode control design for a class of fractional commensurate order chaotic systems. We firstly
introduce a fractional integral sliding manifold for the nominal systems. Secondly we prove the stability of the corresponding
fractional sliding dynamics. Then, by introducing a Lyapunov candidate function and using the Mittag-Leffler stability theory we
derive the desired sliding control law. Furthermore, we prove that the proposed sliding manifold is also adapted for the fractional
systems in the presence of uncertainties and external disturbances. At last, we design a fractional adaptation law for the perturbed
fractional systems. To verify the viability and efficiency of the proposed fractional controllers, numerical simulations of fractional
Lorenz’s system and Chen’s system are presented.

1. Introduction

In recent years, fractional calculus has attracted an increasing
interest not only among mathematicians, but also among
physicists and engineers. Fractional calculus is a gener-
alization of the traditional integer order integration and
differentiation to arbitrary noninteger (real or complex)
order. In comparison with classical calculus, fractional-order
derivatives and integrals provide more accurate modeling
of dynamical systems possessing memory and hereditary
properties [1, 2]. Various fractional dynamic models have
been developed in rheology, viscoelasticity, electrochemistry,
electromagnetism, and so forth [3].

To propose more efficient control design for fractional
dynamic systems, fractional control provides a suitable way
[2]. Fractional control has attracted interest in the control
community since the first fractional controller, the CRONE
controller, has been introduced and applied in various fields
of control systems [4]. Other pioneering contributions on
fractional controlmethodologies have beenmade, such as the
TID controller, the fractional 𝑃𝐼𝜆𝐷𝜇 controller [5], and the
fractional lead-lag compensator [6]. Basic ideas and compar-
isons between the above four fractional control schemes have

been addressed in [7].More recently, several controlmethod-
ologies for nonlinear fractional dynamic systems have been
developed by combining fractional calculus and nonlinear
control theory, such as the fractional sliding control [8–10],
the fractional adaptive control [11–13], and the fractional
optimal control [1, 14–16].

The works on fractional control go hand in hand with the
stability of fractional differential equations (FDEs) and rely
largely on their results [17]. Broad surveys in the stability issue
involving fractional dynamic systems have been published.
A complete and systematic picture of the state of the art
in the stability of FDEs is provided in [18]. This review
article covers the stability results in linear FDEs, nonlinear
FDEs, and time delayed FDEs.There are two most important
approaches to analyze the stability of nonlinear FDEs: one is
to use the frequent distributed fractional integrator model
[19], and the other is to use the Mittag-Leffler stability
theorem [20]. The first approach relies on the concept of a
fractional integration operator characterized by a continuous
frequency distributed model. It involves two steps: firstly
converting FDEs into exactly equivalent infinite dimensional
ODEs, secondly applying the traditional indirect Lyapunov
approach. Utilizing this approach, the stability of sliding
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dynamics and a fractional sliding control law for a novel
class of fractional chaotic systems have been investigated
in [21]. The stability and tracking convergence of fractional
model reference adaptive control systems are analyzed in
[13].

Analyzing the stability of nonlinear FDEs by using the
second approach is usually a complicated task, because it
is difficult to calculate the fractional-order derivative of the
commonly used Lyapunov candidate function. Fortunately,
a new property for Caputo fractional derivative is obtained
in [22], providing an easy way to derive an inequality for
the fractional-order derivative of the Lyapunov candidate
function in the quadratic form, instead of directly calcu-
lating its fractional-order derivative. So it is potentially a
convenient way to propose the stability analysis for nonlinear
FDEs.

In this paper, our main objective is to propose adaptive
sliding control design for a class of commensurate fractional-
order chaotic systems based on the newly discovered prop-
erty of Caputo operator. For this end, we firstly introduce
a fractional integral sliding manifold for these nominal
systems. Next we prove the stability of the correspond-
ing fractional sliding dynamics. Then, by introducing a
quadratic Lyapunov control function and using the Mittag-
Leffler stability theory we derive the desired control law.
Furthermore, we prove that the proposed sliding manifold
is also adapted for these fractional systems in the presence
of uncertainties and external disturbances. At last, we inves-
tigate adaptive sliding control design for these perturbed
systems.

The main contributions of this paper include the fol-
lowing: (1) a fractional integral sliding manifold is designed
which is adapted not only for the nominal fractional systems
but also for the perturbed systems; (2) the stability of the
sliding dynamics corresponding to the nominal systems and
the perturbed systems is proved; (3) a sliding control law and
an adaptive law are designed, respectively, for the nominal
systems and the perturbed systems.

The rest of the paper is organized as follows. Section 2
presents some basic definitions and theorems about frac-
tional calculus and stability of fractional differential equa-
tions. Section 3 introduces a fractional integral sliding man-
ifold and proposes the sliding control design for a class of
nominal fractional-order chaotic systems. Section 4 investi-
gates adaptive sliding control design for perturbed systems.
In Section 5, numerical simulations of fractional Lorenz’s
system and Chen’s system are presented to show the viability
and efficiency of the proposed fractional controllers. Finally,
the paper is concluded in Section 6.

2. Basic Definitions and Preliminaries

In this section we recall the definitions and several theo-
rems in the fractional calculus. The most commonly used
definitions of fractional derivatives are Grünwald-Letnikov,
Riemann-Liouville, and Caputo definitions.

Definition 1. TheGrünwald-Letnikov derivative definition of
order 𝛼 is described as

𝑎𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝛼

[(𝑡−𝑎)/ℎ]

∑

𝑗=0

(−1)
𝑗
(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ) , (1)

where ℎ is the time step.

Definition 2. The Riemann-Liouville derivative of order 𝛼 is
defined as

𝑎𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛
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∫
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𝑎

𝑓 (𝜏) 𝑑𝜏
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𝛼−𝑛+1

(2)

for 𝑛 − 1 < 𝛼 < 𝑛, where Γ(⋅) is Euler’s Gamma function.

Definition 3. The Caputo definition of fractional derivative
can be written as

𝑎𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

𝑓
(𝑛)
(𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝛼−𝑛+1

(3)

for 𝑛 − 1 < 𝛼 < 𝑛.

Lemma 4 (fractional comparison principle [20]). Let 𝑥(0) =
𝑦(0) and𝐷𝛼𝑥(𝑡) ≥ 𝐷

𝛼
𝑦(𝑡), where 0 < 𝛼 < 1; then 𝑥(𝑡) ≥ 𝑦(𝑡).

Lemma 5 (Mittag-Leffler stability [20]). Let 𝑥eq = 0 be
an equilibrium point of a fractional nonlinear system and a
domain containing the origin. Let 𝑉(𝑡, 𝑥(𝑡)) : [0,∞) × 𝐷 →

𝑅
+ be a continuously differentiable function satisfying

𝑉 (𝑡, 𝑥 (𝑡)) ≥ 𝛼 (‖𝑥‖) ,

𝐷
𝑞
𝑉 (𝑡, 𝑥 (𝑡)) ≤ 0,

(4)

where 𝛼(⋅) is the class-K function, 𝑥 ∈ 𝐷, and 0 < 𝑞 < 1. Then
𝑥 = 0 is globally stable.

Lemma 6 (see [22]). Let 𝑥(𝑡) ∈ 𝑅 be a continuous and
derivable function. Then, for any time instant 𝑡 ≥ 𝑡0,

1

2

𝐶

𝑡0
𝐷
𝑞

𝑡
𝑥
2
(𝑡) ≤ 𝑥 (𝑡)

𝐶

𝑡0
𝐷
𝑞

𝑡
𝑥 (𝑡) , ∀𝑞 ∈ (0, 1) . (5)

3. Sliding Control for the Nominal Fractional
Chaotic Systems

Consider a class of fractional-order chaotic systems described
by the following fractional differential equations:

𝐷
𝑞1𝑥 = 𝑓 (𝑥, 𝑦, 𝑧) − 𝛼𝑥,

𝐷
𝑞2𝑦 = 𝑥𝑔 (𝑥, 𝑦, 𝑧) − 𝛽𝑦,

𝐷
𝑞3𝑧 = 𝑥ℎ (𝑥, 𝑦, 𝑧) − 𝛾𝑧,

(6)

where 𝑞1, 𝑞2, 𝑞3 ∈ (0, 1) are fractional-orders, 𝑥, 𝑦, and 𝑧

are state variables, and 𝛼, 𝛽, and 𝛾 are nonnegative known
constants.
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The above fractional system (6) is introduced by Yuan
et al. [21]. It consists of 6 fractional chaotic systems, includ-
ing the fractional-order Lorenz system, the fractional-order
Chen system, the fractional-order Lü system, the fractional-
order Liu system, the fractional-order Lotka-Volterra system,
and the fractional-order Rucklidge system.

In this paper, our main purpose is to propose the sliding
control design for the commensurate ordered chaotic system,
that is, the case when 𝑞1 = 𝑞2 = 𝑞3 = 𝑞 ∈ (0, 1). Firstly,
we introduce a fractional integral sliding surface which is
different from the one in [21] and design sliding control
law for the nominal fractional system (6) using the Mittag-
Leffler stability theorem. Secondly, we consider system with
uncertainties and external disturbances and propose adaptive
sliding control design.

3.1. Sliding Surface Design. To propose the sliding control
design for the nominal system (6), we introduce the following
fractional integral sliding surface:

𝑠 (𝑡) = 𝑥 (𝑡) +
0𝐼
𝑞

𝑡
𝜑 (𝑡) , (7)

where 𝜑(𝑡) = 𝑦𝑔(𝑥, 𝑦, 𝑧) + 𝑧ℎ(𝑥, 𝑦, 𝑧) + 𝛼𝑥.
Taking its 𝑞th order fractional derivative with respect to

time leads to the following:

𝐷
𝑞
𝑠 (𝑡) = 𝐷

𝑞
𝑥 (𝑡) + 𝜑 (𝑡) . (8)

3.2. Stability Analysis of Sliding Dynamics. Now we are about
to prove that the system motion on the sliding manifold (i.e.,
sliding dynamics) satisfies our desired specifications; that is,
once the trajectory of system (6) is steered to the sliding
surface (7), the three state variables 𝑥, 𝑦, and 𝑧 will converge
to zero asymptotically.

Let 𝐷𝑞𝑠(𝑡) = 0; then we derive the following fractional
sliding dynamics for the nominal system:

𝐷
𝑞
𝑥 = −𝑦𝑔 (𝑥, 𝑦, 𝑧) − 𝑧ℎ (𝑥, 𝑦, 𝑧) − 𝛼𝑥,

𝐷
𝑞
𝑦 = 𝑥𝑔 (𝑥, 𝑦, 𝑧) − 𝛽𝑦,

𝐷
𝑞
𝑧 = 𝑥ℎ (𝑥, 𝑦, 𝑧) − 𝛾𝑧.

(9)

For the sliding dynamics (9) a Lyapunov function is
chosen as

𝑉1 (𝑥, 𝑦, 𝑧) =
1

2
𝑥
2
+
1

2
𝑦
2
+
1

2
𝑧
2
. (10)

By taking its 𝑞th order fractional derivative with respect
to time, using Lemma 6, and inserting the three equations of
system (9) into (10), one derives

𝐷
𝑞
𝑉1 ≤ 𝑥𝐷

𝑞
𝑥 + 𝑦𝐷

𝑞
𝑦 + 𝑧𝐷

𝑞
𝑧

= 𝑥 (−𝑦𝑔 − 𝑧ℎ − 𝛼𝑥) + 𝑦 (𝑥𝑔 − 𝛽𝑦) + 𝑧 (𝑥ℎ − 𝛾𝑧)

= − (𝛼𝑥
2
+ 𝛽𝑦
2
+ 𝛾𝑧
2
) .

(11)

Denoting 𝜂 = min{𝛼, 𝛽, 𝛾}, then inequality (11) becomes

𝐷
𝑞
𝑉1 ≤ −𝜂𝑉1. (12)

Inequality (12) satisfies the Mittag-Leffler stability theo-
rem. This implies that the three state variables 𝑥, 𝑦, and 𝑧

tend to zero asymptotically. Up to this point, we come to the
following statement.

Theorem7. The fractional sliding dynamics (9) of the nominal
fractional system (6) is asymptotically stable.

3.3. Sliding Control Design. To propose the sliding control
design for the nominal system (6), we introduce the following
control Lyapunov function:

𝑉2 (𝑠) =
1

2
𝑠
2
. (13)

Taking its 𝑞th order fractional derivative with respect to
time and inserting the first equation of system (6), one derives

𝐷
𝑞
𝑉2 ≤ 𝑠𝐷

𝑞
𝑠

= 𝑠 (𝐷
𝑞
𝑥 + 𝜑)

= 𝑠 [𝑓 (𝑥, 𝑦, 𝑧) − 𝛼𝑥 + 𝑢 (𝑡) + 𝑦𝑔 (𝑥, 𝑦, 𝑧)

+𝑧ℎ (𝑥, 𝑦, 𝑧) + 𝛼𝑥] .

(14)

Then the control law is constructed as

𝑢 (𝑡) = − 𝑓 (𝑥, 𝑦, 𝑧) − 𝑦𝑔 (𝑥, 𝑦, 𝑧)

− 𝑧ℎ (𝑥, 𝑦, 𝑧) − 𝑘1 sgn (𝑠) − 𝑘2𝑠.
(15)

Substituting the control law (15) into (14) yields

𝐷
𝑞
𝑉2 ≤ 𝑠 [−𝑘1 sgn (𝑠) − 𝑘2𝑠]

= −𝑘1 |𝑠| − 𝑘2𝑠
2

≤ −𝑘2𝑉2.

(16)

In terms of theMittag-Leffler stability theorem, we obtain
that 𝑠 → 0 and 𝑥, 𝑦, 𝑧 → 0.

Up to this point, we arrive at the following conclusion.

Theorem 8. The nominal fractional chaotic system (6) is
asymptotically stabilized under the proposed sliding control law
(15).

4. Adaptive Sliding Control for
the Perturbed System

In this section, we are about to go further by considering the
commensurate ordered chaotic system (6) in the presence
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of systematic uncertainties and external disturbances. It is
described by the following fractional differential equations:

𝐷
𝑞
𝑥 = 𝑓 (𝑥, 𝑦, 𝑧) − 𝛼𝑥 + Δ𝑓1 (𝑥, 𝑦, 𝑧) + 𝑑1 (𝑡) ,

𝐷
𝑞
𝑦 = 𝑥𝑔 (𝑥, 𝑦, 𝑧) − 𝛽𝑦 + Δ𝑓2 (𝑥, 𝑦, 𝑧) + 𝑑2 (𝑡) ,

𝐷
𝑞
𝑧 = 𝑥ℎ (𝑥, 𝑦, 𝑧) − 𝛾𝑧 + Δ𝑓3 (𝑥, 𝑦, 𝑧) + 𝑑3 (𝑡) .

(17)

We assume that all the uncertainties and external distur-
bances are bounded; that is, |Δ𝑓1(𝑥, 𝑦, 𝑧)| < 𝜃1, |𝑑1(𝑡)| < 𝜃2,
|Δ𝑓2(𝑥, 𝑦, 𝑧)| < 𝐹2, |𝑑2(𝑡)| < 𝐷2, |Δ𝑓3(𝑥, 𝑦, 𝑧)| < 𝐹3, and
|𝑑3(𝑡)| < 𝐷3, where 𝜃1, 𝜃2, 𝐹2, 𝐷2, 𝐹3, and 𝐷3 are unknown
nonnegative constants.

4.1. Stability Analysis of Sliding Dynamics of Perturbed Sys-
tems. Proceeding as before, we introduce the fractional
integral sliding surface as in (7) and derive the following
sliding dynamics:

𝐷
𝑞
𝑥 = −𝑦𝑔 (𝑥, 𝑦, 𝑧) − 𝑧ℎ (𝑥, 𝑦, 𝑧) − 𝛼𝑥,

𝐷
𝑞
𝑦 = 𝑥𝑔 (𝑥, 𝑦, 𝑧) − 𝛽𝑦 + Δ𝑓2 (𝑥, 𝑦, 𝑧) + 𝑑2 (𝑡) ,

𝐷
𝑞
𝑧 = 𝑥ℎ (𝑥, 𝑦, 𝑧) − 𝛾𝑧 + Δ𝑓3 (𝑥, 𝑦, 𝑧) + 𝑑3 (𝑡) .

(18)

To analyze the stability of the sliding dynamics (18), we
introduce the following Lyapunov function:

𝑉3 (𝑥, 𝑦, 𝑧) =
1

2
𝑥
2
+
1

2
𝑦
2
+
1

2
𝑧
2
. (19)

Taking its 𝑞th order fractional derivative with respect to
time, using Lemma 6, and inserting the three equations of
system (18) into (19), one derives

𝐷
𝑞
𝑉3 ≤ 𝑥𝐷

𝑞
𝑥 + 𝑦𝐷

𝑞
𝑦 + 𝑧𝐷

𝑞
𝑧

= 𝑥 (−𝑦𝑔 − 𝑧ℎ − 𝛼𝑥) + 𝑦 (𝑥𝑔 − 𝛽𝑦 + Δ𝑓2 + 𝑑2)

+ 𝑧 (𝑥ℎ − 𝛾𝑧 + Δ𝑓3 + 𝑑3)

= − (𝛼𝑥
2
+ 𝛽𝑦
2
+ 𝛾𝑧
2
) + 𝑦 (Δ 2 + 𝐷2) + 𝑧 (Δ 3 + 𝐷3) .

(20)

We denote

𝜌 = 𝑦 (Δ 2 + 𝐷2) + 𝑧 (Δ 3 + 𝐷3) . (21)

It is observed that 𝜌 is also bounded, since all the state
variables of chaotic system have bounded amplitude [23]. As
a result, we ultimately derive the following inequality:

𝐷
𝑞
𝑉3 ≤ −𝜂𝑉3 + 𝜌. (22)

Following the proof of Theorem 2 in [23], we conclude
that the sliding dynamics (18) is globally stable.

Up to this point, we come to the following conclusion.

Theorem 9. The fractional sliding dynamics (18) of the frac-
tional system (17) in the presence of system uncertainties and
external disturbances is globally stable.

4.2. Adaptive Sliding Control Design. To propose the sliding
control design for the perturbed system (17), we introduce the
following Lyapunov function:

𝑉4 (𝑥, 𝑦, 𝑧, 𝜃1, 𝜃2) =
1

2
[𝑠
2
+

1

𝜇1

(𝜃1 − 𝜃1)
2

+
1

𝜇2

(𝜃2 − 𝜃2)
2

] .

(23)

Taking its 𝑞th order fractional derivative with respect to
time and inserting the first equation of system (17) into (23),
one obtains

𝐷
𝑞
𝑉4 ≤ 𝑠𝐷

𝑞
𝑠 +

1

𝜇1

(𝜃1 − 𝜃1)𝐷
𝑞
𝜃1 +

1

𝜇2

(𝜃2 − 𝜃2)𝐷
𝑞
𝜃2

= 𝑠 (𝐷
𝑞
𝑥 + 𝜑) +

1

𝜇1

(𝜃1 − 𝜃1)𝐷
𝑞
𝜃1

+
1

𝜇2

(𝜃2 − 𝜃2)𝐷
𝑞
𝜃2

= 𝑠 [𝑓 − 𝛼𝑥 + Δ𝑓1 + 𝑑1 + 𝑢 (𝑡) + 𝑦𝑔 + 𝑧ℎ + 𝛼𝑥]

+
1

𝜇1

(𝜃1 − 𝜃1)𝐷
𝑞
𝜃1 +

1

𝜇2

(𝜃2 − 𝜃2)𝐷
𝑞
𝜃2.

(24)

If we chose the control law as

𝑢 (𝑡) = − 𝑓 (𝑥, 𝑦, 𝑧) − 𝑦𝑔 (𝑥, 𝑦, 𝑧) − 𝑧ℎ (𝑥, 𝑦, 𝑧)

− (𝜃1 + 𝜃2 + 𝑘1) sgn (𝑠) − 𝑘2𝑠
(25)

and the fractional adaptive law as

𝐷
𝑞
𝜃1 = 𝜇1 |𝑠| ,

𝐷
𝑞
𝜃2 = 𝜇2 |𝑠| ,

(26)

then inequality (24) becomes

𝐷
𝑞
𝑉4 ≤ 𝑠 [Δ𝑓1 + 𝑑1 − (𝜃1 + 𝜃2 + 𝑘1) sgn (𝑠) − 𝑘2𝑠]

+ (𝜃1 − 𝜃1) |𝑠| + (𝜃2 − 𝜃2) |𝑠|

= (Δ𝑓1 + 𝑑1) 𝑠 − (𝜃1 + 𝜃2 + 𝑘1) |𝑠|

+ (𝜃1 − 𝜃1) |𝑠| + (𝜃2 − 𝜃2) |𝑠| − 𝑘2𝑠
2

≤ (𝜃1 + 𝜃2) |𝑠| − (𝜃1 + 𝜃2 + 𝑘1) |𝑠| + (𝜃1 − 𝜃1) |𝑠|

+ (𝜃2 − 𝜃2) |𝑠| − 𝑘2𝑠
2

= −𝑘1 |𝑠| − 𝑘2𝑠
2
≤ 0.

(27)
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It is obvious that 𝐷𝑞𝑉4(𝑥, 𝑦, 𝑧, 𝜃1, 𝜃2) = 0 if and only if
𝑠 = 0. So we can conclude that 𝑥, 𝑦, 𝑧 → 0, 𝜃1 → 𝜃1, and
𝜃2 → 𝜃2.

Up to this point, we arrive at the following theorem.

Theorem 10. The fractional system (17) in the presence of sys-
tem uncertainties and external disturbances is asymptotically
stabilized under the proposed sliding control law (24) and the
fractional adaptive law (25).

Remark 11. The control design proposed in this paper is
different from those in [9, 21]. Firstly, the fractional sliding
surfaces are of different forms. Secondly, the stability of the
fractional sliding dynamics is analyzed using the Mittag-
Leffler stability theorem, instead of the continuous frequency
distributed model (see [21]) or the traditional Lyapunov
method (see [9]).More importantly, a stability analysis for the
fractional sliding dynamics of the perturbed systems is given
in this paper.

5. Numerical Simulations

To show the viability and efficiency of the proposed con-
trol design, we give two illustrative examples, fractional-
order Lorenz’s system and fractional-order Chen’s system.
We utilize the proposed fractional integral sliding control
technique to control the two nominal fractional chaotic
systems. Furthermore, we apply the adaptive sliding control
approach to control the fractional systems in the presence of
system uncertainties and external disturbances.

Numerical simulations are implemented using the MAT-
LAB software.We utilize the algorithm for numerical calcula-
tion of fractional derivatives, which is introduced by Petráš in
[24]. This algorithm takes advantage of the “Short-Memory”
principle and derived fromGrünwald-LetnikovDefinition (1)
based on the fact that three Definitions (1), (2), and (3) are
equivalent for a wide class of functions.

5.1. Control of Fractional-Order Lorenz’s System. Fractional
Lorenz’s system is described as

𝐷
𝑞
𝑥 = −𝑎 (𝑥 − 𝑦) ,

𝐷
𝑞
𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧,

𝐷
𝑞
𝑧 = −𝑏𝑧 + 𝑥𝑦,

(28)

where 𝑎 = 10, 𝑟 = 28, and 𝑏 = 8/3.
In terms of (7), the sliding surface is

𝑠 (𝑡) = 𝑥 (𝑡) + 0𝐼
𝑞

𝑡
𝜑 (𝑡) , (29)

where 𝜑(𝑡) = 𝑎𝑥(𝑡) + 𝑟𝑦(𝑡).
Following (15), the control law is

𝑢 (𝑡) = − (𝑎 + 𝑟) 𝑦 (𝑡) − 𝑘1 sgn (𝑠) − 𝑘2𝑠. (30)

The performances of nominal closed-loop fractional-
order Lorenz’s system are shown in Figures 1 and 2, under
the proposed fractional integral sliding surface (29) and the
sliding control law (30). Figure 1 shows the time response of
the three state variables and the control input (30). Figure 2
shows the corresponding fractional integral sliding surface
(29).

Parameters for the numerical simulations are specified,
respectively, as follows: the fractional-order 𝑞 = 0.993 and
the coefficients of control law 𝑘1 = 0.02, 𝑘2 = 0.02.

Next we investigate the control design for fractional-
order Lorenz’s system in the presence of system uncertainties
and external disturbances

𝐷
𝑞
𝑥 = −𝑎 (𝑥 − 𝑦) + Δ𝑓1 + 𝑑1 + 𝑢 (𝑡) ,

𝐷
𝑞
𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧 + Δ𝑓2 + 𝑑2,

𝐷
𝑞
𝑧 = −𝑏𝑧 + 𝑥𝑦 + Δ𝑓3 + 𝑑3.

(31)

To carry out numerical simulations, the system uncer-
tainties and external disturbances in the above perturbed
system are assumed, respectively, to be Δ𝑓1(𝑥, 𝑦, 𝑧) = 0.1 +

0.1 sin(𝜋𝑥), 𝑑1(𝑡) = 0.1 cos 𝑡, Δ𝑓2(𝑥, 𝑦, 𝑧) = 0.1 − 0.2 sin(𝜋𝑦),
𝑑2(𝑡) = 0.2 sin(2𝑡), Δ𝑓3(𝑥, 𝑦, 𝑧) = 0.1𝑥 cos(𝜋𝑧), and 𝑑3(𝑡) =
0.1 cos(𝜋𝑡).

In view of (25) and (26), the control law and the fractional
adaptive law are, respectively,

𝑢 (𝑡) = − (𝑎 + 𝑟) 𝑦 − (𝜃1 + 𝜃2 + 𝑘1) sgn (𝑠) − 𝑘2𝑠, (32)

𝐷
𝑞
𝜃1 = 𝜇1 |𝑠| ,

𝐷
𝑞
𝜃2 = 𝜇2 |𝑠| .

(33)

Figures 3 and 4 illustrate the performances of con-
trolled fractional Lorenz’s system with uncertainties and
external disturbances, under the proposed fractional integral
sliding surface (29), the sliding control law (32), and the
fractional adaptive law (33). The time responses of the
state variables, the control input, and the estimation of
uncertainties/external disturbances are depicted in Figure 3.
The corresponding fractional integral sliding surface (29) is
illustrated in Figure 4.

Parameters for the numerical simulations are specified,
respectively, as follows: the fractional-order 𝑞 = 0.993, the
coefficients of control law 𝑘1 = 0.02, 𝑘2 = 0.02, the
coefficients of adaptive law 𝜇1 = 0.03, 𝜇2 = 0.02, and the
initial conditions of the adaptive parameters 𝜃1(0) = 𝜃2(0) =

0.2.

5.2. Control of Fractional-Order Chen’s System. Fractional-
order Chen’s system is described as

𝐷
𝑞1𝑥 = 𝑎 (𝑦 − 𝑥) ,

𝐷
𝑞2𝑦 = (𝑐 − 𝑎) 𝑥 − 𝑥𝑧 + 𝑐𝑦 + 𝑢,

𝐷
𝑞3𝑧 = 𝑥𝑦 − 𝑏𝑧.

(34)
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Figure 1: Fractional sliding control of nominal fractional-order Loren’s system with time step ℎ = 0.0005: (a) the 𝑥-𝑡 space; (b) the 𝑦-𝑡 space;
(c) the 𝑧-𝑡 space; (d) the 𝑢-𝑡 space.
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Figure 2: The time response of the sliding manifold (29).

In terms of (7), the sliding surface is

𝑠 (𝑡) = 𝑦 (𝑡) + 0𝐼
𝑞

𝑡
𝜑 (𝑡) , (35)

where 𝜑(𝑡) = 𝑎𝑥(𝑡) + 𝑐𝑦(𝑡) + 𝑥(𝑡)𝑧(𝑡).
Following (15), the control law is

𝑢 (𝑡) = −𝑐𝑥 − 2𝑐𝑦 − 𝑘1 sgn (𝑠) − 𝑘2𝑠. (36)

The performances of nominal closed-loop fractional-
order Chen’s system are shown in Figures 5 and 6, under
the proposed fractional integral sliding surface (35) and the
sliding control law (36). Figure 5 shows the time response of
the three state variables and the control input (36). Figure 6
shows the corresponding fractional integral sliding surface
(35).
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Figure 3: Adaptive sliding control of fractional-order Loren’s systemwith dynamics uncertainties and external disturbances: (a) the 𝑥-𝑡 space;
(b) the 𝑦-𝑡 space; (c) the 𝑧-𝑡 space; (d) the 𝑢-𝑡 space; (e) online estimate of 𝜃1; (f) online estimate of 𝜃2.
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Figure 4: The time response of the sliding manifold (29).

Parameters for the numerical simulations are specified,
respectively, as follows: the fractional-order 𝑞 = 0.9 and the
coefficients of control law 𝑘1 = 0.1, 𝑘2 = 0.1.

Next we propose the adaptive sliding control design for
fractional-order Chen’s system in the presence of uncertain-
ties and external disturbances which are added to the three
equations.The control input is added to the second equation.
Then the perturbed system to be controlled reads as

𝐷
𝑞1𝑥 = 𝑎 (𝑦 − 𝑥) + Δ𝑓1 + 𝑑1,

𝐷
𝑞2𝑦 = (𝑐 − 𝑎) 𝑥 − 𝑥𝑧 + 𝑐𝑦 + Δ𝑓2 + 𝑑2 + 𝑢 (𝑡) ,

𝐷
𝑞3𝑧 = 𝑥𝑦 − 𝑏𝑧 + Δ𝑓3 + 𝑑3.

(37)

To carry out numerical simulations, the system uncer-
tainties and external disturbances in the above perturbed sys-
tem are assumed, respectively, as Δ𝑓1(𝑥, 𝑦, 𝑧) = 0.1 cos(𝑥𝑦),
𝑑1(𝑡) = 0.2 sin(3𝑡), Δ𝑓2(𝑥, 𝑦, 𝑧) = 0.2 − 0.1 sin(𝜋𝑥), 𝑑2(𝑡) =
0.1 cos 𝑡, Δ𝑓3(𝑥, 𝑦, 𝑧) = 0.1 sin(𝑥𝑦), and 𝑑3(𝑡) = −0.1

cos(5𝑡).
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Figure 5: Sliding control of nominal fractional-order Chen’s system: (a) the 𝑥-𝑡 space; (b) the 𝑦-𝑡 space; (c) the 𝑧-𝑡 space; (d) the 𝑢-𝑡 space.
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Figure 6: The time response of the sliding manifold (35).

In terms of (25) and (26), the control law and factional
adaptive law are selected, respectively, as

𝑢 (𝑡) = −𝑐𝑥 − 2𝑐𝑦 − (𝜃1 + 𝜃2 + 𝑘1) sgn (𝑠) − 𝑘2𝑠, (38)

𝐷
𝑞
𝜃1 = 𝜇1 |𝑠| ,

𝐷
𝑞
𝜃2 = 𝜇2 |𝑠| .

(39)

Figures 7 and 8 illustrate the performances of controlled
fractional-order Chen’s system with uncertainties and exter-
nal disturbances, under the proposed fractional integral
sliding surface (35), the sliding control law (38), and the
fractional adaptive law (39). The time responses of the
state variables, the control input (38), and the estimation of
uncertainties/external disturbances are depicted in Figure 7;
the corresponding fractional integral sliding surface (35) is
illustrated in Figure 8.
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Figure 7: Adaptive sliding control of fractional-order Chen’s systemwith dynamics uncertainties and external disturbances: (a) the 𝑥-𝑡 space;
(b) the 𝑦-𝑡 space; (c) the 𝑧-𝑡 space; (d) the 𝑢-𝑡 space; (e) online estimate of 𝜃1; (f) online estimate of 𝜃2.
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Figure 8: The time response of the sliding manifold (35).

Parameters for the numerical simulations are specified,
respectively, as follows: the fractional-order 𝑞 = 0.9, the
coefficients of control law 𝑘1 = 0.5, 𝑘2 = 0.1, the coefficients

of adaptive law 𝜇1 = 0.2, 𝜇2 = 0.2, and the initial conditions
of the adaptive parameters 𝜃1(0) = 𝜃2(0) = 0.2.

6. Conclusions

In this paper, a fractional sliding controller and an adaptive
sliding controller have been, respectively, designed for a class
of commensurate fractional-order chaotic systems and the
perturbed ones. Firstly, a fractional integral sliding manifold
for the nominal systems has been introduced. Secondly, the
stability of the corresponding fractional sliding dynamics has
been proved. Then, by introducing a Lyapunov candidate
function and using the Mittag-Leffler stability theory, a
desired sliding control law has been obtained. Furthermore,
the proposed sliding manifold has been proved to be adapted
for the fractional systems in the presence of uncertainties
and external disturbances. At last, an adaptation law for the
perturbed fractional systems has been designed. Numerical
simulations of fractional Lorenz’s system and Chen’s system
are presented to verify the viability and efficiency of the
proposed fractional controllers.
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