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The modeling and control problems are investigated for cold rolling mill system. Firstly, we establish a monitor automatic gauge
control (MAGC)model for a practical cold rollingmill system.Thenewmodel is withmismatched uncertainties.Then, an extended
state observer (ESO) is developed to estimate uncertainties. In the general high-order systems, the ESO is also used to estimate states.
By dynamic surface controlmethod, we design the controller to guarantee stabilization of the cold rollingmill system. Furthermore,
we extend proposedmethod to general high-order systems, inwhichwe analyze the difference from cold rollingmill system. Finally,
simulation results for MAGC system are presented to demonstrate the effectiveness of the proposed control strategy.

1. Introduction

Steel strips with different thicknesses are important products
in iron and steel industry, which have a wide range of
applications in household electric, automobile manufactur-
ing, machinery, and many other fields. High performance
estimation and control techniques are needed for cold rolling
mills due to increased demands on productivity and products
quality [1]. The monitor automatic gauge control (MAGC)
system of cold rolling mill is directly related to the quality
and effectiveness of cold rolling strips.Thereby how to ensure
stability and improve the performance of MAGC system are
becoming a hot research topic in metal processing field.

Accuracy of the mathematical model of automatic gauge
control system plays a significant role in products quality,
shown in [2, 3]. It is shown in [4] that the automatic gauge
control system is a typical complicated nonlinear one, subject
to load uncertainties and disturbances. Therefore, the accu-
rate model is difficult to construct for a complicated MAGC
system. In this paper, we establish a dynamic mathematical
model of the system with unknown nonlinear functions,
which reflects the actual system exactly.

As we know, there usually exist uncertainties and dis-
turbances in practical industrial systems and sometimes

only partial state variables can be measured for controller
design. Therefore, many observer design methods have been
proposed in existing literatures [5–9]. Comparedwith the tra-
ditional observer design method, an extended state observer
(ESO) can be used to estimate the unknown uncertainties
and disturbances, which can be found in [10–12]. As the
MAGC model we construct in this paper has mismatched
uncertainties, we will design a new ESO to estimate them and
extend our method to a general high-order system.

In high-order strict feedback or pure feedback nonlinear
systems, we usually use backstepping method to design the
controller. At the same time, the problem of “explosion of
complexity” is caused by repeated differentiations. With the
increase of system order, the controller becomes more and
more complex [13–16]. In order to overcome the problem
“explosion of complexity”, Swaroop et al. [17] proposed a
dynamic surface control (DSC) technique by introducing a
first-order filtering. So far many researchers have developed
this method, such as [18–23]. The work [20] investigated
decentralized dynamic surface control for a class of intercon-
nected nonlinear systems. The robust stabilization method
is proposed for uncertain nonlinear systems with unknown
time delays via the dynamic surface control in [22].
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Figure 1: Basic configuration of MAGC system.

This paper investigates the dynamic surface control
(DSC) problem for MAGC systems, in which the uncer-
tainties are estimated by the ESO. Further, the method is
extended to general high-order systems.The contributions of
our paper are as follows: (i) The fourth-order system model
of the MAGC system is established with uncertainties; (ii)
based on the designed extended state observer (ESO) and
by dynamic surface control (DSC) method, the uncertainties
and the problem “explosion of complexity” are addressed,
respectively; (iii) the method is extended to a kind of general
high-order systems, and some restrictive conditions are pre-
sented. Finally, simulation results are given to demonstrate
the effectiveness of the proposed control scheme.

The rest of the paper is organized as follows. Section 2
presents the model of the system. In Section 3, a new
ESO is designed to estimate uncertain functions. A DSC
method is proposed to design the controller in Section 4.The
proposed strategy is extended to general high-order systems
in Section 5. Simulation results are illustrated in Section 6
and finally the conclusion is given in Section 7.

2. Modeling of MAGC System

MAGC system is a typical electrohydraulic servo system with
nonlinear attributes and uncertain properties. It consists of
controller, servo amplifier, servo valve, hydraulic cylinder,
roller system, body of rolling mill, thickness gauge, and some
other sensors [24]. The configuration of MAGC system is
shown in Figure 1.

The servo amplifier is a purely proportional part, which
can be expressed as

𝑖 = 𝐾𝑝𝑢, (1)

where𝐾𝑝 is the amplifier coefficient.
The servo valve treats current 𝑖 as the input and valve

core displacement𝑥V as the output.When the system inherent
frequency is below 50Hz, the relationship can be expressed by

𝑥V

𝑖
=

𝐾V

1 + 𝑠/𝜔V
. (2)

When the inherent frequency is above 50Hz, it is

𝑥V

𝑖
=

𝐾V

𝑠2/𝜔2V + 2𝜁V𝑠/𝜔V + 1
, (3)

where 𝐾V is the amplifier coefficient of valve core displace-
ment and 𝜔V and 𝜁V are the inherent frequency and damping
coefficient of the servo valve, respectively. Because of the fast
response speed, it is always regarded as a proportional link

𝑥V = 𝐾V𝑖. (4)

Servo valve flux equation is a typical nonlinear loop:

𝑄𝐿 = 𝐶𝑑𝜔𝑥V√
𝑃𝑠 − sgn (𝑃𝐿)

𝜌
, (5)

where 𝐶𝑑 is the flux coefficient of the slide valve mouth, 𝜔 is
the area grade of the slide valve, 𝜌 is oil density, 𝑃𝑠 is the inlet
pressure of the servo valve, and𝑃𝐿 is the outlet pressure of the
servo valve.

The flow from servo valve into the cylinder, besides
driving the piston movement, can be used to compensate
various cylinder leaks and liquid compressed volume, and so
forth. The continuous flux equation of the cylinder is

𝑄𝐿 = 𝐴𝑝𝑥̇𝑝 + 𝐶𝑡𝑃𝐿 +
𝑉

4𝛽𝑒

𝑃̇𝐿, (6)

where 𝐴𝑝 is the effective area of the cylinder piston, 𝑥𝑝
is the cylinder piston displacement, 𝐶𝑡 is the total leakage
coefficient, 𝛽𝑒 is the bulk modulus of elasticity, and 𝑉 is the
cavity volume of the hydraulic cylinder.

Theoutput rolling force of the cylinder keeps balancewith
the inertia force of the moving parts, viscous damping force,
elastic load force, and other load force.The dynamic equation
can be written as

𝐴𝑝𝑃𝐿 = 𝑀𝑡𝑥̈𝑝 + 𝐵𝑝𝑥̇𝑝 + 𝐾𝑡𝑥𝑝 + 𝐹𝐿, (7)

where𝑀𝑡 is the equivalent total mass of moving parts of the
upper roller system, 𝐵𝑝 is the viscosity coefficient of cylinder,
𝐾𝑡 is the elastic stiffness coefficient of load, and 𝐹𝐿 is other
load force acting on the piston, such as the coulomb friction
force and rolled piece deformation resistance. And 𝐹𝐿 can be
expressed by

𝐹𝐿 = 𝑊𝑠 (ℎin − ℎout) + 𝐹𝑓, (8)

where𝑊𝑠 is the plastic stiffness coefficient of the rolled piece,
𝐹𝑓 is the unknown force including the coulomb friction force,
and ℎin and ℎout are the input and output thickness of the
rolled piece, respectively.

If the elastic recovery of rolled piece is ignored after
rolling, the output thickness ℎout is equal to the loading roll
gap ℎ𝐿, and they have dynamic equation

𝑇ℎℎ̇out + ℎout = ℎ𝐿, (9)

where 𝑇ℎ is the inertia time constant.
By ignoring the roll eccentricity, the relationship between

the loading roll gap and cylinder displacement is

ℎ𝐿 = ℎ𝑠 − Δℎ𝑟 = ℎ𝑠 − (𝑥𝑝 − Δℎ𝑗) = ℎ𝑠 − 𝑥𝑝 +
Δ𝐹

𝑀𝑝

, (10)
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where ℎ𝑠 is the set value of roll gap, Δℎ𝑟 is the variation
quantity of it,Δ𝐹 is the variation quantity of rolling force, and
𝑀𝑝 is the longitudinal stiffness coefficient of the mill.

Based on the above equations, we choose state variables
as 𝑥1 = ℎout − ℎout𝑑, 𝑥2 = 𝑥𝑝 − 𝑥𝑝𝑑, 𝑥3 = 𝑥̇2, 𝑥4 = 𝑥̇3, where
ℎout𝑑 and 𝑥𝑝𝑑 are the desired values of thickness and cylinder
piston displacement. Then the state space expression of the
system can be expressed as

𝑥̇1 = −
1

𝑇ℎ

𝑥1 −
1

𝑇ℎ

𝑥2 + 𝑓1 (𝑥, 𝑡)

𝑥̇2 = 𝑥3

𝑥̇3 = 𝑥4

𝑥̇4 = −(
𝑊𝑠

𝑀𝑡𝑇ℎ

−
4𝛽𝑒𝐶𝑡𝑊𝑠

𝑀𝑡𝑉
)𝑥1

− (
𝑊𝑠

𝑀𝑡𝑇ℎ

+
4𝛽𝑒𝐾𝑡𝐶𝑡

𝑀𝑡𝑉
)𝑥2

− [
4𝛽𝑒

𝑀𝑡𝑉
(𝐵𝑝𝐶𝑡 + 𝐴

2

𝑝
) +

𝐾𝑡

𝑀𝑡

] 𝑥3

− (
4𝛽𝑒𝐶𝑡

𝑉
+

𝐵𝑝

𝑀𝑡

)𝑥4

−
4𝛽𝑒𝐶𝑡

𝑀𝑡𝑉
(𝐾𝑡𝑥𝑝𝑑 +𝑊𝑠 (ℎin − ℎout𝑑))

+

4𝛽𝑒𝐴𝑝𝐾V𝐾𝑝

𝑀𝑡𝑉
𝐶𝑑𝜔

√
𝑃𝑠 − sgn (𝑃𝐿)

𝜌
𝑢 (𝑡)

+ 𝑓2 (𝑥, 𝑡) ,

(11)

where 𝑓1(𝑥, 𝑡) = (1/𝑇ℎ)(−𝑥𝑝𝑑 + ℎ𝑠 − ℎout𝑑 + Δ𝐹/𝑀𝑝) and
𝑓2(𝑥, 𝑡) = −(1/𝑀𝑡)𝐹̇𝑓 − (4𝛽𝑒𝐶𝑡/𝑀𝑡𝑉)𝐹𝑓 + (𝑊𝑠/𝑀𝑡)𝑓1(𝑥, 𝑡)

are unknown nonlinear terms including the back
pressure in hydraulic cylinder, nonlinear characteristics
in the servo valve, the friction and elastic deformation
force in the rollers, and parameter uncertainties in
rolling system, which will be estimated by ESO. For
simplicity, choose 𝑎11 = 1/𝑇ℎ, 𝑎41 = 𝑊𝑠/𝑀𝑡𝑇ℎ −

4𝛽𝑒𝐶𝑡𝑊𝑠/𝑀𝑡𝑉, 𝑎42 = 𝑊𝑠/𝑀𝑡𝑇ℎ + 4𝛽𝑒𝐾𝑡𝐶𝑡/𝑀𝑡𝑉, 𝑎43 =

(4𝛽𝑒/𝑀𝑡𝑉)(𝐵𝑝𝐶𝑡 + 𝐴
2

𝑝
) + 𝐾𝑡/𝑀𝑡, 𝑎44 = 4𝛽𝑒𝐶𝑡/𝑉 + 𝐵𝑝/𝑀𝑡,

V(𝑡) = (4𝛽𝑒𝐴𝑝𝐾V𝐾𝑝/𝑀𝑡𝑉)𝐶𝑑𝜔√((𝑃𝑠 − sgn(𝑃𝐿))/𝜌)𝑢(𝑡) −
(4𝛽𝑒𝐶𝑡/𝑀𝑡𝑉)(𝐾𝑡𝑥𝑝𝑑 + 𝑊𝑠(ℎin − ℎout𝑑)). Because 𝑃𝐿 can
be measured, we design V(𝑡) instead of the controller 𝑢(𝑡).
Further, system (11) can be written as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝑏𝑢 (V + 𝑔 (𝑥)) + 𝐵𝑑𝑓 (𝑥 (𝑡) , 𝑡) ,

𝑌 (𝑡) = 𝐶𝑥 (𝑡) ,

(12)

where 𝑔(𝑥) = −𝑎41𝑥1 − 𝑎42𝑥2 − 𝑎43𝑥3 − 𝑎44𝑥4 and

𝐴 =

[
[
[
[
[

[

−𝑎11 −𝑎11 0 0

0 0 1 0

0 0 0 1

0 0 0 0

]
]
]
]
]

]

,

𝑏𝑢 =

[
[
[
[
[

[

0

0

0

1

]
]
]
]
]

]

,

𝐵𝑑 =

[
[
[
[
[

[

1 0

0 0

0 0

0 1

]
]
]
]
]

]

,

𝐶 = [

1 0 0 0

0 1 0 0
] ,

𝑓 (𝑥, 𝑡) = [

𝑓1 (𝑥, 𝑡)

𝑓2 (𝑥, 𝑡)
] .

(13)

In system (12), function 𝑓(⋅) is not available for the
controller design. The control objective is to design an ESO
to estimate unknown functions and then using the DSC
technique to design a controller V(𝑡) such that outputs and
states both converge to a set with an acceptable accuracy.
Based on the DSC technique, the proposed control system
can eliminate the problem of “explosion of complexity”
inherent in the backstepping design method.

Remark 1. In this section, we establish the mathematical
modeling for the MAGC system. From (12), we can see that
themathematicalmodel of the systemhasmismatcheduncer-
tainties and is with strict feedback form without considering
the term 𝑓(⋅). In order to address the problem of “explosion
of complexity,” we choose DSC technique to design the
controller.

In next section, we will first design the ESO to estimate
unknown functions to prepare for the controller design.

3. Extended State Observer Design

In general, a nonlinear ESO is always used to get accurate
estimation, but it is tanglesome to design.The tandem rolling
control system has high speed and needs fast sampling
frequency, so we design a linear ESO to meet its simple,
practical, and fast-speed demand. In this section, the ESO is
only used to estimate the uncertainties and the states of the
system are assumed to be measurable.

System (12) has four state variables and two unknown
nonlinear functions. We make the two functions as the
extended fifth and sixth state variables and ℎ1, ℎ2 as their
derivatives. Consider

𝑥5 = 𝑓1 (𝑥, 𝑡) ,

𝑥6 = 𝑓2 (𝑥, 𝑡) ,

ℎ1 =
𝑑𝑓1

𝑑𝑡
,

ℎ2 =
𝑑𝑓2

𝑑𝑡
.

(14)
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By combining (12) with (14), the extended state equation
is given by

𝑥̇ = 𝐴𝑥 + 𝑏𝑢V1 + 𝐸ℎ (𝑡) ,

𝑦 = 𝐶𝑥,

(15)

where variables

𝑥 = [𝑥 𝑥5 𝑥6]
𝑇
,

ℎ (𝑡) = [ℎ1 ℎ2]
𝑇
,

V1 = V + 𝑔 (𝑥)

(16)

and matrices

𝐴 = [

𝐴4×4 (𝐵𝑑)4×2

02×4 02×2

] ,

𝑏𝑢 = [

(𝑏𝑢)4×1

02×1

] ,

𝐸 = [

04×2

𝐼2×2

] ,

𝐶 = [𝐶2×4 02×2] .

(17)

For system (15), we design the ESO as follows:

̇̂𝑥 = 𝐴𝑥̂ + 𝑏𝑢V1 + 𝐿 (𝑦 − 𝑦̂) ,

𝑦̂ = 𝐶𝑥̂,

(18)

where 𝑥̂ is the estimate of the state 𝑥 and 𝐿 is the observer
gain matrix with dimension 6 × 2.

The extended state error is defined as

𝑥̃ = 𝑥 − 𝑥̂. (19)

Subtracting (18) from (15), we get

̇̃𝑥 = 𝐴𝑒𝑥̃ + 𝐸ℎ (𝑡) , (20)

where 𝐴𝑒 = 𝐴 − 𝐿𝐶.
In order to guarantee the effectiveness of the ESO, two

assumptions should be satisfied as follows.

Assumption 2. There exists matrix 𝐿 such that the following
equality is established:

𝐴
𝑇

𝑒
𝑃 + 𝑃𝐴𝑒 = −𝑄,

(21)

where 𝑄, 𝑃 are positive symmetric matrixes.

Assumption 3. For a practical MAGC system, the unknown
functions𝑓1(𝑥, 𝑡),𝑓2(𝑥, 𝑡) and their derivatives ℎ1(𝑡), ℎ2(𝑡) are
all bounded; that is, ‖𝑓(𝑥, 𝑡)‖ ≤ 𝑓𝑑 and ‖ℎ(𝑡)‖ ≤ ℎ𝑑, where 𝑓𝑑
and ℎ𝑑 are positive scalars.

First, we can get the following theorem.

Theorem 4. For system (15), design the ESO as (18). Then, the
estimate error 𝑥̃ is uniformly ultimately bounded (UUB).

Proof. Choose the Lyapunov function as

𝑉0 = 𝑥̃
𝑇
𝑃𝑥̃. (22)

Then, the derivative of 𝑉 yields

𝑉̇0 = −𝑥̃
𝑇
𝑄𝑥̃ + 2𝑥̃

𝑇
𝑃𝐸ℎ (𝑡)

≤ −𝑥̃
𝑇
𝑄𝑥̃ +

1

𝑏
𝑥̃
𝑇
𝑃𝑃𝑥̃ + 𝑏 ‖𝐸ℎ (𝑡)‖

2

= −𝑥̃
𝑇
(𝑄 −

1

𝑏
𝑃𝑃) 𝑥̃ + 𝑏 (ℎ

2

1
+ ℎ
2

2
)

= −𝑥̃
𝑇
(𝑄 −

1

𝑏
𝑃𝑃) 𝑥̃ + 𝑏ℎ

2

𝑑

≤ −𝜆min (𝑄 −
1

𝑏
𝑃𝑃) 𝑥̃

𝑇
𝑥̃ + 𝑏ℎ

2

𝑑
,

(23)

where 𝑏 is a positive constant. If we choose 𝑏 and 𝑃 to make
𝑄 − (1/𝑏)𝑃𝑃 positive, then 𝑉̇0 is negative as long as

‖𝑥̃‖
2
>

𝑏ℎ
2

𝑑

𝜆min (𝑄 − (1/𝑏) 𝑃𝑃)
. (24)

Therefore, 𝑉̇0 is negative outside a compact set in the ‖𝑥̃‖2
plane, which is thus shown to be an attractive set for
the system. Based on Lyapunov stability theory, the UUB
property of 𝑥̃ is achieved. The proof is completed.

Remark 5. Assumptions 2 and 3 are necessary conditions to
design the ESO. Based onAssumption 2, we can get that there
must exist positive constant 𝑏 to make 𝑄 − (1/𝑏)𝑃𝑃 positive,
and the minimum eigenvalue of 𝑄 − (1/𝑏)𝑃𝑃 affects the size
of convergence region, which is larger and better.

Remark 6. From (24), we can see that the approximation
error 𝑥̃ is fundamentally bounded by ℎ𝑑. If ℎ𝑑 = 0, the rate
of change of 𝑓(𝑥, 𝑡) is zero, and the tracking error 𝑥̃ will
converge to zero asymptotically.

4. The ESO Based Dynamic Surface Control

In this section, we adopt DSC technique to design the
controller. The design procedure of the DSC system contains
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4 steps similar to the backstepping designmethod.We choose
coordinate transformation as follows:

𝑧1 = 𝑥1,

𝑧2 = 𝑥2 − 𝛼1,

𝑠1 = 𝛼1 − 𝛼11,

𝑧3 = 𝑥3 − 𝛼2,

𝑠2 = 𝛼2 − 𝛼22,

𝑧4 = 𝑥4 − 𝛼3,

𝑠3 = 𝛼3 − 𝛼33.

(25)

And we pass virtual controllers 𝛼11, 𝛼22, 𝛼33 through a first-
order filter as

𝜁1𝛼̇1 + 𝛼1 = 𝛼11, 𝛼1 (0) = 0,

𝜁2𝛼̇2 + 𝛼2 = 𝛼22, 𝛼2 (0) = 0,

𝜁3𝛼̇3 + 𝛼3 = 𝛼33, 𝛼3 (0) = 0,

(26)

where 𝜁𝑖, 𝑖 = 1, 2, 3 are positive constants.

Step 1. Choose 𝑉1 = (1/2)𝑧21 , and then the time derivative of
𝑉1 is

𝑉̇1 = 𝑧1 (−𝑎11𝑧1 − 𝑎11𝑥2 + 𝑓1)

≤ 𝑧1 (−𝑎11𝑧1 − 𝑎11 (𝑧2 + 𝑠1 + 𝛼11) + 𝑥̃5 + 𝑥̂5)

≤ 𝑧1 (−𝑎11𝑧1 − 𝑎11 (𝑧2 + 𝛼11)) +
𝑏1

4
𝑧
2

1
+
1

𝑏1

𝑥̃
2

5

+
𝑏2

4
𝑧
2

1
𝑥̂
2

5
+
1

𝑏2

+
𝑎
2

11

2𝜆1

𝑧
2

1
+
𝜆1

2
𝑠
2

1
,

(27)

where 𝑏1, 𝑏2, 𝜆1 are positive constants to be designed later.
We design the virtual controller 𝛼11 as

𝛼11 = 𝑎
−1

11
(−𝑎11𝑧1 +

𝑏1

4
𝑧1 +

𝑏2

4
𝑧1𝑥̂
2

5
+ 𝑧1 +

𝑎
2

11

2𝜆1

𝑧1) . (28)

Submmiting (28) into (27), we can get

𝑉̇1 ≤ −𝑧
2

1
− 𝑧1𝑎11𝑧2 +

𝜆1

2
𝑠
2

1
+
1

𝑏1

𝑥̃
2

5
+
1

𝑏2

. (29)

Step 2. Choose𝑉2 = 𝑉1+(1/2)𝑧22 , and then the time derivative
of 𝑉2 is

𝑉̇2 = 𝑉̇1 + 𝑧2 (𝑥3 − 𝛼̇1)

≤ 𝑉̇1 + 𝑧2 (𝑧3 + 𝑠2 + 𝛼22 +
𝑠1

𝜁1

)

≤ 𝑉̇1 + 𝑧2 (𝑧3 + 𝛼22 +
𝑠1

𝜁1

) +
1

2𝜆2

𝑧
2

2
+
𝜆2

2
𝑠
2

2
,

(30)

where 𝜆2 is positive constant.

We design the virtual controller 𝛼22 as

𝛼22 = −(
𝑠1

𝜁1

− 𝑎11𝑧1 + 𝑧2 +
1

2𝜆2

𝑧2) . (31)

Submmiting (31) into (30), we can get

𝑉̇2 ≤ −𝑧
2

1
− 𝑧
2

2
+
𝜆1

2
𝑠
2

1
+
𝜆2

2
𝑠
2

2
+
1

𝑏1

𝑥̃
2

5
+
1

𝑏2

+ 𝑧2𝑧3. (32)

Step 3. Choose𝑉3 = 𝑉2+(1/2)𝑧23 , and then the time derivative
of 𝑉3 is

𝑉̇3 = 𝑉̇2 + 𝑧3 (𝑥4 − 𝛼̇2)

≤ 𝑉̇2 + 𝑧3 (𝑧4 + 𝑠3 + 𝛼33 +
𝑠2

𝜁2

)

≤ 𝑉̇2 + 𝑧3 (𝑧4 + 𝛼33 +
𝑠2

𝜁2

) +
1

2𝜆3

𝑧
2

3
+
𝜆3

2
𝑠
2

3
,

(33)

where 𝜆3 is positive constant.
We design the virtual controller 𝛼33 as

𝛼33 = −(
𝑠2

𝜁2

+ 𝑧2 + 𝑧3 +
1

2𝜆3

𝑧3) . (34)

Submmiting (34) into (33), we can get

𝑉̇3 ≤ −𝑧
2

1
− 𝑧
2

2
− 𝑧
2

3
+
1

𝑏1

𝑥̃
2

5
+
1

𝑏2

+
𝜆1

2
𝑠
2

1
+
𝜆2

2
𝑠
2

2

+
𝜆3

2
𝑠
2

3
+ 𝑧3𝑧4.

(35)

Step 4. Choose𝑉4 = 𝑉3+(1/2)𝑧24 , and then the time derivative
of 𝑉4 is

𝑉̇4 ≤ 𝑉̇3 + 𝑧4 (V + 𝑔 (𝑥) + 𝑓2 − 𝛼̇3)

≤ 𝑉̇3 + 𝑧4 (V + 𝑔 (𝑥) + 𝑥̃6 + 𝑥̂6 +
𝑠3

𝜁3

)

≤ 𝑉̇3 + 𝑧4 (V + 𝑔 (𝑥) +
𝑠3

𝜁3

) +
𝑏11

4
𝑧
2

4
+
𝑏3

4
𝑧
2

4
𝑥̂
2

6

+
1

𝑏3

+
1

𝑏11

𝑥̃
2

6
.

(36)

We design the controller V as

V = −(𝑔 (𝑥) +
𝑠3

𝜁3

+
𝑏11

4
𝑧4 +

𝑏3

4
𝑧4𝑥̂
2

6
+ 𝑧3 + 𝑧4) . (37)

Submmiting (37) into (36), we can get

𝑉̇4 ≤ −𝑧
2

1
− 𝑧
2

2
− 𝑧
2

3
− 𝑧
2

4
+
1

𝑏1

𝑥̃
2

5
+

1

𝑏11

𝑥̃
2

6
+
1

𝑏2

+
1

𝑏3

+
𝜆1

2
𝑠
2

1
+
𝜆2

2
𝑠
2

2
+
𝜆3

2
𝑠
2

3
.

(38)
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Theorem 7. For MAGC system (11) with the control input
designed as (37) and ESO (18), the estimation error 𝑥̃(𝑡) and
the states are semiglobal uniformly ultimately bounded.

Proof. Choose the Lyapunov function as

𝑉 = 𝑉0 + 𝑉4 + 𝑉5, (39)

where 𝑉5 = (1/2)𝑠
2

1
+ (1/2)𝑠

2

2
+ (1/2)𝑠

2

3
.

First, we calculate the derivative of 𝑉5, which is

𝑉̇5 ≤ 𝑠1 (𝛼̇1 − 𝛼̇11) + 𝑠2 (𝛼̇2 − 𝛼̇22) + 𝑠3 (𝛼̇3 − 𝛼̇33)

≤ (−
𝑠
2

1

𝜁1

+
𝑠
2

1
𝛼̇
2

11

2𝜆11

+
𝜆11

2
)

+ (−
𝑠
2

2

𝜁2

+
𝑠
2

2
𝛼̇
2

22

2𝜆22

+
𝜆22

2
)

+ (−
𝑠
2

3

𝜁3

+
𝑠
2

3
𝛼̇
2

33

2𝜆33

+
𝜆33

2
) .

(40)

Then, the time derivative of 𝑉 is

𝑉̇ ≤ 𝑥̃
𝑇
(𝐴
𝑇

𝑒
𝑃 + 𝑃𝐴𝑒 +

1

𝑏
𝑃𝑃 +

1

𝑏1

𝐼 +
1

𝑏11

𝐼) 𝑥̃ − 𝑧
2

1

− 𝑧
2

2
− 𝑧
2

3
− 𝑧
2

4
+ 𝑠
2

1
(−

1

𝜁1

+
𝛼̇
2

11

2𝜆11

+
𝜆1

2
)

+ 𝑠
2

2
(−

1

𝜁2

+
𝛼̇
2

22

2𝜆22

+
𝜆2

2
)

+ 𝑠
2

3
(−

1

𝜁3

+
𝛼̇
2

33

2𝜆33

+
𝜆3

2
) + Ω,

(41)

whereΩ = 1/𝑏2 + 1/𝑏3 + 𝜆11/2 + 𝜆22/2 + 𝜆33/2 + 𝑏ℎ
2

𝑑
and 𝐼 is

identity matrix.

Now we illustrate correctness of Theorem 7. First, we
choose parameters 𝑏, 𝑏1, 𝑏11 such that (𝐴

𝑇

𝑒
𝑃+𝑃𝐴𝑒+(1/𝑏)𝑃𝑃+

(1/𝑏1)𝐼 + (1/𝑏11)𝐼) is negative. Then, choosing 𝜁1 makes
(−1/𝜁1 + 𝛼̇

2

11
/2𝜆11 + 𝜆1/2) negative for ∀𝑥 ∈ Φ, where Φ =

{𝑥 | 𝑧
2

1
+𝑧
2

2
+𝑧
2

3
+𝑧
2

4
≤ Ω}.The design of 𝜁2, 𝜁3 is similar to the

design of 𝜁1. Finally the converge region will be contained in
Φ and smaller than Φ.

Remark 8. From Ω and controller design process, we know
that positive constants 𝑏2, 𝑏3, 𝜆11, 𝜆22, 𝜆33 can be chosen
arbitrarily, but the design of 𝑏 is limited, which cannot make
the converge region arbitrary small. If 𝑏ℎ2

𝑑
= 0 (i.e., ℎ𝑑 = 0),

we can design parameters such that the converge region is
arbitrarily small. If 𝑏ℎ2

𝑑
̸= 0, we first choose appropriate 𝑏 to

make (𝐴𝑇
𝑒
𝑃+𝑃𝐴𝑒+(1/𝑏)𝑃𝑃+(1/𝑏1)𝐼+(1/𝑏11)𝐼) negative and

design small enough 𝜁𝑖 to make (−1/𝜁1 + 𝛼̇
2

11
/2𝜆11 + 𝜆1/2)

negative for ∀𝑥 ∈ Φ. Then, the states of the system will be
bounded. Further, the value of 𝜁𝑖 is smaller, and the initial
region is larger, in which the function (−1/𝜁1 + 𝛼̇

2

11
/2𝜆11 +

𝜆1/2) is always negative.

5. General High-Order System

TheMAGCsystemwediscuss is a fourth-order system,which
has two unknown nonlinear terms and two outputs. The
design of ESO for high-order systems has been investigated
in many literatures; see [24, 25]. In this section, we consider
a class of general high-order system, which is described as
follows:

𝑥̇ = 𝐴𝑥 + 𝑔 (𝑥) + 𝐵𝑢𝑢 + 𝐵𝑑𝑓 (𝑥, 𝑡) ,

𝑦 = 𝐶𝑥,

(42)

where 𝐵𝑑 is 𝑛 × 𝑚, 𝑓(𝑥, 𝑡) = [𝑓1(𝑥, 𝑡), . . . , 𝑓𝑚(𝑥, 𝑡)]
𝑇, and 𝐶

satisfies (44) in Assumption 9:

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎11 𝑎1 0 ⋅ ⋅ ⋅ 0

.

.

. 0 d ⋅ ⋅ ⋅
.
.
.

.

.

.
.
.
.

.

.

. d 0

.

.

.
.
.
. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎𝑛−1

𝑎𝑛1 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]
]

]𝑛×𝑛

,

𝑔 (𝑥) =

[
[
[
[
[
[
[

[

𝑔1 (𝑥1)

.

.

.

𝑔𝑗 (𝑥𝑗)

𝑔𝑛 (𝑥𝑛)

]
]
]
]
]
]
]

]

,

𝐵𝑢 =

[
[
[
[
[
[

[

0

.

.

.

0

1

]
]
]
]
]
]

]

,

(43)

where 𝑎1, . . . , 𝑎𝑛−1, 𝑎11, . . . , 𝑎𝑛1 are known constants.

Assumption 9. The number of outputs is not less than 𝑚.
Without loss of generality, we assume 𝐶 is as the following
form:

𝐶 = [𝐼𝑚×𝑚 | 0]𝑚×𝑛
, (44)

where 𝐼 is an identity matrix.

Assumption 10. The unknown functions 𝑓1(𝑥, 𝑡), . . . , 𝑓𝑚(𝑥, 𝑡)
and their derivatives ℎ1(𝑡), . . . , ℎ𝑚(𝑡) are all bounded; that
is, ‖𝑓(𝑥, 𝑡)‖ ≤ 𝑓𝑑 and ‖ℎ(𝑡)‖ ≤ ℎ𝑑, where 𝑓(𝑥, 𝑡) =

[𝑓1(𝑥, 𝑡), . . . , 𝑓𝑚(𝑥, 𝑡)]
𝑇, ℎ(𝑡) = [ℎ1(𝑡), . . . , ℎ𝑚(𝑡)]

𝑇, and 𝑓𝑑, ℎ𝑑
are positive scalars, which is similar to Assumption 3.

Assumption 11. The smooth function 𝑔𝑗(⋅) satisfies the Lips-
chitz condition, which is

󵄨󵄨󵄨󵄨󵄨
𝑔𝑗 (𝑥𝑗 (𝑡)) − 𝑔𝑗 (𝑥̂𝑗 (𝑡))

󵄨󵄨󵄨󵄨󵄨
≤ 𝜌𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥𝑗 (𝑡) − 𝑥̂𝑗 (𝑡)

󵄩󵄩󵄩󵄩󵄩
, (45)

where 𝜌𝑗 is a known positive Lipschitz constant; 𝑥𝑗 =

[𝑥1, . . . , 𝑥𝑗]
𝑇, 𝑥̂𝑗 = [𝑥̂1, . . . , 𝑥̂𝑗]

𝑇.
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Then, the extended state equation is given by

𝑥̇ = 𝐴𝑥 + 𝐵𝑢𝑢 + 𝐸ℎ (𝑡) ,

𝑦 = 𝐶𝑥,

(46)

where variables

𝑥 = [𝑥 𝑥𝑛+1 ⋅ ⋅ ⋅ 𝑥𝑛+𝑚]
𝑇
,

ℎ (𝑡) = [ℎ1 ⋅ ⋅ ⋅ ℎ𝑚]
𝑇

(47)

and matrices

𝐴 = [

𝐴𝑛×𝑛 (𝐵𝑑)𝑛×𝑚

0𝑚×𝑛 0𝑚×𝑚

] ,

𝐵𝑢 = [

(𝑏𝑢)𝑛×1

0𝑚×1

] ,

𝐸 = [

0𝑛×𝑚

𝐼𝑚×𝑚

] ,

𝐶 = [𝐶𝑚×𝑛 0𝑚×𝑚] .

(48)

For system (46), we design the ESO as follows:

̇̂𝑥 = 𝐴𝑥̂ + 𝐵𝑢𝑢 + 𝑔̂ (𝑥̂) + 𝐿 (𝑦 − 𝑦̂) , 𝑦̂ = 𝐶𝑥̂, (49)

where 𝑥̂ is the estimate of the state 𝑥 and 𝐿 is the observer
gain matrix with dimension (𝑚 + 𝑛) × 𝑚. Consider 𝑔̂(𝑥̂) =
[𝑔̂
1
(𝑥̂1), . . . , 𝑔̂𝑛(𝑥𝑛), 01×𝑚]

𝑇.
The extended state error is defined as

𝑥̃ = 𝑥 − 𝑥̂. (50)

Subtracting (49) from (46), we get

̇̃𝑥 = 𝐴𝑒𝑥̃ + 𝐸ℎ (𝑡) , (51)

where 𝐴𝑒 = 𝐴 − 𝐿𝐶.
In order to guarantee the effectiveness of the ESO, the

following assumption should be satisfied.

Assumption 12. There exists matrix 𝐿 such that the following
equality is established:

𝐴
𝑇

𝑒
𝑃 + 𝑃𝐴𝑒 + 𝑏𝑃𝑃 + 𝑏𝑃𝑃 +

1

𝑏

𝜌 = −𝑄, (52)

where 𝑄, 𝑃 are positive symmetric matrixes and 𝑏, 𝑏 are
positive constants, 𝜌 = ∑𝑛

𝑗=1
𝜌
2

𝑗
.

Next, we can get the following theorem.

Theorem 13. For system (42), design the ESO as (49). Then,
the estimate error 𝑥̃ is uniformly ultimately bounded (UUB).

Proof. Define the Lyapunov function as

𝑉0 = 𝑥̃
𝑇
𝑃𝑥̃. (53)

The derivative of 𝑉0 yields

𝑉̇0 = −𝑥̃
𝑇
(𝐴
𝑇

𝑒
𝑃 + 𝑃𝐴𝑒) 𝑥̃ + 𝑥̃

𝑇
𝑃𝐸ℎ (𝑡)

+ 𝑥̃
𝑇
(𝑔 (𝑥) − 𝑔̂ (𝑥̂))

≤ 𝑥̃
𝑇
(𝐴
𝑇

𝑒
𝑃 + 𝑃𝐴𝑒 +

1

𝑏
𝑃𝑃 + 𝑏𝑃𝑃 +

1

𝑏

𝜌) 𝑥̃ + 𝑏ℎ
2

𝑑
.

(54)

Then 𝑉̇0 is negative as long as

‖𝑥̃‖
2
>

𝑏ℎ
2

𝑑

𝜆min𝑄
. (55)

The proof is completed.

Next, we can design the controller using (49) byDSC.The
coordinate transformation can be chosen as follows:

𝑧1 = 𝑥̂1,

𝑧2 = 𝑥̂2 − 𝛼1,

𝑠1 = 𝛼1 − 𝛼11,

𝑧𝑗 = 𝑥̂𝑗 − 𝛼𝑗,

𝑠𝑗 = 𝛼𝑗 − 𝛼𝑗𝑗,

𝑧𝑛 = 𝑥̂𝑛 − 𝛼𝑛,

𝑠𝑛 = 𝛼𝑛 − 𝛼𝑛𝑛.

(56)

The design process is similar to the previous section and
thus omitted. Similar theorem also can be obtained.

Remark 14. In Assumption 9, we assume that the number of
outputs is not less than 𝑚, which is a necessary condition
to guarantee Assumption 12 to be established. Assumption 11
is a common assumption to design observer in nonlinear
systems, and 𝑔(𝑥) in (12) also satisfies this condition.

Remark 15. From (56), we know that 𝑥̂ is used to design
the controller, so 𝑥 need not be measurable. In the previ-
ous section, we do not use this kind of method, because
Assumption 12 is more conservative than Assumption 2 and
in MAGC systems the parameters values are very large
such that calculating better design parameters is difficult to
meet the demand of engineering, which can be seen in the
following simulation.

6. Simulations

6.1. MAGC System. In order to verify the effectiveness of
the proposed strategy, we make simulations for a 1700mm
rolling mill system. The technical parameters of rolling mill
are as follows: supporting roll 𝜙1371×1700mm and working
roll 𝜙914 × 1700mm. The hydraulic system parameters
are as follows: cylinder diameter 𝜙720mm, stem diameter
𝜙600mm, and stroke 40mm.The obtained main parameters
of the system are shown in Table 1.
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Table 1: Main parameters in the MAGC system.

Prm Value
𝐾𝑝 0.002A/V
𝜔 6.283 × 10

−2m
𝜔V 628 rad/s
𝛽𝑒 800MPa
𝐶𝑡 2.4 × 10

−12m3/Pa⋅s
𝑀𝑡 2.36 × 10

5 kg
𝐾𝑡 5.3 × 10

9 N/m
𝑇ℎ 0.125 s
𝜁V 0.7
𝜌 900 kg/m3

𝐾V 0.02A/m
𝐴𝑝 0.41m2

𝑉 6.39 × 10
−3m3

𝐵𝑝 3.64 × 10
7 N⋅s/m

𝑊𝑠 9.434 × 10
9N/m

𝑇 0.5 s

The desired exit thickness ℎout𝑑 is 1mm, and desired
cylinder piston displacement 𝑥𝑝𝑑 is 1mm.The state variables
are errors between desired values and practical ones. So the
state should converge to zero with an acceptable accuracy.

Using LMI, we can design parameters to make (𝐴𝑇
𝑒
𝑃 +

𝑃𝐴𝑒 + (1/𝑏)𝑃𝑃 + (1/𝑏1)𝐼 + (1/𝑏11)𝐼) negative. The designed
parameters are as follows: 𝑄 = 0.0046𝐼, 𝑏 = 0.2366, 𝑏1 =
𝑏11 = 76.2361, 𝑏2 = 𝑏3 = 10, 𝜆1 = 10, 𝜆2 = 0.2, 𝜆3 = 0.2,
𝜁1 = 𝜁2 = 𝜁3 = 0.05,

𝐿 =

[
[
[
[
[
[
[
[
[
[
[

[

10.1787 −5.3484

−3.7879 34.2221

−34.8146 319.3424

−54.8886 498.1011

30.1321 4.2610

−28.7435 260.5028

]
]
]
]
]
]
]
]
]
]
]

]

. (57)

Initial values are chosen as 𝑥 = 10
−3
[0.8, 1, 1, 3]

𝑇 and
𝑥̂ = 10

−3
[2, 2, 1, 2, 0, 0]

𝑇. The simulation results are shown
in Figures 2–9.

From Figures 2–9, we can see that the ESO can estimate
the real state variables very well, and the real state and
estimated state both are stabilized quickly with an acceptable
accuracy.

7. Conclusions

TheMAGC system has mismatched uncertainties and distur-
bances. To deal with the control problem, we present an ESO
based dynamic surface control strategy. The ESO is designed
at first. Then, via DSC method, the controller is designed
based on constructed ESO. Based on Lyapunov stability
theory, we show that the solutions converge to an adjustable
region. What is more, general high-order system case is also
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Figure 2: The response of state 𝑥1.

×10−3

−1

−0.5

0

0.5

1

1.5

2

5 10 150
Time (s)

Figure 3: The response of state 𝑥2.

−0.025

−0.02

−0.015

−0.01

−0.005

0
0.005

0.01
0.015

5 10 150
Time (s)

Figure 4: The response of state 𝑥3.
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Figure 5: The response of state 𝑥4.
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Figure 6: The response of estimated state 𝑥̂1.
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Figure 7: The response of estimated state 𝑥̂2.
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Figure 8: The response of estimated state 𝑥̂3.
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Figure 9: The response of estimated state 𝑥̂4.

discussed and the corresponding control scheme is proposed.
Finally, the simulation on MAGC system is performed and
the results show the effectiveness of the proposed method.
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