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In order to improve the performance of the membrane element with vertex rigid rotational freedom, a new method to establish
the local Cartesian coordinate system and calculate the derivatives of the shape functions with respect to the local coordinates is
introduced in this paper.Themembrane elements with vertex rigid rotational freedom such as GQ12 andGQ12M based on this new
method can achieve higher precision results than traditional methods. The numerical results demonstrate that the elements GQ12
and GQ12M with this new method can provide better membrane elements for flat shell elements. Furthermore, this new method
presented in this paper offers a new approach for other membrane elements used in flat shell element to improve the computing
accuracy.

1. Introduction

Thefinite elementmethodhas been used for solving problems
in different fields of engineering. For now, a large number
of different finite elements have been developed and the
shell element is one of these elements to solve the multiscale
problems [1, 2].The shell element can be categorized into two
types: curved shell element and flat shell element [3]. The
curved shell element can be used to make a good description
of the geometrical shape of the shell structure, so it is with
a good calculation precision. But the formula expressions of
the curved shell element are very complicated so it is limited
in practical application. In this case, the flat shell element
is becoming more attractive in deriving efficient numerical
accuracy and its concise theory due to its superposition
theory of the membrane element and plate bending element
[4].

Themembrane elements are among the simplest elements
to develop, which are used for analyzing structures subjected
to in-plane forces. The membrane elements are usually
used to model the behavior of shear wall, stiffened sheet
construction, and membrane action in shells. Some plane
elements can be considered as membrane elements, such

as the CST (constant strain triangle) element and the four-
node isoparametric quadrilateral plane element (QUAD4)
[5]. In finite element methods, many plate bending elements
also have been developed. Bazeley et al. [6] developed the
confirming and nonconfirming plate bending elements in
1966. Batoz et al. [7] developed three types of plate bending
elements, that is, the DKT element, the HSM element, and
the SRI element for the analysis of plates and shells in
1980. In 1982, the quadrilateral plate bending element (DKQ)
was formulated by Batoz and Tahar [8] based on the DKT
element. Other plate bending elements have been developed
in the following years [9–12].

The flat shell elements are developed by combining
membrane elements containing two in-plane translational
degrees of freedom and plate bending elements containing
two rotational degrees of freedom and one out of plane
translational degree of freedom. Since the in-plane rotational
degrees of freedomare not included, the null values for the in-
plane rotational degrees of freedom will lead to singularity in
structure stiffness matrix if all the elements are coplanar. The
simplest method adopted to remove the singularity is to add
the in-plane rotational degrees of freedom to the membrane
elements, which can also improve their performance [5].
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Figure 1: The quadrilateral membrane element.

After several triangular elements [13, 14] with vertex rigid
rotational freedomare proposed, the quadrilateralmembrane
elements including corner rotations have been developed by
Allman [15] and MacNeal and Harder [16] as well. And then,
numerous researches focused on membrane elements with
drilling degrees of freedom have been accomplished, such as
the models proposed by Iura and Atluri [17], Cazzani and
Atluri [18], Piltner and Taylor [19], Geyer and Groenwold
[20], Groenwold et al. [21], Choi et al. [22], Kugler et al. [23],
and Cen et al. [24]. In 1994, two new arbitrary quadrilateral
membrane elements called GQ12 and GQ12M with vertex
rotation were proposed by Long and Xu [25], resulting in
more reasonable compatible conditions between adjoining
elements and a more simple formulation.

In order to further improve the computing accuracy of the
elements GQ12 and GQ12M, a new method for establishing
the local Cartesian coordinate system and calculating the
derivatives of the shape function with respect to the local
coordinates is presented in this paper. This new method can
be applied to the membrane elements which may provide a
constituent part for flat shell elements. The elements GQ12
and GQ12M have more accurate numerical results compared
to the bilinear quadrilateral element Q4 [3, 25]. In this paper,
the applications of the newmethod to the elements GQ12 and
GQ12M were proposed to examine the performance of this
new method described in this paper.

2. The Membrane Elements GQ12 and GQ12M

A quadrilateral membrane element with rotational degree of
freedom (shown in Figure 1) was proposed in [25].

The nodal displacement vector over this element is given
by

q𝑒 = [q
1

T q
2

T q
3

T q
4

T
]

T
. (1)

The freedoms at each node are

q
𝑖
= [𝑢
𝑖
V
𝑖
𝜃
𝑖
]

T
, (𝑖 = 1, 2, 3, 4) , (2)

in which 𝑢
𝑖
and V
𝑖
are the translations and 𝜃

𝑖
is the additional

rotation at each corner. A membrane element is usually
located in a three-dimensional space, so its orientation may
be in any directions. For convenience, themembrane element
is commonly studied in the local Cartesian coordinate system
represented by (𝑥, 𝑦, 𝑧) and located on the membrane
element. Once a quantity is formed in the local system, it can
be transformed to the global coordinate system.

In the local system, the elementGQ12 is formulated by the
displacement field which includes two parts as follows [25]:

u = u0 + u
𝜃
, (3)

in which u0 is the conventional bilinear compatible displace-
ment decided by the translations [𝑢

𝑖
V
𝑖
]

T at the nodes and
u
𝜃
is the additional displacement determined by the rigid

rotation 𝜃
𝑖
(𝑖 = 1, 2, 3, 4) at each node. The element GQ12

displacement can be described in the form of

u = u0 + u
𝜃
= Nq𝑒 =

4

∑

𝑖=1

N
𝑖
q
𝑖
, (4)

whereN is the shape functionmatrix of element GQ12, which
can be given in terms of

N
𝑖
= [

𝑁

0

𝑖
0 𝑁
𝑢𝜃𝑖

0 𝑁

0

𝑖
𝑁V𝜃𝑖

] , (𝑖 = 1, 2, 3, 4) , (5)

in which

𝑁

0

𝑖
=

1

4

(1 + 𝜉
𝑖
𝜉) (1 + 𝜂

𝑖
𝜂) , (𝑖 = 1, 2, 3, 4) , (6)

𝑁
𝑢𝜃𝑖
=

1

8

[𝜉
𝑖
(1 − 𝜉

2

) (𝑏
1
+ 𝑏
3
𝜂
𝑖
) (1 + 𝜂

𝑖
𝜂)

+ 𝜂
𝑖
(1 − 𝜂

2

) (𝑏
2
+ 𝑏
3
𝜉
𝑖
) (1 + 𝜉

𝑖
𝜉)] ,

𝑁V𝜃𝑖 = −
1

8

[𝜉
𝑖
(1 − 𝜉

2

) (𝑎
1
+ 𝑎
3
𝜂
𝑖
) (1 + 𝜂

𝑖
𝜂)

+ 𝜂
𝑖
(1 − 𝜂

2

) (𝑎
2
+ 𝑎
3
𝜉
𝑖
) (1 + 𝜉

𝑖
𝜉)] , (𝑖 = 1, 2, 3, 4) ,

(7)

in which

𝑎
1
=

1

4

4
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𝑖=1

𝜉
𝑖
𝑥



𝑖
,

𝑎
2
=

1

4
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𝑖
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𝑎
3
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𝑖
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𝑏
1
=

1

4

4
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𝑖=1

𝜉
𝑖
𝑦



𝑖
,

𝑏
2
=

1

4

4

∑

𝑖=1

𝜂
𝑖
𝑦
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𝑏
3
=

1

4

4
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𝑖
𝜂
𝑖
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,

(8)

where 𝜉
𝑖
, 𝜂
𝑖
and 𝑥
𝑖
, 𝑦
𝑖
(𝑖 = 1, 2, 3, 4) denote the intrinsic coor-

dinates and the local Cartesian coordinates of the element
nodes, respectively.

In the local system, the element stiffness matrix of GQ12
can be written as [25]

K𝑒GQ12 = ∬
𝐴
𝑒

BTDB𝑡 𝑑𝐴 = ∬
1

−1

BTDB |J| 𝑡 𝑑𝜉 𝑑𝜂, (9)

where 𝑡 is the thickness of the element, |J| is the determinant
of the Jacobian matrix, and B is the element strain matrix
which can be expressed as

B = [B
1
B
2
B
3
B
4
] , (10)

B
𝑖
=

[

[

[

[

[

[

[

[

[

𝜕

𝜕𝑥


0

0

𝜕

𝜕𝑦



𝜕

𝜕𝑦



𝜕

𝜕𝑥



]

]

]

]

]

]

]

]

]

[

𝑁

0

𝑖
0 𝑁
𝑢𝜃𝑖

0 𝑁

0

𝑖
𝑁V𝜃𝑖

]

=

[

[

[

[

[

[

[

[

[

𝜕𝑁

0

𝑖

𝜕𝑥


0

𝜕𝑁
𝑢𝜃𝑖

𝜕𝑥



0

𝜕𝑁

0

𝑖

𝜕𝑦



𝜕𝑁V𝜃𝑖

𝜕𝑦



𝜕𝑁

0

𝑖

𝜕𝑦



𝜕𝑁

0

𝑖

𝜕𝑥



𝜕𝑁
𝑢𝜃𝑖

𝜕𝑦


+

𝜕𝑁V𝜃𝑖

𝜕𝑥



]

]

]

]

]

]

]

]

]

,

(𝑖 = 1, 2, 3, 4) .

(11)

In (9),D is the elasticity matrix and it can be expressed as
[4]

D =

𝐸

1 − 𝜇

2

[

[

[

[

[

1 𝜇 0

𝜇 1 0

0 0

1 − 𝜇

2

]

]

]

]

]

, (12)

in which 𝐸 is the elastic modulus and 𝜇 is Poisson’s ratio.
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Figure 2: The adding bubble node C.

In order to further improve the precision of the calcula-
tion, the element GQ12M based on the element GQ12 was
presented in [25] by Long and Xu. The element GQ12M is
formulated with an assumed displacement given by adding
a bubble displacement û to GQ12, which is

u = u0 + u
𝜃
+ û (13)

in which û is the bubble displacement. It can be assumed to
be

û = {
�̂�

V̂
} =

̂N
𝜌
𝜌 = [

̂
𝑁 0

0
̂
𝑁

]{

𝜌
1

𝜌
2

} , (14)

where

̂
𝑁 = (1 − 𝜉

2

) (1 − 𝜂

2

) . (15)

It can be considered as the shape function at the center nodeC
of the element, as shown in Figure 2, which will be eliminated
in the future. 𝜌

1
and 𝜌

2
in (14) are arbitrary independent

parameters. Substituting (4) and (14) into (13), the element
GQ12 displacement can be described in the form of

u = u0 + u
𝜃
+ û = Nq𝑒 + ̂N

𝜌
𝜌. (16)

The corresponding strain fields can be expressed as

𝜀 = Bq𝑒 + ̂B𝜌 (17)

in which B is the same as (10), and ̂B is the strain matrix of
the bubble displacement û, which can be expressed as

̂B =

[

[

[

[

[

[

[

[

[

𝜕

𝜕𝑥


0

0

𝜕

𝜕𝑦



𝜕

𝜕𝑦



𝜕

𝜕𝑥



]

]

]

]

]

]

]

]

]

[

̂
𝑁 0

0
̂
𝑁

] =

[

[

[

[

[

[

[

[

[

𝜕
̂
𝑁

𝜕𝑥


0

0

𝜕
̂
𝑁

𝜕𝑦



𝜕
̂
𝑁

𝜕𝑦



𝜕
̂
𝑁

𝜕𝑥



]

]

]

]

]

]

]

]

]

. (18)
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According to (12) and (17), the strain energy of element
GQ12M can be written as

𝑈 =

𝑡

2

∬ 𝜀
TD𝜀 𝑑𝐴

=

1

2

q𝑒TK𝑒
𝑞𝑞
q𝑒 + 𝜌TK𝑒

𝜌𝑞
q𝑒 + 1

2

𝜌
TK𝑒
𝜌𝜌
𝜌,

(19)

where

K𝑒
𝑞𝑞
= ∬

1

−1

BTDB |J| 𝑡 𝑑𝜉 𝑑𝜂,

K𝑒
𝜌𝑞
= ∬

1

−1

̂BTDB |J| 𝑡 𝑑𝜉 𝑑𝜂,

K𝑒
𝜌𝜌
= ∬

1

−1

̂BTD̂B |J| 𝑡 𝑑𝜉 𝑑𝜂

(20)

in which 𝑡 is the thickness of the element, |J| is the determi-
nant of the Jacobian matrix, and the matrices B,D, and ̂B are
given by (10), (12), and (18), respectively.

From the stationary condition 𝜕𝑈/𝜕𝜌 = 0, the arbitrary
parameters 𝜌 can be expressed in terms of the q𝑒 as

𝜌 = −K𝑒
𝜌𝜌

−1K𝑒
𝜌𝑞
q𝑒. (21)

Substituting (21) into (16), the shape functions of the element
GQ12M can be obtained as

N∗ = N − ̂N
𝜌
K𝑒
𝜌𝜌

−1K𝑒
𝜌𝑞

(22)

inwhichN, ̂N
𝜌
,K𝑒
𝜌𝜌

−1, andK𝑒
𝜌𝑞
are given by (5), (14), and (20),

respectively.
According to the shape functions of GQ12M expressed in

(22), the element stiffness matrix of element GQ12M can be
written as

K𝑒GQ12M = K𝑒
𝑞𝑞
− K𝑒
𝜌𝑞

TK𝑒
𝜌𝜌

−1K𝑒
𝜌𝑞
. (23)

3. Calculating the Stiffness Matrix of
the Membrane Element under the
Global Coordinate System in the
Traditional Manner

Theelement stiffnessmatrices ofGQ12 andGQ12Munder the
local coordinate system are described in the above section,
and these matrices can be numerically calculated by the
Gaussian integral method. It can be seen from (9) that the
GQ12 element stiffness matrix is

K𝑒GQ12 = ∬
1

−1

BTDB |J| 𝑡 𝑑𝜉 𝑑𝜂

=

NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗
BTDB |J| 𝑡,

(24)

in which𝑊
𝑖
and𝑊

𝑗
are the weight functions, and NG is the

integration order. Generally, the element stiffness matrix of

Table 1: Roots and weight functions for 2 × 2 Gauss quadrature.

Roots Weight functions𝑊
𝑖
(𝑊
𝑗
)

±0.577350269189626 1.0

a 4-node quadrilateral element can be obtained using 2 × 2
Gauss quadrature which can achieve the exact solution of the
integral equation. The roots and weight functions for 2 × 2
Gauss quadrature are given in Table 1 [3].

It can be seen from (11) and (24) that the shape functions
with respect to the local coordinates 𝜕𝑁

𝑖
/𝜕𝑥

 and 𝜕𝑁
𝑖
/𝜕𝑦

 and
the determinant of the Jacobian matrix |J| need to be firstly
determined to calculate the GQ12 element stiffness matrices.
The conventional method [3, 4] to compute 𝜕𝑁

𝑖
/𝜕𝑥

 and
𝜕𝑁
𝑖
/𝜕𝑦

 is to calculate the product of the inverse Jacobimatrix
and the derivativesmatrix of the shape functions with respect
to the intrinsic coordinates, which can be expressed as

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝜉

𝜕𝑁
𝑖

𝜕𝜂

}
}
}
}

}
}
}
}

}

=

[

[

[

[

[

[

𝜕𝑥



𝜕𝜉

𝜕𝑦



𝜕𝜉

𝜕𝑥



𝜕𝜂

𝜕𝑦



𝜕𝜂

]

]

]

]

]

]

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝑥



𝜕𝑁
𝑖

𝜕𝑦



}
}
}
}

}
}
}
}

}

= J
{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝑥



𝜕𝑁
𝑖

𝜕𝑦



}
}
}
}

}
}
}
}

}

(25)

and then

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝑥



𝜕𝑁
𝑖

𝜕𝑦



}
}
}
}

}
}
}
}

}

= J−1
{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝜉

𝜕𝑁
𝑖

𝜕𝜂

}
}
}
}

}
}
}
}

}

,

|J| =





















𝜕𝑥



𝜕𝜉

𝜕𝑦



𝜕𝜉

𝜕𝑥



𝜕𝜂

𝜕𝑦



𝜕𝜂





















.

(26)

It is worth pointing out that 𝑁
𝑖
in (25) and (26) is a

substitution, which may be𝑁0
𝑖
,𝑁
𝑢𝜃𝑖
,𝑁V𝜃𝑖, and ̂𝑁 in (6), (7),

and (15), respectively.
Once the element local stiffness matrix for membrane

element is obtained, it is necessary to transform it from the
local coordinate system to the global coordinate system. So
the element local coordinate system needs to be established
first. In the current application of the membrane elements,
a traditional manner has been adopted to establish the local
Cartesian coordinate system over an element [5].

Figure 3 shows the global and local coordinate axes for the
quadrilateral membrane element. The midpoints of sides 1-2,
2-3, 3-4, and 4-1 are represented by 𝑖, 𝑗, 𝑘, and 𝑙, respectively,
which can be determined by the shape functions of the
four-node isoparametric element. The element local plane is
defined by creating two vectors intersecting each other and
passing through the midpoints of the sides 2-3 and 3-4 of the
quadrilateral as shown in Figure 3.
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Assuming that the local 𝑥 axis of the quadrilateral is
parallel to the vector passing through nodes 𝑙 and 𝑗, the vector
passing through these nodes can be given by [5]

V
𝑥
 = V
𝑙𝑗
=

{
{
{

{
{
{

{

𝑥
𝑗
− 𝑥
𝑙

𝑦
𝑗
− 𝑦
𝑙

𝑧
𝑗
− 𝑧
𝑙

}
}
}

}
}
}

}

=

{
{
{

{
{
{

{

𝑥
𝑗𝑙

𝑦
𝑗𝑙

𝑧
𝑗𝑙

}
}
}

}
}
}

}

, (27)

where 𝑥
𝑗
, 𝑦
𝑗
, and 𝑧

𝑗
and 𝑥

𝑙
, 𝑦
𝑙
, and 𝑧

𝑙
represent the global

coordinates of nodes 𝑗 and 𝑙, respectively. The direction
cosine 𝜆

𝑥
 for the local 𝑥 direction can be obtained by

normalizing the vector with respect to its length, which is

𝜆
𝑥
 =

1

𝑙
𝑗𝑙

{
{
{

{
{
{

{

𝑥
𝑗𝑙

𝑦
𝑗𝑙

𝑧
𝑗𝑙

}
}
}

}
}
}

}

(28)

in which 𝑙
𝑗𝑙
= √(𝑥

𝑗𝑙
)

2
+ (𝑦
𝑗𝑙
)

2
+ (𝑧
𝑗𝑙
)

2 is the length of the
vector.

A reference vector V
𝑖𝑘
which can define the plane of the

element with the vector V
𝑥
 is obtained by creating a vector

passing through nodes 𝑖 and 𝑘 of the element as shown in
Figure 3

V
𝑖𝑘
=

{
{

{
{

{

𝑥
𝑘
− 𝑥
𝑖

𝑦
𝑘
− 𝑦
𝑖

𝑧
𝑘
− 𝑧
𝑖

}
}

}
}

}

=

{
{

{
{

{

𝑥
𝑘𝑖

𝑦
𝑘𝑖

𝑧
𝑘𝑖

}
}

}
}

}

, (29)

where 𝑥
𝑘
, 𝑦
𝑘
, and 𝑧

𝑘
and 𝑥

𝑖
, 𝑦
𝑖
, and 𝑧

𝑖
represent the global

coordinates of nodes 𝑘 and 𝑖, respectively. The normal vector
to the plane can be obtained by the vector cross product of
V
𝑥
 and V

𝑖𝑘
, which is

V
𝑧
 = V
𝑥
 × V
𝑖𝑘
. (30)

The direction cosine 𝜆
𝑧
 for the local 𝑧 direction can be

obtained by normalizing vectorV
𝑧
 with respect to its length.

The local 𝑦 axis is obtained by the vector cross product

of the vectors V
𝑧
 and V

𝑥
 . The cross product of these two

vectors will give the vector V
𝑦
 normal to the 𝑥𝑜𝑧 plane,

which is

V
𝑦
 = V
𝑧
 × V
𝑥
 . (31)

The direction cosine 𝜆
𝑦
 for the local 𝑦 direction is obtained

by normalizing the vector V
𝑦
 with respect to its length, with

reference to (28).
So the 3 × 3 transformation matrix L for the transforma-

tion of coordinates from the local to the global axis can be
expressed as

L = [(𝜆
𝑥
)

3×1
(𝜆
𝑦
)

3×1

(𝜆
𝑧
)

3×1
]

T (32)

inwhich 𝜆
𝑥
 , 𝜆
𝑦
 , and𝜆

𝑧
 are the direction cosines for local 𝑥,

𝑦

, and 𝑧 directions.The 12 × 12 transformation matrix R for
the 4-node quadrilateral element stiffness from the local to
the global coordinate systems can be represented by L, which
is

R =
[

[

[

[

[

[

L
L

L
L

]

]

]

]

]

]

. (33)

To calculate the structure stiffness matrix, the element stiff-
ness matrix must be transformed to the global coordinate
system. The transformation of the GQ12 element stiffness
matrix from the local to the global coordinate system is given
by [3, 4]

K𝑒GQ12 = RTK𝑒GQ12R

= RT
(

NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗
BTDB |J| 𝑡)R.

(34)

Similarly, from (20) and (23), the GQ12M element stiff-
ness matrix under the global coordinate system can be
described as

K𝑒GQ12M = RTK𝑒GQ12MR

= RTK𝑒
𝑞𝑞
R − (K𝑒

𝜌𝑞
R)

T
(K𝑒
𝜌𝜌
)

−1

(K𝑒
𝜌𝑞
R)

(35)

in which

RTK𝑒
𝑞𝑞
R = RT

(

NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗
BTDB |J| 𝑡)R, (36)

K𝑒
𝜌𝑞
R = (

NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗

̂BTDB |J| 𝑡)R. (37)

It can be seen from the above equations that the key task
of computing the membrane stiffness matrix is to accurately
evaluate the derivatives of the shape functions with respect to
the local coordinates 𝜕𝑁

𝑖
/𝜕𝑥

 and 𝜕𝑁
𝑖
/𝜕𝑦

, the determinant
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of the Jacobian matrix |J|, and transformation matrix R. The
membrane element in the three-dimensional space may be
not regular and coplanar. Thus, the calculation accuracy of
the traditional way to establish the element local Cartesian
coordinate system is heavily dependent on the element
regularity.

In order to improve the performance of the membrane
elements GQ12 and GQ12M, a new method to establish the
element local Cartesian coordinate system is proposed. And
the corresponding techniques to calculate the derivatives of
the shape functions with respect to the local coordinates, the
transformationmatrix from the local to the global coordinate
systems, and the determinant of the Jacobian matrix are also
provided in this paper [26, 27].

4. A New Method to Calculate the
Stiffness Matrix of the Membrane Element
in the Global Coordinate System

4.1. Establishing the Local Coordinate System. In an effort to
avoid confusion and awkward phrasing, the signs (𝑥

1
, 𝑥
2
, 𝑥
3
),

(𝑥



1
, 𝑥



2
, 𝑥



3
), and (𝜉, 𝜂) are used to denote the symbols of

the global Cartesian coordinate system, the local Cartesian
coordinate system, and the intrinsic coordinates system,
respectively.

In order to improve the calculation accuracy, a new way
[26] to establish the local Cartesian coordinate system is
suggested in this paper. As shown in Figure 4, the origin of
the local Cartesian coordinate system is set to the origin of
the intrinsic coordinate system. Firstly, the vectors r

𝜉
and r
𝜂

from the origin need to be built along the tangent directions
of the axes 𝜉 and 𝜂, respectively, as illustrated in Figure 5.
The direction of the vector r

𝜉
is considered as the local 𝑥

1

direction.Then the vectors r
𝜉
and r
𝜂
define the plane which is

tangential to the element surface.The normal vector n to this
plane can be obtained by the vector cross product of r

𝜉
and

r
𝜂
, which is the local 𝑥

3
direction. At last, the local 𝑥

2
axis

is obtained by the vector cross product of the vector in the
local 𝑥

1
direction and vector in local 𝑥

3
direction. Now the

local Cartesian coordinate system inwhich the axes 𝑥
1
and 𝑥
2

are tangential to the surface and 𝑥
3
is directed in the normal

direction (shown in Figure 4) is established successfully.
However, when the curvature of element surface is large,

the numerical results are still not very accurate in this local
Cartesian coordinate system. Therefore, in order to further
enhance the precision of the calculation, the origin of the
local Cartesian coordinate system can be set at the Gauss
points. This idea came from the traction recovery method
[28–31] in Boundary Element Method (BEM) which estab-
lishes the local Cartesian coordinate systems at each node of
the element in order to improve the calculation accuracy. In
finite element method (FEM), the numerical integration is
performed on Gauss points, so the local Cartesian coordinate
systems can be established at Gauss points. Take the 2 ×
2 Gauss point integration as an example, as indicated in
Figure 6; the local Cartesian coordinate systems with the

o

𝜂

x3

x2

x1

𝜉

x3

x1x2

4

3

2

1

𝜃

o

n

Figure 4: Local orthogonal set of axes over a surface element in the
new way.

x3

x1

x2

4

3

2

1

o

o

n

r𝜂
r𝜉

𝜉

𝜂

Figure 5: The vectors r
𝜉
and r

𝜂
in the local tangent plane to the

surface.

origins at the four Gauss points can be established in a similar
way as shown in Figure 4.

It is reasonable to establish the local Cartesian coordinate
systems at Gauss points since the numerical integration is
performed on them. In this case, the calculation accuracy can
be improved, because the local Cartesian coordinate systems
which are established on the tangent plane to the element
surface at Gauss points can adapt to the curved element
surface better. In order to better describe this problem, an
example shown in Figure 7 which is a curved element surface
is introduced to illustrate the performance of this new local
Cartesian coordinate systems established at Gauss points.
Figure 8 describes the local Cartesian coordinate system
established in the traditional method at the curved element
surface. It can be observed that the element local plane
has a large difference with the curved element surface. By
comparison, the element local planes defined by the local
Cartesian coordinate systems established at 2 × 2 Gauss
points are more accordant with the curved element surface,
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x3

x2

x1
o

1

2

3

4

n
n

n

n

𝜂

𝜂

𝜂

𝜂 𝜉

𝜉
𝜉

𝜉

x1

x1

x1
x1

x2

x2

x2

x2

x3

x3

x3

x3
o(1)

o(2)

o(3)

o(4)
𝜃

𝜃

𝜃

𝜃

Figure 6: Local Cartesian coordinate systems with the origins at the
Gauss points.

Figure 7: A curved element surface.

as illustrated in Figure 9. In essence, Gaussian integration is
the summation of the numerical results at Gauss points, so it
is reasonable to believe that the calculation accuracy of the
numerical integration can be improved by establishing the
local Cartesian coordinate system at each Gauss point.

As shown in Figure 9, the local Cartesian coordinate
systems are different since they are established in different
tangent planes to the curved element surface. So the direction
cosines 𝜆

𝑥
 , 𝜆
𝑦
 , and 𝜆

𝑧
 of the local coordinate system

established at different Gauss point with respect to the global
coordinate system are different with each other. The detailed
formulas and computation steps of 𝜆

𝑥
 , 𝜆
𝑦
 , and 𝜆

𝑧
 will

be given in the following sections. According to (31) and
(32), it can be seen that the transformation matrix R for
the transformation of element stiffness matrix from the local
to the global coordinate systems may be different. So the
element stiffness matrices of GQ12 and GQ12M under the
global coordinate system expressed as (33), (35), and (36) can
be modified to be

K𝑒GQ12 =
NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗
(BR)T D (BR) |J| 𝑡,

RTK𝑒
𝑞𝑞
R =

NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗
(BR)T D (BR) |J| 𝑡,

K𝑒
𝜌𝑞
R =

NG
∑

𝑖=1

NG
∑

𝑗=1

𝑊
𝑖
𝑊
𝑗

̂BTDBR |J| 𝑡.

(38)

o

x3 x2

x1

Figure 8: The local Cartesian coordinate system established in
the traditional method and the element local plane at the curved
element surface.

x3

x3

x3

x3

x2

x2 x2

x2
x1

x1
x1

x1

o(1) o(2)

o(3) o(4)

Figure 9: The local Cartesian coordinate systems established in the
new method and the element local planes at the curved element
surface.

4.2. Derivatives of Shape Functions with respect to Local
Coordinates. According to the derivation rule for compound
function, the derivatives of the shape functions with respect
to the local coordinates can be written as

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝑥



1

𝜕𝑁
𝑖

𝜕𝑥



2

}
}
}
}

}
}
}
}

}

=

[

[

[

[

[

𝜕𝜉

𝜕𝑥



1

𝜕𝜂

𝜕𝑥



1

𝜕𝜉

𝜕𝑥



2

𝜕𝜂

𝜕𝑥



2

]

]

]

]

]

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑖

𝜕𝜉

𝜕𝑁
𝑖

𝜕𝜂

}
}
}
}

}
}
}
}

}

, (𝑖 = 1, 2, 3, 4) (39)

in which 𝜕𝜉/𝜕𝑥
𝑗
and 𝜕𝜂/𝜕𝑥

𝑗
(𝑗 = 1, 2) are the derivatives of

the intrinsic coordinates with respect to the local coordinates,
which can be evaluated using themethod proposed by Lachat
[26, 32–34]; that is,

𝜕𝜉

𝜕𝑥



1

=

1






𝑚
1






,

𝜕𝜉

𝜕𝑥



2

=

− cos 𝜃





𝑚
1






sin 𝜃
,

𝜕𝜂

𝜕𝑥



1

= 0,

𝜕𝜂

𝜕𝑥



2

=

1






𝑚
2






sin 𝜃
,

(40)
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where 𝜃 is the angle between 𝑥
1
axis and 𝜂 axis shown in

Figure 4, and






𝑚
1






=
√
(

𝜕𝑥
1

𝜕𝜉

)

2

+ (

𝜕𝑥
2

𝜕𝜉

)

2

+ (

𝜕𝑥
3

𝜕𝜉

)

2

,






𝑚
2






=
√
(

𝜕𝑥
1

𝜕𝜂

)

2

+ (

𝜕𝑥
2

𝜕𝜂

)

2

+ (

𝜕𝑥
3

𝜕𝜂

)

2

,

(41)

cos 𝜃 = 1






𝑚
1











𝑚
2






𝜕𝑥
𝑖

𝜕𝜉

𝜕𝑥
𝑖

𝜕𝜂

, (𝑖 = 1, 2, 3) (42)

in which 𝑥
𝑖
(𝑖 = 1, 2, 3) is the global coordinates of the

element nodes, and 𝜉, 𝜂 are the intrinsic coordinates.
In (39), 𝑁

𝑖
is a substitution, which may be 𝑁0

𝑖
, 𝑁
𝑢𝜃𝑖
,

𝑁V𝜃𝑖, and ̂𝑁 in (6), (7), and (15), respectively. So separately
substituting (6), (7), and (15) into (39) gives

{
{
{
{
{

{
{
{
{
{

{

𝜕𝑁

0

𝑖

𝜕𝑥



𝜕𝑁

0

𝑖

𝜕𝑦



}
}
}
}
}

}
}
}
}
}

}

=

{
{
{
{
{

{
{
{
{
{

{

𝜕𝑁

0

𝑖

𝜕𝑥



1

𝜕𝑁

0

𝑖

𝜕𝑥



2

}
}
}
}
}

}
}
}
}
}

}

=

[

[

[

[

[

𝜕𝜉

𝜕𝑥



1

𝜕𝜂

𝜕𝑥



1

𝜕𝜉

𝜕𝑥



2

𝜕𝜂

𝜕𝑥



2

]

]

]

]

]

{
{
{
{
{

{
{
{
{
{

{

𝜕𝑁

0

𝑖

𝜕𝜉

𝜕𝑁

0

𝑖

𝜕𝜂

}
}
}
}
}

}
}
}
}
}

}

,

(𝑖 = 1, 2, 3, 4) ,

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑢𝜃𝑖

𝜕𝑥



𝜕𝑁
𝑢𝜃𝑖

𝜕𝑦



}
}
}
}

}
}
}
}

}

=

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑢𝜃𝑖

𝜕𝑥



1

𝜕𝑁
𝑢𝜃𝑖

𝜕𝑥



2

}
}
}
}

}
}
}
}

}

=

[

[

[

[

[

𝜕𝜉

𝜕𝑥



1

𝜕𝜂

𝜕𝑥



1

𝜕𝜉

𝜕𝑥



2

𝜕𝜂

𝜕𝑥



2

]

]

]

]

]

{
{
{
{

{
{
{
{

{

𝜕𝑁
𝑢𝜃𝑖

𝜕𝜉

𝜕𝑁
𝑢𝜃𝑖

𝜕𝜂

}
}
}
}

}
}
}
}

}

,

(𝑖 = 1, 2, 3, 4) ,

{
{
{
{

{
{
{
{

{

𝜕𝑁V𝜃𝑖

𝜕𝑥



𝜕𝑁V𝜃𝑖

𝜕𝑦



}
}
}
}

}
}
}
}

}

=

{
{
{
{

{
{
{
{

{

𝜕𝑁V𝜃𝑖

𝜕𝑥



1

𝜕𝑁V𝜃𝑖

𝜕𝑥



2

}
}
}
}

}
}
}
}

}

=

[

[

[

[

[

𝜕𝜉

𝜕𝑥



1

𝜕𝜂

𝜕𝑥



1

𝜕𝜉

𝜕𝑥



2

𝜕𝜂

𝜕𝑥



2

]

]

]

]

]

{
{
{
{

{
{
{
{

{

𝜕𝑁V𝜃𝑖

𝜕𝜉

𝜕𝑁V𝜃𝑖

𝜕𝜂

}
}
}
}

}
}
}
}

}

,

(𝑖 = 1, 2, 3, 4) ,

{
{
{
{
{

{
{
{
{
{

{

𝜕
̂
𝑁

𝜕𝑥



𝜕
̂
𝑁

𝜕𝑦



}
}
}
}
}

}
}
}
}
}

}

=

{
{
{
{
{

{
{
{
{
{

{

𝜕
̂
𝑁

𝜕𝑥



1

𝜕
̂
𝑁

𝜕𝑥



2

}
}
}
}
}

}
}
}
}
}

}

=

[

[

[

[

[

𝜕𝜉

𝜕𝑥



1

𝜕𝜂

𝜕𝑥



1

𝜕𝜉

𝜕𝑥



2

𝜕𝜂

𝜕𝑥



2

]

]

]

]

]

{
{
{
{
{

{
{
{
{
{

{

𝜕
̂
𝑁

𝜕𝜉

𝜕
̂
𝑁

𝜕𝜂

}
}
}
}
}

}
}
}
}
}

}

.

(43)

The derivatives of the shape functions with respect to the
local coordinates can be obtained by substituting (40) into
the above equations. Then the strain matrices B and ̂B can
be obtained by substituting the above equations into (10) and
(18), respectively.

4.3. Determination of the Jacobian |J|. For the convenience of
description, the local Cartesian coordinate system involved
in this section is based on the way as shown in Figure 4. For
the local Cartesian coordinate systems with the origins at the
Gauss points, the approach to determine |J| is similar.

Referring to Figure 10, the Jacobian is equal to themagni-
tude of the vector cross product of the vectors r

𝜉
and r
𝜂
, which

n

r𝜉
r𝜂

r

k

j
i x1

x2

x3

1

2

3

4

𝜂

𝜉

Figure 10: Normal vector to a surface element.

are located in the local tangent plane to the surface as can also
be seen in Figure 5. The Jacobian of the transformation from
the global three-dimensional coordinate system to the two-
dimensional intrinsic coordinate system of the surface patch
is introduced in the form of [26]

|J| = 


n∗


=







r
𝜉
× r
𝜂







, (44)

where

r
𝜉
=

𝜕𝑥
1
(𝜉, 𝜂)

𝜕𝜉

i +
𝜕𝑥
2
(𝜉, 𝜂)

𝜕𝜉

j +
𝜕𝑥
3
(𝜉, 𝜂)

𝜕𝜉

k,

r
𝜂
=

𝜕𝑥
1
(𝜉, 𝜂)

𝜕𝜂

i +
𝜕𝑥
2
(𝜉, 𝜂)

𝜕𝜂

j +
𝜕𝑥
3
(𝜉, 𝜂)

𝜕𝜂

k,
(45)

n∗ = r
𝜉
× r
𝜂
= (

𝜕𝑥
2
(𝜉, 𝜂)

𝜕𝜉

⋅

𝜕𝑥
3
(𝜉, 𝜂)

𝜕𝜂

−

𝜕𝑥
3
(𝜉, 𝜂)

𝜕𝜉

⋅

𝜕𝑥
2
(𝜉, 𝜂)

𝜕𝜂

) i + (
𝜕𝑥
3
(𝜉, 𝜂)

𝜕𝜉

⋅

𝜕𝑥
1
(𝜉, 𝜂)

𝜕𝜂

−

𝜕𝑥
1
(𝜉, 𝜂)

𝜕𝜉

⋅

𝜕𝑥
3
(𝜉, 𝜂)

𝜕𝜂

) j + (
𝜕𝑥
1
(𝜉, 𝜂)

𝜕𝜉

⋅

𝜕𝑥
2
(𝜉, 𝜂)

𝜕𝜂

−

𝜕𝑥
2
(𝜉, 𝜂)

𝜕𝜉

⋅

𝜕𝑥
1
(𝜉, 𝜂)

𝜕𝜂

) k,

(46)

in which i, j, and k are the orthogonal unit basis vectors of the
global coordinate axes and n∗ is normal to the surface. So the
unit normal vector may be obtained from

n = n∗

|n∗|
= 𝑛
1
i + 𝑛
2
j + 𝑛
3
k, (47)

in which 𝑛
1
, 𝑛
2
, and 𝑛

3
are the magnitude of the components

of the unit normal vector in the global coordinate axes.
The Jacobian of the transformation from the local orthog-

onal coordinate system to the intrinsic coordinate system
is the same as that from the global orthogonal to the
intrinsic coordinate systems. So the value of |J| in (38) can
be computed using (44).
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5. The Matrix Algorithm for the Membrane
Element Stiffness Transformation from the
Local to the Global Coordinate Systems

As described in Figure 4, the direction of local 𝑥
1
axis is the

tangent direction of the axis 𝜉 at the origin, which is the
direction of the vector r

𝜉
. So the direction cosine 𝜆

𝑥


1

for the
local 𝑥

1
direction is obtained by normalizing the vector r

𝜉

with respect to its length. According to (41) and (45), the
direction cosine 𝜆

𝑥


1

can be written as [26]

𝜆
𝑥
 = 𝜆
𝑥


1

=

1






𝑚
1






{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝜕𝑥
1

𝜕𝜉

𝜕𝑥
2

𝜕𝜉

𝜕𝑥
3

𝜕𝜉

}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
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in which 𝑥
𝑖
(𝑖 = 1, 2, 3) is the global coordinates of the

element nodes and |𝑚
1
| is the mold of the vector r

𝜉
expressed

in (41). The local 𝑥
3
direction is the direction of the normal

vector n to the element surface which can be obtained from
(47). So the direction cosine 𝜆

𝑥


3

can be written as
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in which 𝑛
1
, 𝑛
2
, and 𝑛

3
are given by (47). Because the local 𝑥

2

axis can be obtained by the vector cross product of the vector
in the local 𝑥

1
direction and vector in local 𝑥

3
direction, the

direction cosine 𝜆
𝑥


2

can be written as

𝜆
𝑦
 = 𝜆
𝑥


2

= 𝜆
𝑧
 × 𝜆
𝑥
 . (50)

So the 3 × 3 transformation matrix L for the transfor-
mation of coordinates from the local to the global axis can
be obtained from (32), which can be expressed in terms of
𝐿
𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3) as [26]
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, (𝑗 = 1, 2, 3) .

(51)

The 12 × 12 transformation matrix R for the 4-node
quadrilateral element stiffness from the local to the global
coordinate systems can be obtained from (33). It is worth
mentioning that the matrix R is just used for the mem-
brane element stiffness transformation from the local to the
global coordinate systems. For the 4-node quadrilateral shell

Table 2: The vertical deflection results of Cook’s problem.

Element
Vertical deflection at C (m)

(2 × 2) mesh (4 × 4) mesh (8 × 8) mesh
Deflection Deflection Deflection

Q4 [4] 11.80 18.29 22.08
Allman [15] 20.27 22.78 23.56
GQ12 [25] 20.89 23.06 23.67
GQ12 (present method) 21.27 23.07 23.67
GQ12M [25] 21.69 23.30 23.74
GQ12M (present method) 22.47 23.43 23.78
Comparison solution [35] 23.96

element which has six degrees of freedom in each node,
the 24× 24 transformationmatrixT for the transformation of
shell element stiffness from the local to the global coordinate
systems is written as [4]

T = [
R

R
] . (52)

6. Numerical Examples

In order to examine the performance of the new method for
GQ12 and GQ12M described in this paper, four numerical
examples are proposed in this section.And the computational
results are compared with those calculated by the traditional
method based on the elements GQ12 and GQ12M.

6.1. Example 1: Cook’s Problem. The problem defined in
Figure 11 was proposed by Cook [36] as a test case of plane
stress elements, which is a standard example for accuracy
testing of plane stress problem. Young’s modulus of the
element is 𝐸 = 1Pa, and Poisson’s ratio is V = 1/3. The
structure is meshedwith 2 × 2, 4 × 4, and 8 × 8 elements. Here
the new methods based on the elements GQ12 and GQ12M
proposed in this paper are utilized to solve this problem.The
best known answers taken from [35] are used for comparison,
since there is no analytical solution available for this problem.
The results of the vertical deflection at C, themaximum stress
at A, and the minimum stress at B on different meshes of the
structure are given in Tables 2 and 3.The results demonstrate
that the newmethod for the elements GQ12 andGQ12Mhave
the desirable numerical accuracy, both for the displacement
and for the stress.

6.2. Example 2: MacNeal Beam. In order to examine the
membrane locking phenomena, a typical test example [37, 38]
defined in Figure 12 was proposed byMacNeal.The thickness
of the membrane elements is 𝑡 = 0.1m, Young’s modulus
is 𝐸 = 10

7 Pa, and Poisson’s ratio is V = 0.3. The beam end
displacements obtained with several elements under the unit
shear load at the free end are compared with the theoretical
values taken from [38]. The results under different meshes
in Table 4 demonstrate that GQ12 and GQ12M with the new
method described in this paper can delete membrane locking
and have the same accuracy as the traditional method.
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Table 3: The stress results of Cook’s problem.

Element
Maximum stress at A (Pa) Minimum stress at B (Pa)

(2 × 2) mesh (4 × 4) mesh (8 × 8) mesh
𝜎A 𝜎B 𝜎A 𝜎B 𝜎A 𝜎B

Q4 [4] 0.1217 −0.0957 0.1873 −0.1524 0.2242 −0.1869
Allman [15] 0.1825 −0.1716 0.2261 −0.1921 0.2340 −0.2004
GQ12 [25] 0.1802 −0.1784 0.2209 −0.1950 0.2315 −0.2007
GQ12 (present method) 0.1841 −0.1810 0.2214 −0.1948 0.2315 −0.2008
GQ12M [25] 0.1861 −0.2088 0.2232 −0.2017 0.2305 −0.2017
GQ12M (present method) 0.2070 −0.2142 0.2333 −0.2037 0.2361 −0.2027
Comparison solution [35] 𝜎A = 0.2362 𝜎B = −0.2023

2 × 2mesh

x

y

A

B C16

44

48

P = 1

Figure 11: Cook’s problem.

Table 4: The results of the MacNeal beam under different meshes.

Element The beam end deflection (m)
Mesh (a) Mesh (b) Mesh (c)

Q4 [4] −0.0904 −0.0710 −0.0800
GQ12 [25] −0.0904 −0.0767 −0.0860
GQ12 (present method) −0.0977 −0.0871 −0.0944
GQ12M [25] −0.0977 −0.0886 −0.0923
GQ12M (present method) −0.1073 −0.0980 −0.1050
Theoretical value [38] −0.1081

6.3. Example 3: Uniform Stretching (Patch Test) and Bending
of a Plate. This test example [25] is a rectangular plate under
two loading cases, which are the uniform stretching under
Load 1 and the pure bending under Load 2, respectively.
The uniform stretching case is the patch test problem under
constant strain. Because of the symmetry of the model and
loads, only a quarter of the plate with the irregular mesh
shown in Figure 13 is considered. Young’s modulus of the
element is 𝐸 = 1Pa, and Poisson’s ratio is V = 1/3. Table 5

Table 5: The displacement at corner A under two loading cases.

Element Load 1 Load 2
𝑈A (m) 𝑉A (m)

Q4 [4] 6.00 −17.00
GQ12 [25] 6.00 −17.72
GQ12 (present method) 6.00 −17.75
GQ12M [25] 6.00 −17.77
GQ12M (present method) 6.00 −17.82
Exact [39] 6.00 −18.00

shows the results of displacement at corner A which are
obtained with different elements under these two loading
cases. It demonstrates that the elements GQ12 and GQ12M
with present method in this paper pass the patch test for a
general quadrilateralmesh and achievemore accurate results.

6.4. Example 4: Linear Analysis of a Hemispherical Shell. The
aim of this test example [40] is to examine the performance of
GQ12 and GQ12M elements with the present method in this
paper as a constituent part of the flat shell element to compute
a curved shell structure. As known, the flat shell elements are
formed by superimposing the stiffness ofmembrane andplate
bending elements. In this section, the plate bending element
is based on the Mindlin theory which includes transverse
shear deformations, and the membrane element may be
selected from GQ12 and GQ12M with present method in this
paper, respectively.

Figure 14 shows a hemispherical shell structure with an
18-degree hole at the top [40]. The radius of the shell is 10m,
thickness is 0.04m, Young’s modulus is 6.825 × 107 Pa, and
Poisson’s ratio is 0.3. The top and bottom circumferential
edges of the hemisphere are free and the shell is subjected to
two radial unit point loads. Only a quarter of the hemispher-
ical shell with the meshes shown in Figure 15 is separated
out for research due to the geometric symmetry. The radial
displacement at point A from different meshes is compared
with the theoretical solution 𝑢A = 0.094 [38] in Table 6. It
can be seen that the shell elements based on the membrane
elements with present method in this paper can achievemore
accurate results than those based on a traditional manner.
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0.2m P = 1

1m 1m 1m 1m 1m 1m

(a) Rectangular mesh

0.2m P = 1
45∘ 45∘

(b) Trapezoid mesh

0.2m P = 1
45∘

(c) Rhomboid mesh

Figure 12: MacNeal beam.
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1 1 1

1
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(a) Uniform stretching problem (patch test problem)
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q0 = 3

A

1

1

1

1 1 1 3

(b) Pure bending problem

Figure 13: A rectangular plate under two loading cases.

x1

x3

x2

18∘

o

Figure 14: A hemispherical shell structure with an 18-degree hole
on the top.

7. Concluding Discussion

In this paper a new method for establishing the local
Cartesian coordinate system and calculating the derivatives
of the shape function with respect to local coordinates is
applied to the membrane elements GQ12 and GQ12M.When
the membrane elements are introduced to be the component
of the flat shell element, this new method can establish the

x3

x2

x1

Sym

Sym

A
P = −1

P = 1

18∘

Figure 15: A quarter of the hemispherical shell structure with the
meshes.

local Cartesian coordinate system on each Gauss point over
the tangent plane to the element surface, and the precision is
improved because the membrane elements are able to adapt
the curved surface better. The numerical results of the test
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Table 6: The radial displacement at point A under different meshes.

Flat shell element The radial displacement at A under different meshes (m)
4 × 4 8 × 8 12 × 12 16 × 16

Mindlin + GQ12 0.02234 0.05708 0.07222 0.08019
Mindlin + GQ12 (present method) 0.03321 0.08975 0.09275 0.09329
Mindlin + GQ12M 0.02365 0.06000 0.07470 0.08197
Mindlin + GQ12M (present method) 0.03642 0.09027 0.09287 0.09335
Comparison solution [38] 0.094

problems show that the elements GQ12 and GQ12M with
the new method can obtain comparatively high accuracies.
This new method can bring some new ideas and approaches
to improve the computing accuracies of other membrane
elements and flat shell elements, so it has a good application
prospect in the future.
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