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The structural properties of the unobservable subspace are explored. In particular the canonical decomposition of the unobservable
subspace as a direct sum of cyclic subspaces as well as the conditions for this subspace to be spectral for the systemmatrix is studied.
These properties are applied to simple input-simple output (SISO) feedback systems by connecting the spectral decomposition of
the unobservable subspace to the total cancellation of unobservable modes in the compensator with multiple transmission zeros in
the plant.

1. Introduction

In control theory, a dynamical system Σ is a processing
element that transforms an input 𝑢 into an output 𝑦 both
depending on time. When restricted to linear-invariant
systems, a realization of Σ is usually defined in the state-
space by a quadruplet of matrices Σ = (𝐴, 𝐵, 𝐶,𝐷) and a
vector of internal states 𝑥.This quadruplet describes a system
of differential equations of the type �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 =

𝐶𝑥 + 𝐷𝑢. In many occasions it is interesting to analyze the
capability of inferring internal states by the knowledge of the
outputs; this is called the observability of a system and was
firstly introduced by American Hungarian scientist Rudolf
E. Kalman, [1]. The set of unobservable states that can not
be determined from the outputs has structure of 𝐴-invariant
subspace,N.

The intersection of the unobservable subspace N with
another subspace 𝑊 is common in control theory. For
example, in the Kalman decomposition it is possible to deter-
mine the 𝐴-invariant controllable-unobservable subspace by
choosing 𝑊 as the controllable subspace. Another example
is found in the stabilizing solutions of the Riccati equation
where 𝑊 is a stable invariant subspace [2]. In all those
cases 𝑊 is 𝐴-invariant which implies that N ∩ 𝑊 is also

𝐴-invariant; furthermore, it is usual to require a trivially
𝐴-invariant intersection, N ∩ 𝑊 = {0}. When 𝑊 is not an
𝐴-invariant subspace or even not a subspace, something can
be stated about the invariance of N ∩ 𝑊. For instance, the
uncontrollable set𝑊

𝑐
is not a subspace but we can build the

largest subspace contained in 𝑊
𝑐
, which is not necessarily

𝐴-invariant. If N admits a spectral decomposition, N ∩ 𝑊

turns out to be a controlled-invariant subspace since 𝐴(N ∩

𝑊) ⊆ N ∩ 𝑊 ⊆ N ∩ 𝑊 + span(𝐵), where span(𝐵) is the
subspace generated by the columns of 𝐵 (for more details
of conditioned invariant subspaces the reader is referred to
[3, 4]). Furthermore, ifN has a spectral decomposition every
subspace𝑊 ⊆ R𝑛 is a conditioned invariant subspace under
𝐴 with respect to N; that is, 𝐴(N ∩ 𝑊) ⊆ N ∩ 𝑊 ⊆

𝑊. In the pole placement by output injection it is usual to
take an arbitrary subspace𝑊 which is conditioned invariant;
that is, for any matrix 𝐺, (𝐴 + 𝐺𝐶)𝑊 ⊆ 𝑊. However this
condition can be removed when N is spectral. Thus, for an
arbitrary matrix 𝐺, 𝐴 + 𝐺𝐶|N∩𝑊

= 𝐴|N∩𝑊
and N ∩ 𝑊 is

(𝐴+𝐺𝐶)-invariant (also thismeans thatN∩𝑊 is conditioned
invariant).

Recently it was shown that the unobservable subspace
plays a central role in the well-posedness of a type of
systems described by impulsive differential equations called
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reset control systems [5]. In fact the 𝐴-invariance of the
intersection of the unobservable with an arbitrary subspace
seems to be key in the study of these systems.

Motivated for the above applications we analyze the
canonical structure of the unobservable subspace as a direct
sum of cyclic subspaces. Since the observability concept
only involves matrices 𝐴 and 𝐶, we restrict the problem to
systems of the form Σ = (𝐴, 𝐵, 𝐶), (sometimes called strictly
proper systems). The main result is developed in Section 2
where the canonical decomposition is derived by resorting to
Kalman’s decomposition [6]. Also we deal with the necessary
and sufficient conditions for the unobservable subspace
to be spectral for 𝐴. Section 3 is devoted to show some
interesting properties of the unobservable cyclic subspaces;
additionally the necessary and sufficient conditions of 𝐴-
invariance for the intersection of the unobservable subspace
with an arbitrary subspace are analyzed. Section 4 deals with
the connection between 𝐴-spectrality of the unobservable
subspace and the existence of multiple transmission zeros in
feedback systems.

Throughout the paper we will use the following notation.
R[𝑠] describes the ring of polynomials in the variable 𝑠 ∈

C over R. Given 𝑛 vectors {𝑢1, . . . , 𝑢𝑚
}, the vector space

generated by these vectors is written as span(𝑢1, . . . , 𝑢𝑚
). The

spectrum of a matrix 𝐴, that is, the set of eigenvalues of 𝐴,
is denoted by 𝜎(𝐴). The eigenspace of 𝐴 with eigenvalue 𝜆,
that is, the set of eigenvectors of 𝐴 with the same eigenvalue
𝜆, is indicated with 𝐸

𝜆
(𝐴) and N

𝜆
(𝐴) stands for the root

subspace of 𝐴; it contains the vectors from any Jordan chain
of 𝐴 corresponding to 𝜆.𝑚

𝜆
(𝐴) is the geometric multiplicity

of 𝜆 ∈ 𝜎(𝐴); that is,𝑚
𝜆
(𝐴) = dim𝐸

𝜆
(𝐴).

The realization of a system Σ is given by a triplet (𝐴, 𝐵, 𝐶);
that is, �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥, and O(Σ) represents the
observability matrix of Σ; that is, O = ∑

𝑛

𝑖=1 𝑒𝑖 ⊗ 𝐶𝐴
𝑖, where

“⊗” is the Kronecker product, 𝐴 ∈ M
𝑛×𝑛

(R), and 𝑒
𝑖
∈ R𝑛

is the 𝑖th vector of the standard basis with 1 at the 𝑖th entry
and the remaining entries set to 0.N(𝑀) are the nullspace of
the matrix𝑀 and𝑍

𝜆
(𝑢, 𝐴) is an𝐴-cyclic subspace generated

by 𝑢. If 𝑚 = dim𝑍
𝜆
(𝑢, 𝐴), (𝐴 − 𝜆𝐼)

𝑗

𝑢 ̸= 0 for 𝑗 < 𝑚 and
(𝐴 − 𝜆𝐼)

𝑚

𝑢 = 0.The set of transmission zeros of Σ is denoted
byZ{Σ}.

The set of unobservable modes is Λ
𝑜
= {𝜆 ∈ 𝜎(𝐴) : ∃V ∈

𝐸
𝜆
such that 𝐶V = 0} and conversely the set of observable

modes is Λ
𝑜
= 𝜎(𝐴) \ Λ

𝑜
. Associated with these sets we have

the subspaces𝑊
𝑜
= ⨁

𝜆∈Λ
𝑜

N
𝜆
(𝐴) and𝑊

𝑜
= ⨁

𝜆∈Λ
𝑜

N
𝜆
(𝐴).

2. Canonical Decomposition of the
Unobservable Subspace

Given a strictly proper feedback system Σ = (𝐴, 𝐵, 𝐶) we
study the decomposition of the unobservable subspace as a
direct sum of cyclic subspaces. In particular we are interested
in determining necessary and sufficient conditions for this
subspace to be𝐴-spectral, that is, whenN(O) is a direct sum
of the root spacesN

𝜆
(𝐴) where 𝜆 ∈ 𝜎(𝐴).

In the literature it is shown that N(O) is 𝐴-invariant
and R𝑛

= ⨁
𝜆∈𝜎(𝐴)

N
𝜆
; from this it is straightforward to

write N(O) = ⨁
𝜆∈𝜎(𝐴)

(N(O) ∩ N
𝜆
(𝐴)). If 𝐸

𝜆
(𝐴) denotes

the eigenspace for an unobservable mode 𝜆 ∈ 𝜎(𝐴), it is
clear that 𝐸

𝜆
(𝐴) ∩ N(O) ̸= (0). Since 𝐸

𝜆
(𝐴) ⊆ N

𝜆
(𝐴) we

drawN
𝜆
∩N(O) ̸= (0). However, what is not so clear is the

inclusionN
𝜆
⊆ N(O) for unobservable modes 𝜆 ∈ 𝜎(𝐴). In

general this result is not true for matrices 𝐴 without control
structure as shown in the example below.

Example 1. Let Σ = (𝐴, 𝐶) be a linear system with matrices

𝐴 = (

1 1 1
0 1 1
0 0 1

),

𝐶 = (0 1 1) .

(1)

In this case 𝜎(𝐴) = {𝜆 = 1} and 𝐸
𝜆
(𝐴) = {𝑒1} where 𝑒1 ∈ R3

is a vector of the standard basis. From the Popov-Belevitch-
Hautus test (PBH test, [3]) it is easy to check that 𝐶𝑒1 = 0
so Λ

𝑜
= {𝜆}. The generalized eigenvectors are V2 = 𝑒1 + 𝑒2

and V3 = 𝑒3, which are not in the unobservable subspace.
HenceforthN

𝜆
̸⊆ N(O).

Root spaces N
𝜆
(𝐴) are decomposed in direct sum of

cyclic subspaces so it is worth analyzing the conditions for
an 𝐴-cyclic subspace to be unobservable. As expected this
depends on the unobservability of its generator.

Lemma 2. A necessary and sufficient condition for an𝐴-cyclic
subspace 𝑍

𝜆
(𝑢, 𝐴) to be unobservable (𝑍

𝜆
(𝑢, 𝐴) ⊆ N(O)) is

that 𝑢 ∈ N(O).

Proof. Consider the following.

Sufficiency. Assume that dim𝑍
𝜆
(𝑢, 𝐴) = 𝑘. Let B = {𝑢, 𝐴𝑢,

. . . , 𝐴
𝑘−1

𝑢} be a basis of 𝑍
𝜆
(𝑢, 𝐴). Since 𝑢 ∈ N(O), 𝐶𝐴𝑗

𝑢 = 0
for 𝑗 = 0, 1, . . . , 𝑛. For 𝑗 ≥ 𝑘, 𝐴𝑗

𝑢 depends on the vectors in
B which results into 𝐴𝑖

𝑢 ∈ N(O) for 𝑖 = 0, 1, . . . , 𝑘 − 1.

Necessity. If 𝑍
𝜆
(𝑢, 𝐴) ⊆ N(O), in particular 𝑢 ∈ N(O).

The following theorem is central in our development and
reveals that the unobservable subspace is actually a direct sum
of 𝐴-cyclic subspaces.

Theorem 3. N(O) can be decomposed into a direct sum of 𝐴-
cyclic subspaces.

Proof. N(O) is 𝐴-invariant. From Kalman’s decomposition
there exists an adapted basis such that𝐴 is similar to a matrix
𝐴 = (

̃
𝐴
𝑜

0
̃
𝐴21 ̃

𝐴
𝑜

) via amatrix𝑃; that is,𝐴 = 𝑃𝐴𝑃
−1.We assume

that dimN(O) = 𝑚 and adopt the notation �̃� = (0𝑇

, 𝑢
𝑇

)
𝑇

for vectors 𝑢 ∈ R𝑚 embedded into R𝑛. Let 𝑍
𝜆
(𝑢, 𝐴

𝑜
) be

an 𝐴
𝑜
-cyclic subspace generated by 𝑢 (Krylov subspace);

that is, 𝑍
𝜆
(𝑢, 𝐴

𝑜
) = span(𝑢, 𝐴

𝑜
𝑢, . . . , 𝐴

𝑘−1
𝑜
𝑢) where 𝑘 =

dim𝑍
𝜆
(𝑢, 𝐴

𝑜
) ≤ 𝑚. Because 𝐴𝑗 is also a lower triangular

matrix (
̃
𝐴
𝑗

𝑜
0

∗
̃
𝐴
𝑗

𝑜

) we can embed 𝑍
𝜆
(𝑢, 𝐴

𝑜
) into R𝑛 through

an isomorphism 𝑍
𝜆
(𝑢, 𝐴

𝑜
) ≅ 𝑍

𝜆
(�̃�, 𝐴). Generators behave
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well with respect to similarity [7]; that is, 𝑃𝑍
𝜆
(�̃�, 𝐴) is an

𝐴-cyclic subspace with generator 𝑃�̃�. As a result of this
𝑃𝑍

𝜆
(�̃�, 𝐴) = 𝑍

𝜆
(𝑃�̃�, 𝐴) and dim𝑍

𝜆
(𝑢, 𝐴

𝑜
) = dim𝑍

𝜆
(𝑃�̃�, 𝐴).

Finally, it is obvious that 𝑃�̃� ∈ N(O). In virtue of Lemma 2,
𝑍

𝜆
(𝑃�̃�, 𝐴) ⊆ N(O). Thus, N(O) is the direct sum of cyclic

subspaces 𝑃𝑍
𝜆
(�̃�, 𝐴) with 𝑍

𝜆
(�̃�, 𝐴) isomorphic to an 𝐴

𝑜
-

cyclic subspace 𝑍
𝜆
(𝑢, 𝐴

𝑜
).

To illustrate the application of Theorem 3 we provide the
following example.

Example 4. Let Σ = (𝐴, 𝐶) be a linear system with matrices

𝐴 =(

−2 −1 1 2

1 0 −1 −1

1 1 −1 0

0 0 0 −1

),

𝐶 = (1 1 0 0) .

(2)

Now we derive Kalman’s decomposition of Σ via a similarity
transformation 𝐴 = 𝑃𝐴𝑃

−1:

𝑃 =(

0 0 1 1
1 0 −1 −1
0 0 1 −1
0 1 0 0

),

𝐴 =
(
(

(

−1 1 0 0
0 −1 0 0

0 1 −
1
2

−
1
2

−1 1 1
2

−
3
2

)
)

)

.

(3)

The unobservable matrix 𝐴
𝑜
= (

−1/2 −1/2
1/2 −3/2 ) has a generator

𝑢 = (
0
−2 ) and a cyclic subspace 𝑍

−1(𝐴𝑜
, 𝑢):

𝑍
−1 (𝐴𝑜

, 𝑢) = span (𝑢, 𝐴
𝑜
𝑢) = span((

0
−2
) ,(

1
3
)) . (4)

Note that to check that 𝑍
−1(𝐴𝑜

, 𝑢) is cyclic it is sufficient to
observe that (𝐴

𝑜
− 𝜆𝐼)

2
𝑢 = 0 and (𝐴

𝑜
− 𝜆𝐼)𝑢 ̸= 0.

We embed 𝑍
−1(𝐴𝑜

, 𝑢) into R4 by defining �̃� =

(0, 0, 0, −2)𝑇. Again we can check that �̃� is a generator of
the cyclic subspace 𝑍

−1(𝐴, �̃�) = span((0, 0, 0, −2), (0, 0, 1, 3))
by the conditions (𝐴

𝑜
− 𝜆𝐼)

2
�̃� = 0 and (𝐴

𝑜
− 𝜆𝐼)

2
�̃� ̸=

0. As expected 𝑍
−1(𝐴, �̃�) is isomorphic to 𝑍

−1(𝐴𝑜
, 𝑢) since

the embedding is injective and dim𝑍
−1(𝐴, �̃�) = 𝑍

−1(𝐴𝑜
, 𝑢).

Finally, 𝑃�̃� = (−2, 2, 2, 0) is the generator of a cyclic subspace
𝑍

−1(𝐴, 𝑃�̃�) = span(𝑃�̃�, 𝐴𝑃�̃�):

(𝐴− 𝜆𝐼)
2
𝑃�̃� = 𝑃 (𝐴−𝜆𝐼)

2
𝑃

−1
(𝑃�̃�) = 𝑃 (𝐴−𝜆𝐼)

2
�̃�

= 0,

(𝐴 − 𝜆𝐼) 𝑃�̃� = 𝑃 (𝐴−𝜆𝐼) �̃� ̸= 0.

(5)

In the last identity note that 𝑃 is an isomorphism and (𝐴 −

𝜆𝐼)�̃� ̸= 0 which results in 𝑃(𝐴−𝜆𝐼)�̃� ̸= 0. It is also easy to see
that 𝑃�̃� ∈ N(O) since 𝐶𝑃�̃� = 0.

Corollary 5. IfR𝑛 admits a canonical decomposition in direct
sum,

R
𝑛

= ⨁

𝜆∈𝜎(𝐴)

𝑚
𝜆
(𝐴)

⨁

𝑘=1
𝑍

𝜆
(𝑢

𝑘
, 𝐴) , (6)

then the unobservable subspace N(O) can be decomposed in
direct sum:

N (O) = ⨁

𝜆∈Λ
𝑜

𝑚
𝜆
(𝐴)

⨁

𝑙=1
N (O (𝐶, 𝐴|

𝑍
𝜆
(𝑢
𝑙
,𝐴)
)) , (7)

whereN(O(𝐶, 𝐴|
𝑍
𝜆
(𝑢
𝑙
,𝐴)
)) = ∩

𝑛−1
𝑘=0N(𝐶, 𝐴

𝑘

|
𝑍
𝜆
(𝑢
𝑙
,𝐴)
) = 𝑍(V

𝑙
, 𝐴)

with V
𝑙
being a generalized eigenvector of 𝐴|

𝑍
𝜆
(𝑢
𝑙
,𝐴)
.

It is worth emphasizing that the above direct decompo-
sition of N(O) in cyclic subspaces may not include all the
cyclic subspaces associated with Jordan blocks (from now
on and for the sake of brevity 𝐴-cyclic subspaces from the
Jordan decomposition of R𝑛 will be referred to as Jordan 𝐴-
cyclic subspaces) 𝐽

𝜆
(𝐴) where 𝜆 ∈ Λ

𝑜
. This occurs when the

Jordan cyclic subspace 𝑍
𝜆
(𝑢, 𝐴) has an eigenvector V such

that 𝐶V ̸= 0 or more generally when 𝑍
𝜆
(𝐴, 𝑢) ∩ N(O)⊥ ̸=

⌀. Furthermore the cyclic subspaces of the decomposition
in Theorem 3 may not coincide with those of the Jordan
canonical decomposition. What is clear is that the cyclic
subspaces in the decomposition of N(O) are included in
Jordan𝐴-cyclic subspaces as stated in the following corollary.

In the following proposition we state necessary and
sufficient conditions forN(O) to be 𝐴-spectral.

Proposition 6 (spectral subspace). Given a system Σ =

(𝐴, 𝐵, 𝐶) its unobservable subspaceN(O) is a spectral subspace
for 𝐴 if and only if everyN

𝜆
⊆ N(O) for all 𝜆 ∈ Λ

𝑜
.

Proof. Assume that N(O) is spectral for 𝐴; that is, N(O) is
a direct sum of root spaces N

𝜆
for 𝐴 where 𝜆 ∈ 𝜎(𝐴). This

decomposition means that if N
𝜆
∩ N(O) ̸= (0) then N

𝜆
⊆

N(O). Since𝐸
𝜆
(N

𝜆
)∩N(O) ̸= (0) for all𝜆 ∈ Λ

𝑜
, we conclude

thatN
𝜆
⊆ N(O) for all 𝜆 ∈ Λ

𝑜
.

Now we prove the converse. Assume thatN
𝜆
⊆ N(O) for

all 𝜆 ∈ Λ
𝑜
and define𝑊

𝑜
≜ ⨁

𝜆∈Λ
𝑜

N
𝜆
,𝑊

𝑜
≜ ⨁

𝜆∈Λ
𝑜

N
𝜆
=

𝑊
⊥

𝑜
. We prove the inclusion𝑊

𝑜
⊆ N(O). Because root spaces

are maximal invariant subspaces it is clear that R𝑛 admits a
decomposition in direct sumR𝑛

= 𝑊
𝑜
⊕𝑊

𝑜
. We define the𝐴-

invariant subspace𝑊 = 𝑊
𝑜
∩N(O). By reductio ad absurdum

assume that𝑊 ̸= (0). The linear transformation 𝐴 restricted
to 𝑊, 𝐴|

𝑊
, has an eigenvalue 𝜆 and an eigenvector 𝑤 ∈ 𝑊.

In addition we have the chain of inclusions 𝑊 ⊆ N(O) ⊆

N(𝐶)which means that𝐶𝑤 = 0; that is, 𝜆 is an unobservable
mode of 𝐴|

𝑊
𝑜

(restriction of 𝐴 to 𝑊
𝑜
). However, the modes

of𝐴|
𝑊
𝑜

are those inΛ
𝑜
.This contradiction proceeds from the

fact that𝑊 was nonempty. Henceforth,𝑊 = (0), and N(O)
is spectral for 𝐴.
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3. Structural Properties of
the Unobservable Subspace

We begin analyzing the 𝐴-cyclic subspaces that appear in
the canonical decomposition of N(O), which will be called
unobservable subspaces. We point out that every unobserv-
able cyclic subspace lies in one Jordan 𝐴-cyclic subspace, as
the following corollary suggests.

Corollary 7. Let 𝑍
𝜆
(V, 𝐴) be an unobservable 𝐴-cyclic sub-

space as in Theorem 3. Then there exists a Jordan 𝐴-cyclic
subspace 𝑍

𝜆
(𝑢, 𝐴) such that 𝑍

𝜆
(V, 𝐴) ⊆ 𝑍

𝜆
(𝑢, 𝐴).

Proof. The vector V is in a Jordan 𝐴-cyclic subspace; that is,
there exists a generator 𝑢 such that V ∈ 𝑍

𝜇
(𝑢, 𝐴) for some

eigenvalue 𝜇 ∈ 𝜎(𝐴). Since 𝑍
𝜇
(𝑢, 𝐴) is 𝐴-invariant then

vectors 𝐴𝑘V are in 𝑍
𝜇
(V, 𝐴). Therefore 𝑍

𝜆
(V, 𝐴) ⊆ 𝑍

𝜇
(𝑢, 𝐴)

and 𝜆 = 𝜇.

Example 8. The matrix 𝐴 in Example 4 has only an 𝐴-cyclic
subspace 𝑍

−1(V, 𝐴) with generator V = (0, 1, −1, 1). 𝑍
−1(V, 𝐴)

has generalized eigenvectors V1 = V, V2 = (0, 1, 1, 0), and
V3 = (0, 0, 1, 0) and eigenvector V4 = (1, −1, 0, 0). As shown
above𝑍

−1(𝑃�̃�, 𝐴) ⊆ N(O)with generator 𝑃�̃� = (−2, 2, 2, 0)𝑇.
It is easy to see that this generator is a linear combination of
generalized eigenvectors of 𝐴|

𝑍
−1(V,𝐴)

, 𝑃�̃� = 2V3 − 2V4. Thus
𝑍

−1(𝑃�̃�, 𝐴) ⊆ 𝑍
−1(V, 𝐴).

Lemma 2 can also be proved as a consequence of
Corollary 7. We only show the sufficiency since the necessity
is trivial: 𝑢 ∈ N(O) implies 𝑢 ∈ 𝑍

𝜆
(V, 𝐴) ⊆ N(O)

for some unobservable generator V. By definition of cyclic
subspace, 𝑍

𝜆
(𝑢, 𝐴) is the minimal subspace that contains the

generator 𝑢. Therefore 𝑍
𝜆
(𝑢, 𝐴) ⊆ 𝑍

𝜆
(V, 𝐴), and in virtue of

Corollary 7,𝑍
𝜆
(V, 𝐴) ⊆ 𝑍

𝜆
(𝑤, 𝐴) for some generator𝑤. From

the decomposition of R𝑛 in 𝐴-cyclic subspaces it is known
that 𝑍

𝜆
(𝑤, 𝐴) ∩ 𝑍

𝜆
(𝑢, 𝐴) = (0) if 𝑤 ∉ span(𝑢). However

𝑢 ∈ 𝑍
𝜆
(V, 𝐴) ∩ 𝑍

𝜆
(𝑢, 𝐴) ⊆ 𝑍

𝜆
(𝑤, 𝐴) ∩ 𝑍

𝜆
(𝑢, 𝐴) and then

𝑍
𝜆
(𝑤, 𝐴)∩𝑍

𝜆
(𝑢, 𝐴) ̸= (0). As a result,𝑍

𝜆
(V, 𝐴) ⊆ 𝑍

𝜆
(𝑤, 𝐴) =

𝑍
𝜆
(𝑢, 𝐴), and 𝑍

𝜆
(𝑢, 𝐴) = 𝑍

𝜆
(V, 𝐴).

That lemma reveals that a sufficient condition for a Jordan
𝐴-cyclic subspace 𝑍

𝜆
(𝑢, 𝐴) to match with 𝑍

𝜆
(V, 𝐴) in the

decomposition of N(O) is justly 𝑢 ∈ 𝑍
𝜆
(V, 𝐴). This is

reasonable since in that case the Jordan 𝐴-cyclic subspace
should be inN(O).

Not only is every unobservable 𝐴-cyclic subspace in
a Jordan 𝐴-cyclic subspace as revealed in 2, but also the
former inherits successive generalized eigenvectors from the
latter. This means that we can easily build a basis for the
unobservable 𝐴-cyclic subspace by choosing a subchain of
generalized eigenvectors, from the Jordan 𝐴-cyclic subspace,
ending up in an eigenvector. This idea is stated in the
following lemma.

Lemma 9. If 𝑍(𝑢, 𝐴) = span(𝑢1, 𝑢2, . . . , 𝑢𝑚
) ⊆ 𝑍(V, 𝐴) =

span(V1, V2, . . . , V𝑟) with 𝑟 ≥ 𝑚 and 𝑢
𝑘
, V

𝑘
̸= 0 are generalized

eigenvectors, that is,
𝑢1 = 𝑢,

V1 = V,

(𝐴 − 𝜆𝐼) 𝑢
𝑘
= 𝑢

𝑘+1 𝑓𝑜𝑟 𝑘 = 1, . . . , 𝑚 − 1,

(𝐴 − 𝜆𝐼) V
𝑘
= V

𝑘+1 𝑓𝑜𝑟 𝑘 = 1, . . . , 𝑟 − 1,

(𝐴 − 𝜆𝐼) 𝑢
𝑚
= 0,

(𝐴 − 𝜆𝐼) V
𝑟
= 0,

(8)

then 𝑍(𝑢, 𝐴) = span(V
𝑟−𝑚+1, V𝑟−𝑚+2, . . . , V𝑟).

Proof. Firstly let us write the eigenvector 𝑢
𝑚
∈ 𝑍

𝜆
(V, 𝐴) as a

linear combination of the vectors in the basis of𝑍
𝜆
(V, 𝐴), that

is, 𝑢
𝑚
= ∑

𝑟

𝑘=1 𝛼
(𝑚)

𝑘
V
𝑘
, and multiply it on the left by (𝐴 − 𝜆𝐼):

(𝐴 − 𝜆𝐼) 𝑢
𝑚
= 0 =

𝑟−1
∑

𝑘=1
𝛼

(𝑚)

𝑘
V
𝑘+1. (9)

Since {V2, . . . , V𝑟} are linearly independent it follows that
𝛼

(𝑚)

𝑘
= 0 for 𝑘 = 1, . . . , 𝑟 − 1. Consequently 𝑢

𝑚
depends

linearly on V
𝑟
.

As for 𝑢
𝑚−1 ∈ 𝑍

𝜆
(𝐴, V) we write 𝑢

𝑚−1 = ∑
𝑟

𝑘=1 𝛼
(𝑚−1)
𝑘

V
𝑘

and

(𝐴− 𝜆𝐼)
2
𝑢
𝑚−1 = 0 =

𝑟−2
∑

𝑘=1
𝛼

(𝑚−1)
𝑘

V
𝑘+2. (10)

Again {V3, . . . , V𝑟} are linearly independent so 𝛼
(𝑚−1)
𝑘

= 0 for
𝑘 = 1, . . . , 𝑟 − 2. Thus 𝑢

𝑚−1 depends linearly on V
𝑟−1 and V

𝑟
.

Proceeding similarly we find that 𝑢
𝑗

depends on
{V

𝑟−𝑚+𝑗
, . . . , V

𝑟
} for 𝑗 = 1, . . . , 𝑚 and we obtain the following

triangular arrangement:

(
(
(
(
(

(

𝑢1

𝑢2

.

.

.

𝑢
𝑚−1

𝑢
𝑚

)
)
)
)
)

)

=

(
(
(
(
(
(

(

0 0 ⋅ ⋅ ⋅ 𝛼
(1)
𝑟−𝑚+1 𝛼

(1)
𝑟−𝑚+2 ⋅ ⋅ ⋅ 𝛼

(1)
𝑟−1 𝛼

(1)
𝑟

0 0 ⋅ ⋅ ⋅ 0 𝛼
(2)
𝑟−𝑚+2 ⋅ ⋅ ⋅ 𝛼

(2)
𝑟−1 𝛼

(2)
𝑟

.

.

.
.
.
. d

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 𝛼
(𝑚−1)
𝑟−1 𝛼

(𝑚−1)
𝑟

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 𝛼
(𝑚)

𝑟

)
)
)
)
)
)

)

(
(
(
(
(

(

V1
V2
.
.
.

V
𝑟−1

V
𝑟

)
)
)
)
)

)

.

(11)

From this it is evident that, for 𝑗 = 𝑟−𝑚+1, . . . , 𝑟, V
𝑗
depends

linearly on {𝑢
𝑚−𝑟+𝑗

, . . . , 𝑢
𝑚
} and then V

𝑗
∈ 𝑍

𝜆
(𝑢, 𝐴). Owing

to the fact that vectors V
𝑟−𝑚+1, . . . , V𝑟 are linearly independent

they constitute a basis for 𝑍
𝜆
(𝑢, 𝐴). Henceforth, 𝑍

𝜆
(𝑢, 𝐴) =

span(V
𝑟−𝑚+1, V𝑟−𝑚+2, . . . , V𝑟).
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Example 10. In Example 8, 𝑍
−1(𝑃�̃�, 𝐴) = span(𝑢1, 𝑢2) ⊆

𝑍
−1(V, 𝐴) = span(V1, V2, V3, V4), where

V1 = (0, 1, − 1, 1) ,

V2 = (0, 1, 1, 0) ,

V3 = (0, 0, 1, 0) ,

V4 = (1, − 1, 0, 0) ,

𝑢1 = (−2, 2, 2, 0) = 𝑃�̃� = 2V3 − 2V4,

𝑢2 = (𝐴+ 𝐼) 𝑢1 = (2, − 2, 0, 0) = 2V4.

(12)

Applying back substitution V4 = (1/2)𝑢2, V3 = (1/2)𝑢1 +
(1/2)𝑢2, then V3, V4 ∈ 𝑍

−1(𝑃�̃�, 𝐴) and 𝑍
−1(𝑃�̃�, 𝐴) =

span(V3, V4).

Example 11. Consider the system Σ = (𝐴, 𝐶) with

𝐴 =

(
(
(
(
(
(
(
(

(

−1 0 0 0 0 0 0
0 −1 0 0 −1 0 0
1 0 −1 0 0 0 0
0 0 0 −1 0 1 0
0 0 0 0 −2 0 0
0 1 0 0 −1 −1 0
0 0 0 0 1 0 −2

)
)
)
)
)
)
)
)

)

,

𝐶 = (0 1 0 0 0 0 0) .

(13)

We have the canonical Jordan decomposition of 𝑅7 in cyclic
subspaces:

R
7
= 𝑍

−2 (𝑒2 + 𝑒5, 𝐴) ⊕𝑍−1 (𝑒1, 𝐴) + ⊕𝑍−1 (𝑒2, 𝐴) . (14)

From Corollary 5 the unobservable subspace can be decom-
posed as

N (𝑂)

= N (O (𝐶, 𝐴|
𝑍
−2(𝑒2+𝑒5 ,𝐴)

))

⊕N (O (𝐶, 𝐴|
𝑍
−1(𝑒1 ,𝐴)

))

⊕N (O (𝐶, 𝐴|
𝑍
−1(𝑒2 ,𝐴)

)) ,

N (O (𝐶, 𝐴|
𝑍
−2(𝑒2+𝑒5 ,𝐴)

)) = span (𝑒7) = 𝑍
−2 (𝑒7, 𝐴) ,

N (O (𝐶, 𝐴|
𝑍
−1(𝑒1 ,𝐴)

)) = span (𝑒1, 𝑒3) = 𝑍
−1 (𝑒1, 𝐴) ,

N (O (𝐶, 𝐴|
𝑍
−1(𝑒2 ,𝐴)

)) = span (𝑒4, 𝑒6) = 𝑍
−1 (𝑒4, 𝐴) .

(15)

Therefore,

N (𝑂) = 𝑍
−2 (𝑒7, 𝐴) ⊕𝑍−1 (𝑒1, 𝐴) ⊕𝑍−1 (𝑒4, 𝐴) . (16)

Note that 𝑒7 and 𝑒1 are eigenvectors of the Jordan cyclic sub-
spaces 𝑍

−2(𝑒2 + 𝑒5, 𝐴) and𝑍−1(𝑒1, 𝐴), respectively, while 𝑒4 is
an eigenvector of 𝑍

−1(𝑒2, 𝐴). The last fact is a consequence of
Lemma 9 since𝑍

−1(𝑒4, 𝐴) ⊆ 𝑍
−1(𝑒2, 𝐴) and dim𝑍

−1(𝑒4, 𝐴) =
2.

Above in Lemma 2 we have shown that every unobserv-
able 𝐴-cyclic subspace is determined by the unobservability
of its generator. Now we state the converse result for an 𝐴-
cyclic subspace to be in the observable subspace. (It is very
obvious that the set of observable states has no structure of
subspace. However, we can consider the observable subspace
as the orthogonal complement of the unobservable subspace,
N(O)⊥.) In this case the observability of the eigenvector of
the 𝐴-cyclic subspace determines the observability of the
whole subspace. This is proved in the following lemma.

Lemma 12. If V ∈ 𝐸
𝜆
(𝐴) ∩ N(O)⊥ and V ∈ 𝑍

𝜆
(𝑢, 𝐴) then

𝑍
𝜆
(𝑢, 𝐴) ⊆ N(O)⊥.

Proof. By reductio ad absurdum, assume that𝑊 = 𝑍
𝜆
(𝑢, 𝐴)∩

N(O) ̸= (0). Then 𝜆 ∈ 𝜎(𝐴|
𝑊
) and 𝐸

𝜆
(𝐴|

𝑊
) ̸= (0). We take

an arbitrary eigenvector 𝑤 ∈ 𝐸
𝜆
(𝐴|

𝑊
). Since 𝑤 ∈ 𝑊, 𝐶𝑤 =

0, but from Lemma 9 𝑤 depends linearly on V which means
𝐶V = 0 and thus V ∈ N(O). This is a contradiction since we
assumed by hypothesis that V ∈ N(O)⊥.

Note that the converse is not always true; that is, V ∈

𝐸
𝜆
(𝐴) ∩N(O) does not necessarily imply 𝑍

𝜆
(𝑢, 𝐴) ⊆ N(O).

In general N(O) is not spectral for an arbitrary matrix 𝐴 as
shown in the example below.

Example 13. Let Σ = (𝐴, 𝐶) be a linear system with matrices

𝐴 = (

1 1 1
0 1 1
0 0 1

),

𝐶 = (0 1 1) .

(17)

In this case 𝜎(𝐴) = {𝜆} and 𝐸
𝜆
= {𝑒1} where 𝑒1 ∈ R3 is a

vector of the standard basis. From the PBH test it is easy to
check that 𝐶𝑒1 = 0 soΛ

𝑜
= {𝜆}. The generalized eigenvectors

are V2 = 𝑒1+𝑒2 and V3 = 𝑒3, which are not in the unobservable
subspace. HenceforthN

𝜆
̸⊆ N(O).

Finally we address the problem of the𝐴-invariance of the
intersection of N(O) with an arbitrary subspace 𝑊 ⊆ R𝑛.
This problem is interesting in the well-posedness of reset
control systems.

Lemma 14. A subspace 𝑊 ⊆ 𝑍
𝜆
(𝐴, 𝑢) is 𝐴-invariant if and

only if𝑊 is an 𝐴-cyclic subspace.

Proof. The reader is referred to [8].

Corollary 15. A subspace𝑊 ⊆ R𝑛 is 𝐴-invariant if and only
if𝑊 is a direct sum of 𝐴-cyclic subspaces.

Proof. Assume thatR𝑛 admits a decomposition in direct sum
of 𝐴-cyclic subspaces 𝑍

𝜆
(𝑢, 𝐴). It is evident that 𝑊 is 𝐴-

invariant if and only if𝑊∩𝑍
𝜆
(𝑢, 𝐴) is𝐴-invariant, and from

Lemma 14 this occurs whenever𝑊∩𝑍
𝜆
(𝑢, 𝐴) is𝐴-cyclic.

Due to the unobservable subspace N(O) is 𝐴-invariant
and in virtue of Corollary 15 it follows that N(O) is a direct
sum of 𝐴-cyclic subspaces.
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Corollary 16. Let 𝑊 be a subspace in R𝑛. 𝑊 ∩ N(O) is 𝐴-
invariant if and only if𝑊 is a direct sum of cyclic subspaces.

Proof. The A-invariance of 𝑊 ∩ N(O) is a consequence of
Corollary 15.

4. Geometric Multiplicity of the Zeros in
Feedback Systems

This section is devoted to prove that unobservable modes
of unit feedback systems (whose components have minimal
realizations) always have geometric multiplicity 1. The geo-
metric multiplicity of a zero was firstly defined by Owens for
minimal realizations, [9], andwe extend the definition for any
system.

Definition 17 (geometric multiplicity of a zero). Given a
SISO system Σ with a realization (𝐴, 𝐵, 𝐶,𝐷) not necessarily
minimal, the geometric multiplicity of 𝑧 ∈ Z{Σ} is defined as
the dimension of the nullspace of the pencil matrix ( 𝑧𝐼−𝐴 −𝐵

𝐶 𝐷
).

If 𝐴 ∈ R𝑛×𝑛 it is evident that rank ( 𝐴−𝑧𝐼 𝐵

𝐶 0 ) ≤ 𝑛 + 1, and
the loss of full rank occurs when there exist a vector V ∈ R𝑛

and a scalar 𝑢 ∈ R such that

(𝐴 − 𝑧𝐼) V = −𝐵𝑢,

𝐶V = −𝐷𝑢.

(18)

Obviously if Σ has a minimal realization (i.e., there does not
exist zero/pole cancellations),𝐴−𝑧𝐼 is invertiblewhichmeans
that V is uniquely determined by 𝑢 ̸= 0 (since 𝑢 = 0 implies
V = 0) and the geometric multiplicity of 𝑧 is always 1. If Σ has
a nonminimal realization there exist two cases:

(i) 𝑢 = 0: It is evident that 𝑧 ∈ 𝜎(𝐴) and that V ∈ N(𝑧𝐼 −

𝐴). In virtue of the PBH test, the condition 𝐶V = 0
indicates that 𝑧 is an unobservable mode and thus the
geometric multiplicity is the geometric dimension of
the unobservablemode, 𝜇

𝜆
:= dimN(𝑧𝐼−𝐴)∩N(𝐶).

(ii) 𝑢 ̸= 0: In this case (𝑧𝐼 − 𝐴)V ∈ span(𝐵) and V ∈

N(𝑧𝐼 − 𝐴) ⊕ 𝑊 with dim𝑊 = 1. If the system Σ

has a proper realization, that is, 𝐷 = 0, it follows that
𝐶V = 0, and thus V ∈ N(𝐶), and V ∈ N(𝐶) ∩N(𝑧𝐼 −

𝐴)⊕N(𝐶)∩𝑊. It is known that dimN(𝐶)∩𝑊 is either
0 or 1 so that the geometric multiplicity is either 𝜇

𝜆
or

𝜇
𝜆
+ 1. If the system Σ has no proper realization, that

is, 𝐷 ̸= 0, 𝑢 is uniquely determined by V according
to the relation 𝑢 = −(1/𝐷)𝐶V; as a consequence the
geometric multiplicity of 𝑧 is dimN(𝑧𝐼 − 𝐴) + 1.

Now we focus on unit feedback systems Σ = (Σ
𝑟
, Σ

𝑝
) =

(𝐴, 𝐵, 𝐶) where Σ
𝑟
= (𝐴

𝑟
, 𝐵

𝑟
, 𝐶

𝑟
) and Σ

𝑝
= (𝐴

𝑝
, 𝐵

𝑝
, 𝐶

𝑝
) are

minimal realizations.

Lemma 18. Let 𝜆 be an unobservable mode of Σ and assume
that Σ

𝑟
and Σ

𝑝
have minimal realizations; then the geometric

multiplicity of the zero 𝜆 is always 1.

Proof. Resorting to the PBH test,

(

𝐴
𝑝
− 𝜆𝐼 𝐵

𝑝
𝐶

𝑟

−𝐵
𝑟
𝐶

𝑝
𝐴

𝑟
− 𝜆𝐼

)(

V
𝑝

V
𝑟

) = (

0
0
) ,

(𝐶
𝑝

0) (
V
𝑝

V
𝑟

) = 0.

(19)

It follows that V
𝑟

̸= 0: By reductio ad absurdum if V
𝑟
= 0,

𝐵
𝑟
(𝐶

𝑝
V
𝑝
) = 0. If V

𝑝
̸= 0, from theminimality of the realization

for Σ
𝑟
and the PBH criterion, 𝐶

𝑟
V
𝑟

̸= 0, which is impossible
since 𝐵

𝑟
̸= 0. In virtue of the minimality of Σ

𝑝
V
𝑟
= 0 ⇒

V
𝑝
= 0, since (

𝜆𝐼−𝐴
𝑝

𝐶
𝑝

) V
𝑝
= 0 if and only if V

𝑝
= 0, then

V
𝑟
= 0 leads to a contradiction since it was assumed that 0 ̸=

(
V
𝑝

V
𝑟

) ∈ N(𝜆𝐼 − 𝐴).
For 𝜆 to be a zero of Σ

𝑝
= (𝐴

𝑝
, 𝐵

𝑝
, 𝐶

𝑝
) it is necessary

that 𝜆𝐼 − 𝐴
𝑝
to be invertible and this occurs so long as

𝜆 ∉ 𝜎(𝐴
𝑝
). Assume that 𝜆 ∈ 𝜎(𝐴

𝑝
); the PBH criterion

implies 𝐶
𝑝
V
𝑝

̸= 0 actually it is verified for all eigenvector
in N(𝜆𝐼 − 𝐴

𝑝
), which is absurd from the minimality of

Σ
𝑝
; thus 𝜆 ∈ Z{Σ

𝑝
}. Note that 𝜆 is effectively a zero of

Σ
𝑝
: 𝐶

𝑝
(𝜆𝐼 − 𝐴

𝑝
)
−1
𝐵

𝑝
(𝐶

𝑟
V
𝑟
) = 0 since V

𝑟
̸= 0 and from

arguments ofminimality alongwith the PBH criterion𝐶
𝑟
V
𝑟

̸=

0. Henceforth 𝐶
𝑝
(𝜆𝐼 − 𝐴

𝑝
)
−1
𝐵

𝑝
= 0. Owing tothe fact that

𝜆 is a zero of Σ
𝑝
, V

𝑝
is uniquely determined by V

𝑟
via the

transformation V
𝑝
= (𝜆𝐼 − 𝐴

𝑝
)
−1
𝐵

𝑝
𝐶

𝑟
V
𝑟
.

𝐶
𝑝
V
𝑝
= 0 implies V

𝑟
∈ N(𝐴

𝑟
− 𝜆𝐼) and for SISO systems

dimN(𝐴
𝑟
− 𝜆𝐼) = 1. Then there exist a vector 𝑢 ∈ R𝑛

𝑟 and
a scalar 𝛼 ∈ R such that V

𝑟
= 𝛼𝑢. As a result 𝐶

𝑟
V
𝑟
= 𝛼(𝐶

𝑟
𝑢)

and V
𝑝
linearly depends on 𝛼:

(

V
𝑝

V
𝑟

) = (
(𝜆𝐼 − 𝐴

𝑝
)
−1
𝐵

𝑝
𝐶

𝑟
𝑢

𝑢

)𝛼. (20)

Henceforth the geometric multiplicity of 𝜆 as an eigenvalue
of 𝐴 is always 1, and there is only a Jordan block associated
with any 𝜆 ∈ Λ

𝑜
(𝐴).

5. Transmission Zeros and 𝐴-Spectrality of the
Unobservable Subspace

In this section we analyze when the unobservable subspace
of a feedback SISO system is spectral for the system matrix.
To this purpose consider a SISO unit feedback control system
with single input 𝑟(𝑡) ∈ R and single output𝑦(𝑡) ∈ R. Assume
that the plant and the regulator have minimal realizations
Σ

𝑝
= (𝐴

𝑝
, 𝐵

𝑝
, 𝐶

𝑝
) and Σ

𝑟
= (𝐴

𝑟
, 𝐵

𝑟
, 𝐶

𝑟
), respectively:

Σ
𝑝
=

{

{

{

�̇�
𝑝
(𝑡) = 𝐴

𝑝
𝑥

𝑝
(𝑡) + 𝐵

𝑝
𝑒 (𝑡)

𝑢 (𝑡) = 𝐶
𝑝
𝑥

𝑝
(𝑡) ,

Σ
𝑟
=

{

{

{

�̇�
𝑟
(𝑡) = 𝐴

𝑟
𝑥

𝑟
(𝑡) + 𝐵

𝑟
𝑢 (𝑡)

𝑦 (𝑡) = 𝐶
𝑟
𝑥

𝑟
(𝑡) ,

(21)

where 𝑥
𝑝
∈ R𝑛

𝑝 , 𝑥
𝑟
∈ R𝑛

𝑟 are internal states, 𝑒(𝑡) = 𝑟(𝑡)−𝑦(𝑡)

stands for the error signal, and𝑢(𝑡) ∈ R represents the control
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law. The closed-loop system Σ = (𝐴, 𝐵, 𝐶) can be written
in the state-space by considering the state 𝑥 = (𝑥

𝑇

𝑝
, 𝑥

𝑇

𝑟
)
𝑇 of

dimension 𝑛 = 𝑛
𝑝
+ 𝑛

𝑟
:

(

�̇�
𝑝

�̇�
𝑟

) = (

𝐴
𝑝

𝐵
𝑝
𝐶

𝑟

−𝐵
𝑟
𝐶

𝑝
𝐴

𝑟

)(

𝑥
𝑝

𝑥
𝑟

)+(

0
𝐵

𝑟

) 𝑟,

𝑦 = (𝐶
𝑝

0) (
𝑥

𝑝

𝑥
𝑟

) .

(22)

We begin exploring the connection of an unobservable 𝐴-
cyclic subspace to the transmission zeros of the plant. Let
𝑍

𝜆
(V, 𝐴) be such an 𝐴-cyclic subspace with generator V and

dimension dim𝑍
𝜆
(V, 𝐴) = 𝑚. A basis of eigenvectors of

𝑍
𝜆
(V, 𝐴) is given by {V(1), . . . , V(𝑚−1)

, V(𝑚)

} where V(𝑘) = (𝐴 −

𝜆𝐼)
𝑘−1V. It is obvious that V(1) = V and V(𝑚)

∈ 𝐸
𝜆
(𝐴). In

virtue of Lemma 2, a necessary and sufficient condition for
𝑍

𝜆
(V, 𝐴) to be in N(O) is that 𝐶

𝑝
V(1) = 0. As result we

proceed by checking the tower of generalized eigenvectors,
(𝐴−𝜆𝐼)V(𝑘−1) = V(𝑘), from top to bottom. To this end we need
the following technical lemmas on zeros of SISO systems.

Lemma 19. A necessary and sufficient condition for 𝜆 ∈ 𝜎(𝐴)
to be unobservable is that 𝜆 ∈ Z(Σ

𝑝
) ∩ 𝜎(𝐴

𝑟
) ̸= ⌀.

Proof. Consider the following.

Sufficiency. Since Σ
𝑟
has a minimal realization, if 𝜆 ∈ 𝜎(𝐴

𝑟
)

then for all V
𝑟
∈ 𝐸

𝜆
(𝐴

𝑟
)𝐶

𝑟
V
𝑟

̸= 0 is satisfied. Also theminimal
realization of the plant means that 𝜆 ∈ Z(Σ

𝑝
) implies 𝜆 ∉

𝜎(𝐴
𝑝
), which results in the invertibility of (𝐴

𝑝
− 𝜆𝐼). We

can define V
𝑝
= −(𝐴

𝑝
− 𝜆𝐼)

−1
𝐵

𝑝
𝐶

𝑟
V
𝑟
so 𝐶

𝑝
V
𝑝
= −𝐶

𝑝
(𝐴

𝑝
−

𝜆𝐼)
−1
𝐵

𝑝
= 0, and 𝜆 is an unobservable mode of 𝐴.

Necessity. If 𝜆 ∈ 𝜎(𝐴) is unobservable, in virtue of the PBH’s
criterion there exists a vector V = (

V
𝑝

V
𝑟

) ∈ 𝐸
𝜆
(𝐴) such that

𝐶V = 𝐶
𝑝
V
𝑝
= 0. This condition signifies that 𝜆 ∈ 𝜎(𝐴

𝑟
).

If 𝜆 ∉ Z(Σ
𝑝
) and 𝜆 ∉ 𝜎(𝐴

𝑝
), then V

𝑝
= −(𝐴

𝑝
−

𝜆𝐼)
−1
𝐵

𝑝
𝐶

𝑟
, and 𝐶

𝑝
V
𝑝
= 0 implies 𝜆 ∈ Z(Σ

𝑝
), which is a

contradiction. As a result, 𝜆 ∈ 𝜎(𝐴
𝑝
). However this is absurd

because 𝜎(𝐴
𝑝
) ∩Z(Σ

𝑝
) = ⌀. Therefore, 𝜆 ∈ Z(Σ

𝑝
).

Lemma 20. If 𝜆 ∈ 𝜎(𝐴) is unobservable then 𝐸
𝜆
(𝐴) ⊆ N(𝐶).

Proof. From Lemma 19 𝜆 ∈ Z(Σ
𝑝
) ∩ 𝜎(𝐴

𝑟
). The minimal

realization of Σ
𝑝
implies 𝜆 ∉ 𝜎(𝐴

𝑝
). Consider V ∈ 𝐸

𝜆
(𝐴).

The invertibility of (𝐴
𝑝
− 𝜆𝐼) guarantees that V

𝑝
= −(𝐴

𝑝
−

𝜆𝐼)
−1
𝐵

𝑝
𝐶

𝑟
V
𝑟
. On the other hand 𝐶

𝑝
V
𝑝
= 0 since 𝜆 ∈ Z(Σ

𝑝
).

Henceforth V ∈ N(𝐶).

From Lemma 20 and the PBH test it follows that 𝐸
𝜆
(𝐴) ⊆

N(O) with 𝜆 ∈ Λ
𝑜
. Additionally V ∈ 𝐸

𝜆
(𝐴) ∩N(O) implies

V
𝑟
∈ 𝐸

𝜆
(𝐴

𝑟
). If Σ

𝑟
has a minimal realization, dim𝐸

𝜆
(𝐴

𝑟
) = 1

(i.e., 𝐴
𝑟
has only one Jordan block associated with 𝜆). Given

that 𝜆 ∈ Z{Σ
𝑝
} and 𝜆 ∉ 𝜎(𝐴

𝑝
) it follows that (𝐴

𝑝
− 𝜆𝐼)

is invertible, and then V
𝑝
is uniquely determined by V

𝑟
; that

is, V
𝑝
= −(𝐴

𝑝
− 𝜆𝐼)

−1
𝐵

𝑝
𝐶

𝑟
V
𝑟
. As a result V

𝑝
∈ span((𝐴

𝑝
−

𝜆𝐼)
−1
𝐵

𝑝
𝐶

𝑟
V
𝑟
) and

V ∈ span((
(𝐴

𝑝
− 𝜆𝐼)

−1
𝐵

𝑝
𝐶

𝑟

𝐼

) V
𝑟
) = 𝐸

𝜆
(𝐴) . (23)

This means that dim𝐸
𝜆
(𝐴) = 1 (𝑚

𝜆
(𝐴) = 1) and that we

only need to account for one of the eigenvectors of 𝐸
𝜆
(𝐴) to

apply the PBH test. Given that we have only one Jordan block
𝐽
𝜆
(𝐴) associated with 𝜆 ∈ 𝜎(𝐴), there exists only one𝐴-cyclic

subspace 𝑍
𝜆
(𝑢, 𝐴).

Now we need the following technical lemma around the
multiple zeros of a SISO system.

Lemma 21. A necessary and sufficient condition for 𝑧 ∈ C to
be a zero of multiplicity 𝑚 of the SISO system Σ = (𝐴, 𝐵, 𝐶)

(with transfer function 𝐺(𝑠) = 𝑌(𝑠)/𝑈(𝑠) = 𝐶(𝑠𝐼 − 𝐴)
−1
𝐵) is

𝐶 (𝐴− 𝑧𝐼)
−𝑘

𝐵 = 0

𝑓𝑜𝑟 𝑘 = 1, . . . , 𝑚, 0 ̸= 𝐶 (𝐴 − 𝑧𝐼)
−(𝑚+1)

𝐵 < ∞.

(24)

Proof. For more details the reader is referred to Appendices.
In the following proposition we state sufficient conditions

for 𝑍
𝜆
(V, 𝐴) to be in N(O) in terms of the existence of a

multiple zero in the plant.

Proposition 22. A sufficient condition for 𝑍
𝜆
(V, 𝐴) to be in

N(O) is that 𝜆 should be a zero of Σ
𝑝
with multiplicity 𝑚 =

dim𝑍
𝜆
(V, 𝐴).

Proof. Assume that 𝜆 ∈ Z(Σ
𝑝
) with multiplicity 𝑚. We

proceed recurrently through the tower of generalized eigen-
vectors from top to bottom by connecting V(𝑘) to V(𝑘+1)
through the following problem:

(

V(𝑘+1)
𝑝

V(𝑘+1)
𝑟

) = (

𝐴
𝑝
− 𝜆𝐼 𝐵

𝑝
𝐶

𝑟

−𝐵
𝑟
𝐶

𝑝
𝐴

𝑟
− 𝜆𝐼

)(

V(𝑘)
𝑝

V(𝑘)
𝑟

) . (25)

As a result we have that V(𝑘)
𝑝

is a function of V(𝑘)
𝑟
, V(𝑘+1)

𝑟
, . . . ,

V(𝑚)

𝑟
:

V(𝑚)

𝑝
= − (𝐴

𝑝
−𝜆𝐼)

−1
𝐵

𝑝
𝐶

𝑟
V(𝑚)

𝑟
,

V(𝑚−1)
𝑝

=

2
∑

𝑗=1
(−1)𝑗 (𝐴

𝑝
−𝜆𝐼)

−𝑗

𝐵
𝑝
𝐶

𝑟
V(𝑚+𝑗−2)
𝑟

,

V(𝑚−2)
𝑝

=

3
∑

𝑗=1
(−1)𝑗 (𝐴

𝑝
−𝜆𝐼)

−𝑗

𝐵
𝑝
𝐶

𝑟
V(𝑚+𝑗−3)
𝑟

,

.

.

.

V(𝑘)
𝑝

=

𝑚−𝑘+1
∑

𝑗=1
(−1)𝑗 (𝐴

𝑝
−𝜆𝐼)

−𝑗

𝐵
𝑝
𝐶

𝑟
V(𝑗+𝑘−1)
𝑟

,

.

.

.

V = V(1)
𝑝

=

𝑚

∑

𝑗=1
(−1)𝑗 (𝐴

𝑝
−𝜆𝐼)

−𝑗

𝐵
𝑝
𝐶

𝑟
V(𝑗)
𝑟
.

(26)
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In virtue of Lemma 21, 𝐶
𝑝
(𝐴

𝑝
− 𝜆𝐼)

−𝑘

𝐵
𝑝

= 0 for 𝑘 =

1, 2, . . . , 𝑚, so 𝐶
𝑝
V(𝑘)
𝑝

= 𝐶V(𝑘) = 0. Henceforth 𝑍
𝜆
(V, 𝐴) ⊆

N(𝐶). On the other hand𝑍
𝜆
(V, 𝐴) is𝐴-invariant and V(1) = V;

as a consequence 𝐴𝑗V(1) ∈ span(V(1), . . . , V(𝑚)

) and 𝐶𝐴𝑗V(1) =
0 for 𝑗 = 0, 1, . . ., which means V(1) ∈ N(O). From
Lemma 2 𝑍

𝜆
(V, 𝐴) ⊆ N(O).

Because systems Σ
𝑝
and Σ

𝑟
are minimal it follows that

they are controllable and observable. From the PBH test it
is known that if 𝜆 ∈ 𝜎(𝐴) is an unobservable mode with
eigenvector (V𝑇

𝑝
, V𝑇

𝑟
)
𝑇 then 𝐶

𝑝
V
𝑝
= 0 and 𝜆 ∈ 𝜎(𝐴

𝑟
). Now,

we explore whether or not 𝜆 ∈ 𝜎(𝐴
𝑝
): To this purpose it is

worth resorting to the external description of the feedback
system by means of the closed-loop transfer function. We
write the transfer functions of the controller and the plant as
𝐺

𝑟
(𝑠) = 𝑁

𝑟
(𝑠)/𝐷

𝑟
(𝑠) and 𝐺

𝑝
(𝑠) = 𝑁

𝑝
(𝑠)/𝐷

𝑝
(𝑠), respectively

(with the numerator and the denominator being coprimes),
and the closed-loop transfer function from 𝑟 to 𝑦 as

𝐻(𝑠) =

𝐺
𝑟
(𝑠) 𝐺

𝑝
(𝑠)

1 + 𝐺
𝑟
(𝑠) 𝐺

𝑝
(𝑠)

=

𝑁
𝑟
(𝑠)𝑁

𝑝
(𝑠)

𝑁
𝑟
(𝑠)𝑁

𝑝
(𝑠) + 𝐷

𝑟
(𝑠)𝐷

𝑝
(𝑠)

.

(27)

If 𝜆 ∈ 𝜎(𝐴
𝑝
) then (𝑠−𝜆) | 𝐷

𝑝
(𝑠), and as a result (𝑠−𝜆) | 𝑁

𝑟
(𝑠)

(due to 𝜆 ∈ 𝜎(𝐴)). However, we have shown above that
𝜆 ∈ 𝜎(𝐴

𝑟
) which is in contradiction with the assumption

of minimality of the transfer function 𝐺
𝑟
(𝑠). Therefore, 𝜆 ∉

𝜎(𝐴
𝑝
).

If 𝜆 ∈ 𝜎(𝐴) it is clear that 𝜆 is a root of the characteristic
polynomial 𝑝

𝑐
(𝑠) = 𝑁

𝑟
(𝑠)𝑁

𝑝
(𝑠) + 𝐷

𝑟
(𝑠)𝐷

𝑝
(𝑠), and then

(𝑠 − 𝜆) | 𝑁
𝑟
(𝑠)𝑁

𝑝
(𝑠). The minimality of the transfer function

𝐺
𝑟
(𝑠) together with (𝑠−𝜆) | 𝐷

𝑟
(𝑠) (or 𝜆 ∈ 𝜎(𝐴

𝑟
)) implies that

(𝑠 − 𝜆) | 𝑁
𝑝
(𝑠). As a result, the lack of observability is caused

by cancellations of zeros of Σ
𝑝
with poles of Σ

𝑟
.

Remark 23. Assume that we reduce the closed-loop transfer
function as �̃�(𝑠) = �̃�

𝑟
(𝑠)�̃�

𝑝
(𝑠)/(�̃�

𝑟
(𝑠)�̃�

𝑝
(𝑠) + 𝐷

𝑟
(𝑠)𝐷

𝑝
(𝑠)),

where (𝑠 − 𝜆) | �̃�
𝑟
(𝑠)�̃�

𝑝
(𝑠) but (𝑠 − 𝜆) ∤ 𝐷

𝑟
(𝑠). If 𝜆 is a root of

the denominator of �̃�(𝑠) there exists a cancellation zero-pole.
Additionally, (𝑠 − 𝜆) | 𝐷

𝑟
(𝑠)𝐷

𝑝
(𝑠) and then (𝑠 − 𝜆) | 𝐷

𝑝
(𝑠)

which is impossible since (𝑠−𝜆) ∤ 𝐷
𝑝
(𝑠) and𝐷

𝑝
(𝑠) is a divisor

of𝐷
𝑝
(𝑠).

In some occasions dim𝑍
𝜆
(V, 𝐴) can be greater than the

algebraic multiplicity of 𝜆 as a pole of Σ
𝑟
. The following

example reveals this case.

Example 24. Consider a plantΣ
𝑝
with an external description

𝐻
𝑝
(𝑠) = 2((𝑠 + 1)2/(2𝑠3 + 8𝑠2 + 8𝑠 + 3)) and an observable

internal description Σ
𝑝
= (𝐴

𝑝
, 𝐵

𝑝
, 𝐶

𝑝
):

(Σ
𝑝
) :

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

(

�̇�1

�̇�2

�̇�3

) =(

0 0 −
3
2

1 0 −4

0 1 −4

)(

𝑥1

𝑥2

𝑥3

)+(

1

2

1

)𝑢

𝑦 = (0 0 1)(

𝑥1

𝑥2

𝑥3

).

(28)

And let Σ
𝑟
be a regulator system with transfer function

𝐻
𝑟
(𝑠) = (1/2)((2𝑠+1)/(𝑠+1)2) and an observable state-space

description Σ
𝑟
= (𝐴

𝑟
, 𝐵

𝑟
, 𝐶

𝑟
):

(Σ
𝑟
) :

{{{{{{

{{{{{{

{

(

�̇�1

�̇�2
) = (

0 −1

1 −2
)(

𝑤1

𝑤2
) +(

1
2
1
)𝑒

𝑢 = (0 1)(
𝑤1

𝑤2
) .

(29)

The interconnected system Σ
𝑟
= (𝐴, 𝐵, 𝐶) via feedback has

the following state-space equations:

(Σ) :

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(
(
(
(

(

�̇�1

�̇�2

�̇�3

�̇�1

�̇�2

)
)
)
)

)

=

(
(
(
(
(

(

0 0 −
3
2

0 1

1 0 −4 0 2

0 1 −4 0 1

0 0 −
1
2

0 −1

0 0 −1 1 −2

)
)
)
)
)

)

(
(
(
(

(

𝑥1

𝑥2

𝑥3

𝑤1

𝑤2

)
)
)
)

)

+

(
(
(
(
(

(

0

0

0
1
2
1

)
)
)
)
)

)

𝑟

𝑦 = (0 0 1 0 0)
(
(
(

(

𝑥1

𝑥2

𝑥3

𝑤1

𝑤2

)
)
)

)

.

(30)
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The poles of Σ are located at −1, −2; that is, 𝜎(𝐴) = {−1, −2}.
In virtue of the Jordan canonical decomposition we can write
R𝑛

= 𝑍
−1(V, 𝐴) ⊕ 𝑍−2(𝑤, 𝐴) where V = (0, 4, 2, 2, 1) and 𝑤 =

(0, 1, 2, 2, 3). According to Lemma 9

𝑍
−1 (V, 𝐴) = span (V1 = V= (0, 4, 2, 2, 1) , V2

= (0, 2, 1, 2, 1) , V3 = (1, 0, 0, − 1, 0) , V4

= (1, 1, 0, − 1, − 1)) ,

𝑍
−2 (𝑤, 𝐴) = span (𝑤) ,

(31)

where 𝐸
−1(𝐴) = span(V4) and 𝐸−2(𝐴) = span(𝑤). From the

PBH test the mode 𝜆 = −2 is observable (𝐶𝑤 ̸= 0) and
𝜆 = −2 is nonobservable (𝐶V4 = 0). Furthermore, since
𝑤 ∈ 𝐸

𝜆
(𝐴) ∩ N(O)⊥, in virtue of Lemma 12 it follows that

𝑍
𝜆
(𝑢, 𝐴) ⊆ N(O)⊥. However span(V3, V4) ⊆ N(O), and

V1, V2 ∉ N(O). This means that 𝑍
−1(V, 𝐴) ��⫅N(O) and we can

not derive a spectral decomposition ofN(O) as a direct sum
of root spaces. Note that in this case we have the following
closed-loop transfer function:

𝐻(𝑠)

=
(𝑠 + 1)2 (2𝑠 + 1)

(𝑠 + 1)2 (2𝑠 + 1) + (𝑠 + 1)2 (2𝑠3 + 8𝑠2 + 8𝑠 + 3)

=
(𝑠 + 1)2 (2𝑠 + 1)
2 (𝑠 + 2) (𝑠 + 1)4

.

(32)

In this case there exists a cancellation of two poles of the reg-
ulator with two zeros of the plant at 𝑠 = −1, but the feedback
generates two additional closed-loop poles at 𝑠 = −1. Thus,
we have a unique Jordan block 𝐽

−1(𝐴) of dimension 4 and an
unobservable invariant subspace span(V3, V4). Henceforth, we
conclude thatN(O) = span(V3, V4).

Proposition 25. A necessary condition for 𝑍
𝜆
(V, 𝐴) to be in

N(O) is 𝜆 to be a pole of Σ
𝑟
with multiplicity dim𝑍

𝜆
(V, 𝐴).

Proof. If 𝑍
𝜆
(V, 𝐴) ⊆ N(O) with dim𝑍

𝜆
(V, 𝐴) = 𝑚, then

𝐶
𝑝
V(𝑘)
𝑝

= 0 for 𝑘 = 1, 2, . . . , 𝑚. This implies that (𝐴
𝑟
−

𝜆𝐼)V(𝑘−1)
𝑟

= V(𝑘)
𝑟
; that is, V(𝑘)

𝑟
is a generalized eigenvector

associated with 𝜆 in Σ
𝑟
. Therefore 𝜆 is a pole of Σ

𝑟
with

multiplicity𝑚.

Example 26. We have one unobservable mode 𝜆 = −1
with three subcyclic subspaces 𝑍

−1(𝑒5, 𝐴), 𝑍−1(𝑒6, 𝐴), and
𝑍

−1(𝑒7, 𝐴) and the root subspace N
−1 = 𝑍

−1(𝑒5, 𝐴) ⊕
𝑍

−1(𝑒6, 𝐴) ⊕ 𝑍−1(𝑒7, 𝐴).

FromPropositions 25 and 22we conclude that a necessary
and sufficient condition for 𝑍

𝜆
(V, 𝐴) to be in N(O) is that

there should exist exactly dim𝑍
𝜆
(V, 𝐴) cancellations between

zeros of the plant and poles of the regulator. Owing to the
fact that systems Σ

𝑝
and Σ

𝑟
are minimal it follows that they

are controllable and observable. From the Popov-Belevitch-
Hautus test (PBH test) it is known that if 𝜆 ∈ 𝜎(𝐴) is an
unobservable mode with eigenvector (V𝑇

𝑝
, V𝑇

𝑟
)
𝑇 then𝐶

𝑝
V
𝑝
= 0

and 𝜆 ∈ 𝜎(𝐴
𝑟
). Furthermore, the single output system Σ

𝑟

is observable if and only if in the Jordan form matrix there
is one Jordan block associated with each distinct eigenvalue
and every entry of 𝐶

𝑟
corresponding to the last column of

each Jordan block is nonzero. For an unobservable mode
𝜆 ∈ 𝜎(𝐴), if 𝑚

𝜆
(𝐴) = 1 we have thatN

𝜆
is 𝐴-cyclic and as a

consequence we can determine whether or not N
𝜆
⊆ N(O)

in terms of poles and zeros.

6. Discussion

The canonical structure of the unobservable subspace as a
direct sum of cyclic subspaces (spectral decomposition) has
been analyzed via Kalman’s decomposition. Necessary and
sufficient conditions have been provided for the unobservable
subspace to be spectral for the system matrix 𝐴; specifically,
when a cyclic subspace has an eigenvector in the orthogonal
complement of the unobservable subspace then it is strictly
included in this subspace. This property does not always
hold for the unobservable subspace, but rather we can state
at most that the unobservable cyclic subspaces are included
in a cyclic subspace from the Jordan decomposition. This
analysis leads to determining the conditions of 𝐴-invariance
for the intersection of the unobservable subspace with an
arbitrary subspace. Finally, spectral decomposition of the
unobservable subspace is connected to the existence of
multiple transmission zeros in feedback systems.

Appendices

A. Multiple Transmission Zeros

This section is devoted to present the proof of technical
Lemma 21.

Proof. Consider the following.

Sufficiency. From the definition of SISO system Σ in the state-
space form the following identities are in order:

𝑋(𝑠) = (𝑠𝐼 −𝐴)
−1
𝐵𝑈 (𝑠) , (A.1)

(𝑠 − 𝑧)𝑋 (𝑠) = (𝐴− 𝑧𝐼)𝑋 (𝑠) + 𝐵𝑈 (𝑠) . (A.2)

Finding𝑋(𝑠) from (A.2) yields

𝑋 (𝑠) = (𝐴− 𝑧𝐼)
−1
[(𝑠 − 𝑧)𝑋 (𝑠) − 𝐵𝑈 (𝑠)] (A.3)

and by definition of zero of the system Σ,

𝐺 (𝑧) = −𝐶 (𝐴− 𝑧𝐼)
−1
𝐵 = 0. (A.4)

Thus,

𝑌 (𝑠) = 𝐶𝑋 (𝑠) = (𝑠 − 𝑧) 𝐶 (𝐴− 𝑧𝐼)
−1
𝑋 (𝑠) . (A.5)

Now folding (A.2) into the last expression leads to

𝑌 (𝑠) = − (𝑠 − 𝑧) 𝐶 (𝐴− 𝑧𝐼)
−1
(𝐴 − 𝑠𝐼)

−1
𝐵𝑈 (𝑠) (A.6)
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and as a consequence,

𝐺 (𝑠)

𝑠 − 𝑧
= −𝐶 (𝐴− 𝑧𝐼)

−1
(𝐴 − 𝑠𝐼)

−1
𝐵. (A.7)

On the other hand we have assumed that 𝑧 is a multiple zero
so the following identity is immediate:

𝐺 (𝑠)

𝑠 − 𝑧

𝑠=𝑧

= −𝐶 (𝐴− 𝑧𝐼)
−2
𝐵 = 0. (A.8)

In a similar way,

(𝑠 − 𝑧)
2
𝑋 (𝑠) = (𝐴− 𝑧𝐼)

2
𝑋 (𝑠)

+ [(𝐴− 𝑧𝐼) + (𝑠 − 𝑧) 𝐼] 𝐵𝑈 (𝑠)

(A.9)

and finding𝑋(𝑠) on the right hand of this equation we obtain

𝑋 (𝑠) = (𝐴− 𝑧𝐼)
−2
(𝑠 − 𝑧)

2
𝑋(𝑠)

− (𝐴− 𝑧𝐼)
−1
𝐵𝑈 (𝑠)

− (𝑠 − 𝑧) (𝐴− 𝑧𝐼)
−2
𝐵𝑈 (𝑠) .

(A.10)

Using (A.8) and (A.4), the output is simplified into

𝑌 (𝑠) = 𝐶𝑋 (𝑠)

= (𝑠 − 𝑧)
2
𝐶 (𝐴− 𝑧𝐼)

−2
(𝑠𝐼 −𝐴)

−1
𝐵𝑈 (𝑠) ;

(A.11)

that is,

𝐺 (𝑠)

(𝑠 − 𝑧)
2 = −𝐶 (𝐴− 𝑧𝐼)

−2
(𝐴− 𝑠𝐼)

−1
𝐵. (A.12)

In virtue of the multiplicity of the zero 𝑠 = 𝑧we conclude that

𝐺 (𝑠)

(𝑠 − 𝑧)
2

𝑠=𝑧

= −𝐶 (𝐴− 𝑧𝐼)
−3
𝐵 = 0 (A.13)

and repeating successively this procedure results in

𝐺 (𝑠)

(𝑠 − 𝑧)
𝑘

𝑠=𝑧

= −𝐶 (𝐴− 𝑧𝐼)
−(𝑘+1)

𝐵 = 0

for 𝑘 = 1, . . . , (𝑚 − 1) .

(A.14)

Necessity.The proof is straightforward. If𝐶(𝐴−𝑧𝐼)−𝑘

𝐵 = 0 for
𝑘 = 1, . . . , 𝑚 then (𝐺(𝑠)/(𝑠 − 𝑧)(𝑘−1))|

𝑠=𝑧
= −𝐶(𝐴−𝑧𝐼)

−𝑘

𝐵 = 0
for 𝑘 = 1, . . . , 𝑚, and additionally (𝐺(𝑠)/(𝑠 − 𝑧)

𝑚

)|
𝑠=𝑧

=

−𝐶(𝐴−𝑧𝐼)
−(𝑚+1)

𝐵 ̸= 0, so that 𝑧 is a zero of the system Σ.

Remark A.1. An alternative proof of this is based on the
derivative of the inverse function of a linear transformation

with matrix𝑀(𝑠) ∈ C𝑛×𝑛 (this is a simple application of the
chain rule):

𝑑

𝑑𝑠
[𝑀

−1
(𝑠)𝑀 (𝑠)] = 𝑀

−1
(𝑠)

𝑑𝑀 (𝑠)

𝑑𝑠

+
𝑑𝑀

−1
(𝑠)

𝑑𝑠
𝑀 (𝑠) = 0.

(A.15)

From this it follows that

𝑑𝑀
−1
(𝑠)

𝑑𝑠
= −𝑀

−1
(𝑠)

𝑑𝑀 (𝑠)

𝑑𝑠
𝑀

−1
(𝑠) . (A.16)

Let𝐻(𝑠) = 𝐶(𝑠𝐼−𝐴)
−1
𝐵 be the transfer function of the system

Σ and 𝑧 ∈ C a zero of 𝐻. Applying the last identity with
𝑀(𝑠) = (𝑠𝐼 − 𝐴) we derive the following result:

𝑑𝐻 (𝑠)

𝑑𝑠
= 𝐶

𝑑

𝑑𝑠
(𝑠𝐼 −𝐴)

−1
𝐵 = −𝐶 (𝑠𝐼 −𝐴)

−2
𝐵. (A.17)

Now if we apply the same procedure to𝑀(𝑠) = (𝑠𝐼 − 𝐴)
2 we

obtain

𝑑
2
𝐻(𝑠)

𝑑𝑠2
= −𝐶

𝑑

𝑑𝑠
[(𝑠𝐼 −𝐴)

2
]
−1
𝐵

= 2𝐶 (𝑠𝐼 −𝐴)−2 (𝑠𝐼 −𝐴) (𝑠𝐼 −𝐴)−2 𝐵

= 2𝐶 (𝑠𝐼 −𝐴)−3 𝐵

(A.18)

and so it is easy to check the identity

𝑑
𝑘

𝐻(𝑠)

𝑑𝑠𝑘
= (−1)𝑘 𝑘!𝐶 (𝑠𝐼 −𝐴)−(𝑘+1)

𝐵. (A.19)

For 𝑧 to be a zero of multiplicity 𝑚 of 𝐻, it is necessary that
(𝑑

𝑘

𝐻(𝑠)/𝑑𝑠
𝑘

)|
𝑠=𝑧

= 0 for 𝑘 = 0, 1, . . . , (𝑚 − 1). According to
(A.19) this is equivalent to

𝐶 (𝑧𝐼 −𝐴)
−𝑘

𝐵 = 0 para 𝑘 = 1, . . . , 𝑚 (A.20)

which is the same expression that we delivered in the tech-
nical lemma.

B. Nonminimal Transfer Functions

In this section we illustrate how a nonminimal transfer
function (reducible rational function) can be represented in
the space-state form.

Example B.1. Let Σ be an unobservable system with nonmin-
imal transfer function𝐻(𝑠) = 𝑌(𝑠)/𝑈(𝑠) = (𝑠 + 1)2/(𝑠 + 1)4.
Its expansion in partial fractions exhibits two zero residues:

𝐻(𝑠)

= lim
𝜖→ 0

(
𝜖

(𝑠 + 1)4
+

𝜖

(𝑠 + 1)3
+

𝐶2

(𝑠 + 1)2
+

𝐶1
(𝑠 + 1)

) .

(B.1)

We define the states𝑋
𝑘
(𝑠) = (1/(𝑠 + 1)4−𝑘+1

)𝑈(𝑠) for 𝑘 = 1, 2,
3, 4 which leads to the relations𝑋1(𝑠)/𝑋2(𝑠) = 𝑋2(𝑠)/𝑋3(𝑠) =
𝑋3(𝑠)/𝑋4(𝑠) = 1/(𝑠 + 1). As a result, we can express Σ in the
Jordan form:
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(Σ) :

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

(

(

�̇�1

�̇�2

�̇�3

�̇�4

)

)

=(

(

−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1

)

)

(

(

𝑥1

𝑥2

𝑥3

𝑥4

)

)

+(

(

0

0

0

1

)

)

𝑢

𝑦 = (𝜖 𝜖 𝐶2 𝐶1)
(

(

𝑥1

𝑥2

𝑥3

𝑥4

)

)

.

(B.2)

As 𝜖 → 0 the vector of observations tends to (0 0 𝐶2 𝐶1);
that is, there exist states that do not contribute to the output,
as expected from the unobservability of Σ.
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Boston, Mass, USA, 2007.

[7] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces
of Matrices with Applications, Classics in Applied Mathematics
(Book 51), Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, Pa, USA, 2006.

[8] F. Gantmacher, The Theory of Matrices I, Chelsea Publishing,
AMS Chelsea Publishing, 1959.

[9] D. H. Owens, “Invariant zeros of multivariable systems: a
geometric analysis,” International Journal of Control, vol. 26, no.
4, pp. 537–548, 1977.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


