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The paper proposed a newmethod to classify and establish themonitoringmodel for diversified processes data withmultiscale.The
advantages of the proposed approach are listed as follows. (1)The issues of diversified processes data with multiscale are considered
and the fault monitoring effect is enhanced. (2) From a new perspective, the common and specific characteristic subspaces are
extracted to help simplify the structure of the monitoring model. (3) It makes the correlation between the common subspace itself
and input-output dataset of each mode as close as possible. The effect of the proposed method has been shown in the Experiment
Results section.

1. Introduction

With the advance of data driven technology, feature extract-
ing has been applied widely in the complex industry [1–
5]. Statistical-based multivariate monitoring algorithms [5–
9] such as principal component analysis (PCA) [10, 11],
partial least squares (PLS) [12], and independent component
analysis (ICA) [13–15] have been extensively used to analyze
the process data and find the further relationship between
variables [16].

Electrofused magnesium furnace (EFMF) is a kind of
equipment for producing magnesia. Studying the proper
monitoring method of the process performance is a key
way to keep the safety and quality of products [17–19]. The
methods above play an important role in disposing the
monitoring problems.However, there are intricate conditions
in the EFMF such as changing frequently, strong nonlinearity,
and diversified modes [20]. These features lead to difficulties
for monitoring application. It is an interesting and challeng-
ing issue for modeling and monitoring in the diversified
processes [3].

For monitoring diversified processes, a variety of knowl-
edgeable strategies have been presented [4, 21–23] including
subPLS modeling algorithm [24–26], recursive or adap-
tive PCA [27], model library based method [28], localized
discriminant analysis [29], multiblock PLS, discriminant
analysis [26], gaussian mixture model [30], and diversified

statistical analysis method [20, 31, 32]. Among the exist-
ing nonlinear methods, kernel-based techniques have been
successfully developed for tackling the nonlinear problem
in recent years [33, 34]. MPLS uses the variables of the
whole modes, which uncovers well the time correlations
throughout the cycle and shows the cumulative effects in the
product process. Nevertheless, when the data are handled in
a single matrix for multiple phases or diversified processes,
the connection will be missed. It is widely believed that
more latent knowledge can be mined by dividing the datum
into meaningful blocks and multiple specific relationships
are built for the whole data [35]. The impact of the blocks
can be understood expressly and the subsequent analysis can
be proceeded [17, 35–40]. MBPLS is one of such methods,
which builds the variable correlation model within each
mode under the influence of other modes. Compared to
MPLS, MBPLS algorithm is applied to monitor large-scale
continuous processes. Zhang et al. [41] has made a new com-
prehensive evaluation of multiblock methods and presented
that the super scores of MBPLS are consistent with the scores
of regular MPLS. The diversified processes model could be
established in a totally different way from the traditional
methods.

In this paper, a new method for modeling and moni-
toring the diversified processes with multiscale like EFMF
is proposed. From a philosophical perspective, though the
processes are diversified, there are common characteristics
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among them in the same industrial produce. Based on this
view, the common and specific characteristic subspaces are
extracted. Common characteristic subspaces represent the
essential attributes in different process data spaces. And the
specific characteristic subspaces represent the nonessential
attributes; these subspaces are also very important part in
the database. The fundamental purpose of extracting the
two kinds of subspaces is to discover the invariability in
diversified process and get more useful knowledge about the
process behaviors. Comparing to the traditional diversified
processes data-driven approaches, modeling in the common
and specific characteristic subspaces and monitoring exe-
cuted in them are the main differences. Furthermore, the
relation of input and output is found in this approach, which
plays a key role in the industrial production process. It
makes the correlation between the common subspaces itself
and each mode input dataset and output dataset as close as
possible. Experiment results show the proposed method is
effective.

The organization of this paper is as follows. Section 2
illustrates the theory which contains diversified classification
method and new diversified processes with unequal scale
modeling. And also gives the monitoring approach in the
separated subspace. Section 3 describes the process and
shows the experiment results and discussion. At last, the
conclusions part is given in Section 4.

2. Modeling and Monitoring of
Diversified Processes

2.1. Diversified Processes Modeling Based on Subspace
Separation Method. In this section, part of the potential
mode variations that will stay consistent between two
modes and reveal the same process characteristics is
considered. A key point is how to separate the two different
types of process variation. It can be classified into two
modes based on underlying process characteristics in
the EFMF diversified processes, where input dataset
X
𝑚

= [𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
] ∈ R𝑀𝑚×𝑛 (𝑚 = 1, 2) and output

dataset Y
𝑚

= [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
] ∈ R𝑀𝑚×𝑛 (𝑚 = 1, 2)

are obtained, where the subscript 𝑚 denotes different
operation modes, 𝑀

𝑚
denotes the number of samples for

different modes, and the scale of 𝑀
𝑚

in each mode may
be different, 𝑛 denotes the number of variables for the
industrial process monitoring, and 𝑀 = 𝑀

1
+ 𝑀
2
is the

total scale of two modes. Standardize the data set of two
modes. We first map X = [X𝑇

1
,X𝑇
2
] into a feature space

Φ(X) = [Φ(𝑋
11
),Φ(𝑋

12
), . . . ,Φ(𝑋

1𝑢
),Φ(𝑋

21
),Φ(𝑋
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), . . . ,

Φ(𝑋
2V)] ∈ R𝑀 via a nonlinear mappingΦ : R𝑛 → F (feature

space), where X𝑇
1

= [𝑋
11
, 𝑋
12
, . . . , 𝑋

1𝑢
]

𝑇, X𝑇
2

= [𝑋
21
,
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22
, . . . , 𝑋

2V]
𝑇. Then subspace Φ(X

𝑔
) = [Φ(𝑋

𝑔,1
),

Φ(𝑋
𝑔,2
), . . . ,Φ(𝑋

𝑔,V)] ∈ R𝑑 (𝑑 < 𝑀) will be extracted,
which can explore the common structure hidden in high-
dimensional dataset Φ(X

𝑚
) of each mode. In this section,

new modeling method based on subspace separation is
proposed for diversified processes with unequal scale
𝑀
1

̸= 𝑀
2
. Some same variable correlation exists in

the relationships between two modes. In the space of two
modes we can find out a common subspace, which shows
the common contribution to diversified processes. Better
monitoring performance of each mode is obtained by
multiple modeling methods, but the correlations of each
mode are neglected. In the proposed approach, the diversified
processes are separated correctly since the correlations of
two modes are considered. The common subspace of
diversified processes with unequal scale𝑀

1
̸= 𝑀
2
should be

transformed into the equivalent approximate common space,
which has the same size with input datasetΦ(X

𝑚
), (𝑚 = 1, 2)

to ensure that the specific subspace can be separated. The
notations in this paper are listed in Notations Section.

To extract the common knowledge, kernel locally linear
embedding (KLLE) is used [42], which is modified based
on the original locally linear embedding (LLE) algorithm
[43]. For each sample point Φ(𝑋

𝑖
) and its neighbor points

{Φ(𝑋
𝑗
), 𝑗 ∈ 𝐽
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}, the following error of constructweightmatrix
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(1)

where the weightW
𝑖𝑗
represents the reconstructed contribu-

tion size of the sample pointsΦ(𝑋
𝑗
) toΦ(𝑋

𝑖
) and∑𝑘

𝑗=1
W
𝑖𝑗
=

1. The approach in this paper demands that Φ(𝑋
𝑔,𝑖
) and
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its neighbors can reflex the structure weight relation, after
minimizing the following function:

𝑒 (𝑧) =
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whereM = (I−W)

𝑇

(I−W).Themethod requires constraints
shows in (2):

(1)

𝑘

∑
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Φ (𝑋
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(2) Φ
𝑇

(X
𝑔
)Φ (X

𝑔
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(3)

While the scale of 𝑀
𝑚
in the mode is various and the

dimension of Φ(X
𝑔
) is not equal to Φ(X

𝑚
) (𝑚 = 1, 2), the

common subspace Φ(X
𝑔
) should be transformed into the

approximate equality common characteristic space, which
has the equal dimension with input dataset Φ(X

𝑚
) (𝑚 =

1, 2) to insure that the specific characteristic subspace can
be separated. To build the correlation model between the
common spaceΦ(X

𝑔
),Φ(X

𝑚
) (𝑚 = 1, 2), and Y

𝑚
(𝑚 = 1, 2)

the approximate combination coefficients matrix 𝜂
𝑚
(𝑚 =

1, 2) is introduced. The equivalent approximate common
space of each mode is denoted as 𝜂

𝑚
Φ(X
𝑚
) (𝑚 = 1, 2). Let

𝑡
𝑚
(𝑚 = 1, 2) be the score vector of 𝜂
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and 𝑡
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𝜂
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operate forΦ(X
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𝑔
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Φ(X
𝑔
) itself and each mode Φ(X

𝑚
) as close as possible. A

constant scalar 𝜌 is introduced and the object function and
constraints are as follows:
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(4)

Themodel of output-input dataset is built by maximizing
the covariance of output datasets Y

1
, Y
2
, and Φ(X

𝑔
) after

extracting common space ofΦ(X).
Let u
𝑚
be the score vectors of Y

𝑚
, u
𝑚

= Y
𝑚
c
𝑚
, c
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𝑚
, ‖c
𝑚
‖ = 1. The common space Φ(X
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)
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𝑔
) itself and each

mode Y
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the polynomial𝑤𝑇
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should be very small. A constant scalar 𝜌 is introduced and
optimization problem is expressed as
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The common characteristic subspaceΦ(X
𝑔
) in diversified

processes should explore the common characteristic struc-
ture which is hidden in high-dimensional dataset Φ(X

𝑚
) of

each mode and makes the correlation between Φ(X
𝑔
) itself

and each mode Φ(X
𝑚
) and Y

𝑚
as close as possible. Three

terms are approximately considered to be equally important
and thus the weights of each mode can be determined.
According to (4)-(5), the approximate equivalent common
space 𝜓

𝑚
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𝑔
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The extracting of the common subspace is summarized as
follows.

Step 1. Choose a proper nonlinear mapping Φ(⋅); map the
input data into the feature space 𝐹.

Step 2. Search the nearest neighbors of each sample point
using the Euclidean distance to get the weight value matrix
𝑊.

Step 3. The approximate combination coefficients matrix and
constant scalars are introduced. The equivalent approximate
common space of each mode is denoted as 𝜓

𝑚
Φ(X
𝑔
) (𝑚 =

1, 2). Extract the common subspace according to the invari-
able weight matrix and making the correlation between
𝜓
𝑚
Φ(X
𝑔
) itself and each mode Φ(X

𝑚
) and Y

𝑚
as close as

possible.

Step 4. The common subspace datasetΦ(X
𝑔
) is extracted.

When Φ(X
𝑔
) is gotten, the specific characteristic sub-

spaceΦ(X
𝑠,𝑚

) is computed by

Φ (X
𝑠,𝑚

) = Φ (X
𝑚
) − 𝜓
𝑚
Φ (X
𝑔
) , (𝑚 = 1, 2) . (7)

It makes the correlation between Φ(X
𝑔
) itself and each

modeΦ(X
𝑚
) andY

𝑚
as close as possible. For the step’s details,

please see the Appendix.

2.2. Diversified Processes Monitoring. According to the char-
acteristic subspace separation approach in this paper, moni-
toring programwould be introduced in the following content.
The universality reflects the same characteristics of two
different processes and individuality shows the difference. In
consequence the characteristic knowledge of the system can
be gotten.

In this way, the input datasetX is separated into common
characteristic subspace and specific characteristic subspace,
and monitoring program is mainly executed in the specific
characteristic subspaces. Once faults occur in the processes,
the other variables will be affected; the monitoring method
can detect them easily. Specific knowledgeΦ(X

𝑠,𝑚
) is resolved

as

Φ (X
𝑠,𝑚

) =
̂Φ (X
𝑠,𝑚

) +
̃Φ (X
𝑠,𝑚

) ,

̂Φ (X
𝑠,𝑚

) = PR𝑇Φ (X
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) ,

̃Φ (X
𝑠,𝑚

) = (1 − PR𝑇)Φ (X
𝑠,𝑚

) ,

(𝑚 = 1, 2) .

(8)

Fault detection is mainly monitoring for the above two
subspaces.When a new sample is obtained, score and residual
are calculated by the following two equations:

tnew = R𝑇
𝑠
Φ (Xnew) ,

̃Φ (Xnew) = (1 − P
𝑠
R
𝑠

𝑇

)Φ (Xnew) .
(9)

Then T2 statistics and SPE statistics can be calculated by
the following equations:

T2 = t𝑇newΛ
−1tnew,

SPE =

󵄩
󵄩
󵄩
󵄩
󵄩

̃Φ(Xnew)
󵄩
󵄩
󵄩
󵄩
󵄩

2

,

(10)

where Λ = (1/(𝑛 − 1))T𝑇
𝑠
T
𝑠
is the sample covariance of score

T
𝑠
. tnew and ̃Φ(Xnew) are defined in (9).
The upper control limit for T2 could be calculated

using the F-distribution because Y does not obey Gaussian
distribution. In the paper, kernel density estimation is applied
to determine the control limit for T2. The control limit for
SPE is computed according to the following weighted 𝜒

2

distribution [8]:

SPE ∼ 𝜇𝜒
ℎ

2

,

𝜇 =

𝑏

2𝑎

, ℎ =

2𝑎

2

𝑏

,

(11)

where 𝑎 and 𝑏 are the parameters of the SPE.

3. Experiment Results

The purpose of the section is to analyze and explain two
modes in diversified processes with unequal scale and exam-
ine whether there are faults and in which mode during the
operation processes of controlling the electrodes the fault
may occur. The information of EFMF can be found in [42].
We can get huge data from EFMF process, which contain
normal and abnormal data. We used the normal data to
model and abnormal data to test the approach. The average
time of the whole EFMF diversified processes is 10 h. The
current value and voltage value of three phases and the
temperature of furnace all can be online measured, which
provides abundant process knowledge.

In this experiment, the data set for modeling has 1500
× 4 sample points, which contains the current value and
temperature value, respectively. Because there are two kinds
of raw material that can be melted in the furnace, the EFMF
process can be separated into two modes, which is based on
the proposed diversified classification method. The raw data
obtained from EFMF process is shown in Figure 1.

Firstly, the standardized matrixes are obtained from the
input and output dataset matrixes. Define a scale 𝑙 as the
minimum scale of each mode, in this experiment 𝑙 = 100.
If one situation is that the scale of “mode” is greater than
𝑙, this “mode” can be considered as a real mode; it will
belong to mode 1 or mode 2. Conversely, if the scale of one
“mode” is less than 𝑙, this “mode” is marked as noise which
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Figure 1:The raw data obtained from EFMF process for monitoring
experiment.

is abnormal and should be neglected. Moreover, two modes
have different characteristics and effects on process, which
are illustrated by each specific subspace. According to this
diversified classification method, diversified processes can be
divided into two different modes. As shown in Figure 1, the
previous 600 sample points belong to mode 1, and the others
belong to mode 2. Actually, the raw material of EFMF is
caustic magnesite in powder in mode 1 and magnesite ore in
mode 2.

Secondly, the common knowledge of two modes is
extracted by the proposed subspace separation method. And
then the specific knowledge is obtained by separating the
common subspace from the two modes data. Moreover, the
variations of diversified processes are explained by specific
subspace.

Two faults are studied in this section. These faults which
are all relevant with output dataset are used to test whether
the proposed method can effectively monitor the diversified
processes. Before themonitoring experiment, we choose 1500
normal sample for modeling using T2 and SPE statistics. T2
statistics is used to monitor common characteristic subspace
in two modes and SPE statistics is used to monitor specific
characteristic subspace in two modes, respectively.Themod-
eling result is shown in Figure 2.

In the monitoring phase, if T2 and SPE statistics are all in
the correspondingnormal range, that is, theymeet the control
limit, we consider the diversified processes to be normal;
otherwise, we consider that the faults have occurred. The
monitoring results are shown in Figures 3 and 4. From the
figures we can find that fault 1 occurs in mode 1, and fault 2
occurs in mode 2. In addition to these results, both T2 and
SPE can detect them when they occur. In particular, SPE
shows the good performance.

The experiment explains that our diversified processes
monitoringmethod can examine effectivelywhether there are
faults. In addition, this provides a strong clue as to where to
look for the responsible for the out-of-control situation, that
is, the fault may occur in which mode.

By the proposed diversified processesmodeling andmon-
itoring method, the underlying characteristics knowledge is
decomposed into two subspaces. Actually, the underlying
characteristics knowledge in twomodes can be forcefully and
completely extracted by the new subspace separationmethod.
The direct relationship of input dataset and output dataset
is reflected in the proposed method, which improves the
monitoring performance and the accuracy and stability of
monitoring fault.

4. Conclusions

In this paper, a way to monitor the diversified processes
with multiscale has been proposed. The given approach
can extract the common characteristic knowledge and the
specific characteristic knowledge from different processes
in same industrial produce. This knowledge may guide the
researchers to analyze the diversified processes. And also the
direct relationship of input dataset and output dataset could
be obtained according to the proposed method. The experi-
mental results show how the proposed method performs and
the action, which demonstrates the satisfactory improvement
in large-scale processes with unequal length modeling and
monitoring. And, of course, there are some defects in the
proposedmethod; we hope significant improvement could be
made in the future.
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Lagrange function 𝐿 is defined as follows in Steps 1–4:
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Figure 2: T2 and SPE statistics for modeling based on history data.
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Figure 3: T2 and SPE statistics for monitoring the process with fault 1.
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Figure 4: T2 and SPE statistics for monitoring the process with fault 2.
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The following can be obtained from the above equations:
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Φ
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1
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1
c
1
= w𝑇
2
Φ
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𝜌 = 𝜎 = 1.

(A.5)
The following can be obtained from the above equations:

𝜏
1
w
1
w𝑇
1
+ 𝜏
2
w
2
w𝑇
2
= 𝜏
9
IV −M,

𝜏
1
= 𝜏
3
, 𝜏

2
= 𝜏
4
,

𝜏
5
+ 𝜏
7
= 𝜏
1
, 𝜏

6
+ 𝜏
8
= 𝜏
2
,

𝜏
5
(𝜏
12
− 𝜏
13
− 1) = 𝜏

6
(𝜏
13
− 𝜏
12
− 1) ,

𝜏
7
(𝜏
10
− 𝜏
11
− 1) = 𝜏

8
(𝜏
11
− 𝜏
10
− 1) .

(A.6)

To simplify the calculation, 𝜏
9
can be set as a sequence of

values to ensure that there exist two orthometric eigenvectors
of (𝜏
9
IV − M); that is, w𝑇

1
w
2

= w𝑇
2
w
1

= 0, w
1
, w
2
,

and 𝜏
1
, 𝜏
2
are two orthometric eigenvectors of (𝜏

9
IV − M)

and two corresponding eigenvalues. To obtain equivalent
approximate common space 𝜓

𝑚
Φ(X
𝑔
) (𝑚 = 1, 2) of each

mode, 𝜓
1
𝜓

𝑇

1
= I
𝑀
1

and 𝜓
2
𝜓

𝑇

2
= I
𝑀
2

is introduced.

Notations

Important notations used in the proposed method are
as follows.

𝑚: Operation mode
𝑀
𝑚
: The number of samples

𝑛: The number of variables
𝑑: The dimension of common subspace
X
𝑚
: Diversified input dataset

Y
𝑚
: Diversified output dataset

x
𝑖
: Sample point of input dataset

y
𝑖
: Sample point of output dataset
Φ: Nonlinear mapping
Φ(𝑥
𝑖
): Nonlinear mapping of sample point

Φ(𝑥
𝑗
): Neighboring point
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Φ(X
𝑔
): Common subspace dataset

Φ(𝑋
𝑔,𝑖
): Data point of common subspace

𝑘: Number of neighbor ofΦ(𝑥
𝑖
)

W: Weight vector in the proposed method
𝑒(W): Error of construct weight matrixW
𝑒(𝑧): Loss function
t
𝑚
: Score vector of 𝜂

𝑚
Φ(X
𝑔
)

w
𝑚
: Load vector of 𝜂

𝑚
Φ(X
𝑔
)

u
𝑚
: Score vector of Y

𝑚

c
𝑚
: Load vector of Y

𝑚

M: (I −W)

𝑇

(I −W)

𝜂
𝑚
: Combination coefficients matrix

𝜂
𝑚
Φ(X
𝑔
): Equivalent approximate common space

q
𝑚
: Score vector ofΦ(X

𝑚
)

r
𝑚
: Load vector ofΦ(X

𝑚
)

Φ(X
𝑠,𝑚

): Specific subspace dataset.
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