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This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC) for the local
stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based
linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding
unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output
feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for
the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness
and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order
nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably
well, having an acceptable domain of attraction.

1. Introduction

In the last 3 decades, there has been increasing interest
in the control of underactuated mechanical systems. These
systems are characterized by having fewer actuators than
degrees of freedom [1]. This class of mechanical systems
is becoming popular in many control applications, such as
spacecraft, aerial robotic systems, underwater vehicles, and
flexible robotics, to mention a few [2–4]. Possible advantages
associated with these systems are cost reduction, lighter
structures, and smaller dimensions, among others (see [5–
7] for a comprehensive treatment of this class of systems).
In this context, we are interested in the output feedback
asymptotic stabilization and the output feedback trajectory
control problems of the uncertain ball and rigid triangle
(BRT) system. This system consists of a rigid isosceles
triangle, 𝑂𝐴𝐵, hung from the vertex, 𝑂, and able to rotate
around this vertex by the action of the torque, 𝜏 (see Figure 1).
The identically rigid beams, 𝑂𝐴 and 𝑂𝐵, of mass 𝑚0 and

length 𝑅, are attached to the left and right ends, respectively,
of a rigid homogeneous beam, 𝐴𝐵, of length 2𝐿 and mass𝑀.
Over the𝐴𝐵 beam, there is a ball of mass𝑚, which can move
freely forwards and backwards on a direction parallel to it. As
is evident, this ball moves when the triangle rotates and the𝐴𝐵 beam bends either side. As the figure shows, the system is
quite nonlinear due to the gravitational forces, the Coriolis
and centripetal forces, and the acceleration couplings. On
the other hand, by simple comparison, it is easy to see that
this system is quite similar to but more complex than the
traditional ball and beam system [6], because both dynamics
of this system are completely coupled. Therefore, this system
is not feedback-linearizable. In addition, it does not have a
well defined relative degree [8].

Fortunately, the linearized tangent model of this sys-
tem is locally controllable around the unstable equilibrium
point, meaning that it is locally flat. Hence, the stabilization
and tracking problems both can be solved locally, from
a combined perspective of flatness approach and active
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Figure 1: The ball and rigid triangle system.

disturbance rejection control (ADRC). To accomplish this,
we can propose two decoupled extended linear observers,
assuming that only the position variables of this system
are available. These observers allow us to simultaneously
estimate the time derivatives of the nonavailable flat output
and recover the uncertain underlying nonlinear dynamics.
Subsequently, these estimations, together with the ADRC
approach, allow us to propose a control scheme to solve
the aforementioned control problems. The main difference
between flatness controllers [9–12] and the ADRC scheme for
flat systems is the fact that traditional flatness-based controls
need perfect knowledge of the plant, while ADRC schemes
for flat systems may largely ignore unknown nonlinearities
and exogenous additive perturbation inputs in the input-to-
flat output dynamics [13, 14]. We underscore that the brilliant
idea of designing a controller with the capacity of lumped
compensation of endogenous and exogenous disturbances,
by means of an observer-based control, was proposed by Han
[15]. He was the first to introduce the concept of the ADRC.
ADRC controllers have led to new paradigmatic traditional
nonlinear control problems in which disturbances, internal
and external, are actively estimated and rejected [16, 17]. This
concept has been used lately for controlling some kinds of
underactuated systems in conjunction with the differential
flatness approach with promising results (see [14, 18–22]).
Recall that we can use this approach for systems in which
tangent linear approximation is locally controllable.

In this article, an ADRC scheme with a flatness-based
approach is proposed to practically solve the output feedback
stabilization and the output feedback trajectory tracking
problem for the BRT system. Our control approach assumes

a lack of knowledge of the system parameters, the nonlin-
earities, and exogenous disturbance signals. The scheme not
only estimates the unknown dynamics and the unknown
state variables, but also reduces the tracking control problem
to that defined on a chain of integrators after online active
disturbance cancelations. Finally, the control algorithm is
tested in several numerical simulations, showing excellent
results for the output stabilization problem and output track-
ing problem. It is worthmentioning that the basin idea of this
methodology is sustained by the use of high-gain observers,
which are used as identifiers of the uncertain dynamics,
assuming that in some operational region this uncertainty
can be considered as being smooth and bounded. This kind
of methodology has been used in [23–26].

The rest of this study is organized as follows. In Section 2,
we obtain the nonlinear model of the BRT system by using
the Euler Lagrange method. We normalize the obtained
nonlinear model; then we linearize it around to its unstable
equilibrium, and we show that the incremental linear model
is flat with respect to a suitable output. In Section 3, we briefly
describe the ADRC approach and introduce a useful theorem
related to its stability. In Section 4, we propose the two
decoupled extended observers and design a suitable ADRC
controller. The results of the numerical simulations showing
the effectiveness of our proposal are presented in Section 5,
while Appendix is devoted to final remarks and future work.

Notation. In the forthcoming developments, we use the
following configuration:

𝑥̇ = 𝐴 𝑖𝑥 + 𝐸𝑖𝑢;
𝑦 = 𝐶𝑇𝑖 𝑥, (1)

where 𝑥 ∈ R𝑖 denotes the system state, 𝑢 ∈ R is the system
single input, and matrices 𝐴 𝑖 ∈ R𝑖×𝑖, 𝐸𝑖 ∈ R𝑖, and 𝐶𝑖 ∈ R𝑖

are defined according to the well-known Brunovsky form.
Finally, 𝜆𝑖{𝑋} stands for the eigenvalues of matrix𝑋.
2. The Ball and Rigid Triangle (BRT) Model

Obtaining the Mathematical Model. We first consider a fixed
reference frame, located at the fixed point 𝑂, with the
horizontal and vertical unidirectional vectors, given by ⃗𝑖 and⃗𝑗, respectively (see Figure 1). The generalized coordinates are
denoted by the vector 𝑞 = [𝑞1, 𝑞2]. The coordinate |𝑞1| < 𝐿
is the cart position, measured from itself to the gravity center
of the beam. The coordinate |𝑞2| < 𝜋/2 is the angle formed
by the vertical line passing through𝑂 and the imaginary line
passing through 𝑂 and the beam gravity center. To simplify
the dynamical model and capture its nonlinear nature, the
masses of 𝑂𝐴 and 𝑂𝐵 beams are considered equal to zero.
Evidently, the distance between the fixed point 𝑂 and the
gravity center of the 𝐴𝐵 beam is 𝐿𝑅 = √𝑅2 − 𝐿2. After some
physical considerations, it is easy to show that the kinetic
energy of the triangle structure is defined as

𝐾𝑀 (𝑞̇) = 12𝐼𝑏𝑞̇22 + 12𝑀𝐿2𝑅𝑞̇22, (2)
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where 𝐼𝑏 is the total moment of inertia of the 𝐴𝐵 beam.
Similarly, the kinetic energy related to the mass,𝑚, is

𝐾𝑚 (𝑞, 𝑞̇) = 12𝑚 (𝐿2𝑅𝑞̇22 + 𝑞21𝑞̇22 + 2𝐿𝑅𝑞̇1𝑞̇2 + 𝑞̇21) . (3)

Therefore, the total kinetic energy of the system is

𝐾(𝑞, 𝑞̇) = 𝐾𝑚 (𝑞, 𝑞̇) + 𝐾𝑀 (𝑞̇) . (4)

The potential energies associated with the beam and the
moving mass are, respectively, given by

𝑃𝑚 (𝑞) = 𝑀𝑔 (1 − cos 𝑞2) ;
𝑃𝑚 (𝑞) = 𝑚𝑔 (𝐿𝑅 (1 − cos 𝑞2) + 𝑞1 sin 𝑞2) . (5)

In addition, the total potential energy of the system is defined
as

𝑃 (𝑞, 𝑞̇) = 𝑃𝑚 (𝑞) + 𝑃𝑀 (𝑞) . (6)

From (4) and (6), we can write the Lagrangian function as

𝐿 (𝑞, 𝑞̇) = 𝐾 (𝑞, 𝑞̇) − 𝑃 (𝑞) . (7)

Therefore, the Euler Lagrange equations are

𝑚𝑞̈1 + 𝑚𝑅0𝑞̈2 − 𝑚𝑞1𝑞̇22 + 𝑚𝑔 sin 𝑞2 = 0;
𝑚𝑅0𝑞̈1 + 𝐼 (𝑞) 𝑞̈2 + 2𝑚𝑞1𝑞̇1𝑞̇2 + (𝑀 + 𝑚) 𝑔𝑅0 sin 𝑞2

+ 𝑚𝑔𝑞1 cos 𝑞2 = 𝜏,
(8)

where

𝐼 (𝑞) = (𝐼𝑏 + 𝑚𝐿2𝑅) + 𝑚𝑞21. (9)

To simplify the algebraic manipulations in the forthcoming
developments, the above equations are normalized using the
following transformations:

𝑥1 = 𝑞1𝐿𝑅 ;
𝑥2 = 𝑞2;
𝑢 = 𝜏𝑚𝑔;
𝜖 = 𝑡√ 𝑔𝐿𝑅 ,

(10)

leading to the following simpler system:

𝑥̈1 + 𝑥̈2 − 𝑥1𝑥̇22 + sin𝑥2 = 0;
𝑥̈1 + (1 + 𝑥21 + 𝑁) 𝑥̈2 + 2𝑥1𝑥̇1𝑥̇2 + (1 + 𝜇) sin𝑥2

+ 𝑥1 cos𝑥2 = 𝑢,
(11)

with 𝑁 = 𝐼𝑏/(𝑚𝐿2𝑅) and 𝜇 = 𝑀/𝑚, where “⋅” stands for
differentiation with respect to the dimensionless 𝜖.

Evidently, the system above admits the following Euler-
Lagrange representation:

𝑀𝑛 (𝑥) 𝑥̈ + 𝐶𝑛 (𝑥, 𝑥̇) 𝑥̇ + 𝐺𝑛 (𝑥) = 𝑈, (12)

where 𝑥 = (𝑥1, 𝑥2) and
𝑀𝑛 (𝑥) = [1 1

1 1 + 𝑥21 + 𝑁] ;
𝐺𝑛 (𝑥) = 𝜕𝜕𝑥𝑉𝑛 (𝑥) ;

𝐶𝑛 (𝑥, 𝑥̇) = [ 0 𝑥1𝑥̇2𝑥1𝑥̇2 𝑥1𝑥̇1] ;

𝑈 = [0𝑢] ,

(13)

and 𝑉𝑛(𝑥) = −(1 + 𝜇) cos𝑥2 + 𝑥1 sin𝑥2. Finally, it is easy
to see that system (8) verifies the following properties: (i)𝑀𝑛(𝑥) > 0; (ii) the matrix 𝑆 = 𝑀𝑛(𝑥) − 2𝐶𝑛(𝑥, 𝑥̇) is skew
symmetric; and (iii) the operator 𝑢 → 𝑥̇2 is passive; that
is, the energy function time derivative 𝐸̇𝑛 = 𝑥̇2𝑢, where𝐸𝑛 = 𝑥̇𝑇𝑀𝑛(𝑥)𝑥̇/2 + 𝑉𝑛(𝑥) (notice that the sign of 𝐸𝑛 is not
well defined).

Problem Statement.Given the systemmodel described in (8),
the objective of this work consists of two goals: (1) designing
a linear stabilizing controller to simultaneously bring the
rigid triangle and the cart to the zero position (𝑥1 = 𝑥2 =0), assuming that all variables are initialized within a small
vicinity of the origin, and (2) solving locally the output
feedback trajectory tracking problem.

Motivation. It is easy to see that system (11) is unstable around
the zero equilibrium point. In addition, this system cannot
be feedback-linearizable using either static or dynamic state
feedback. This fact is easy to verify by simply comparing
the structure of the BRT system with the structure of the
completemodel of the ball and beam system [6]. On the other
hand, we strongly believe that the problem of stabilizing the
system (11) has not been solved, until now, using the energy
shape based controlmethod (see [27–29]). Additionally, there
has been no analytical expression for the closed loop energy
function. Here, we provide an approximated control solution
by considering a linear version of the original model of
the BRT system, in conjunction with the ADRC approach.
In our opinion, this mechanical system can be applied to
balance loads. For instance, the model can be extended to a
three-dimensional case, which represents a container inside
which a heavy object can slide freely due to load and unload
maneuvers, where we want to prevent the object from hitting
and damaging. Finally, we mention that this model can be
considered as a simplification of the ball and plate system or
the ball and beam system if the radius ball is considered in
the model [30, 31].
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2.1. Flatness of the Linearized Model. Consider the tangent
linearization of system (11) around the following unstable
equilibrium points:

(𝑥1 = 0, 𝑥̇1 = 0, 𝑥2 = 0, 𝑥̇2 = 0, 𝑢 = 0) . (14)

This leads to the following linearized system:

𝑥̈1𝛿 + 𝑥̈2𝛿 + 𝑥2𝛿 = 0;
𝑥̈1𝛿 + (1 + 𝑁) 𝑥̈2𝛿 + (1 + 𝜇) 𝑥2𝛿 + 𝑥1𝛿 = 𝑢𝛿, (15)

where 𝑥1𝛿 = 𝑥1 and 𝑥2𝛿 = 𝑥2 are the incremental states of the
linearized system. Then, the incremental flat output, 𝐹𝛿, is𝐹delta = 𝑥1𝛿 + 𝑥2𝛿. (16)

Indeed, all variables can be parameterized in terms of 𝐹𝛿 and
a finite number of its time derivatives, as follows:

𝑥1𝛿 = 𝐹𝛿 + 𝐹(2)𝛿 ;
𝑥2𝛿 = −𝐹(2)𝛿 ;
𝑥̇1𝛿 = 𝐹(1)𝛿 + 𝐹(3)𝛿 ;
𝑥̇2𝛿 = −𝐹(3)𝛿 ;
𝑢𝛿 = −𝐹(4)𝛿 𝑁 + 𝑥1 + 𝜇𝑥2.

(17)

2.2. A Flatness-Based Pole Placement Approach for Stabiliza-
tion. The state-dependent input-coordinate transformation,

𝑢𝛿 = −V𝛿𝑁 + 𝑥1 + 𝜇𝑥2, (18)

shows that system (15) is equivalent to the following chain of
integrators:

𝐹(4)𝛿 = V𝛿, (19)

where V𝛿 is the new stabilizing feedback controller, fixed as

V𝛿 = 𝐹(4)∗ − 4∑
𝑖=0

𝑘𝑖 (𝐹(𝑖)𝛿 − 𝐹(𝑖)∗ ) , (20)

where the set of coefficients {𝑘1, 𝑘2, 𝑘3, 𝑘4} is selected, such
that the closed loop characteristic polynomial,

𝑝 (𝑠) = 𝑠4 + 𝑘4𝑠3 + 𝑘3𝑠2 + 𝑘2𝑠 + 𝑘1 (21)

is Hurwitz, and 𝐹∗ = 𝐹∗(𝑡) is the desired reference signal,
with bounded time derivatives up to order 4. For a detailed
treatment of the flatness approach, we suggest [9, 11].

Remark 1. Recall that the time derivatives 𝐹(𝑖)𝛿 , 𝑖 = {0, 1, 2, 3}
are given in the original coordinates as

𝐹𝛿 = 𝑥1𝛿 + 𝑥2𝛿;
𝐹(1)𝛿 = 𝑥̇1𝛿 + 𝑥̇2𝛿;
𝐹(2)𝛿 = −𝑥2𝛿;
𝐹(3)𝛿 = −𝑥̇2𝛿.

(22)

In the following section, we develop a control strategy for the
BRT system, based on the ADRC.

Numerical Simulation. To show the closed loop response of
the nonlinear normalized system (11) to the derived flatness
controller (18), two simulations were carried out. To this end,
the physical parameters were fixed as

𝑚 = 0.1Kg;
𝑀 = 0.5Kg;
𝐿𝑟 = 0.5m;
𝐿 = 0.5m;
𝐼𝑏 = 0.13Kgm2,

(23)

while the closed loop characteristic polynomial was chosen
to be

𝑝 (𝑠) = (𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛)2 . (24)

3. ADRC to Locally Control the Ball and Rigid
Triangle (BRT) System

In this section, we solve once again the previously mentioned
control problem, assuming that only the position is available
for measurements and that some dynamics of the original
system are unknown. Before developing our control strategy,
we give a summary on the ADRC subject.

3.1. Summary of ADRC. Let us consider the uncertain plant
of 𝑛th-order, described by the following set of nonlinear
differential equations:

ẋ = 𝐴𝑛x + 𝐸𝑛 (𝑏𝑢 + 𝑓 (x, 𝑑)) ;
𝑦 = 𝐶𝑇𝑛 x, (25)

where x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 ∈ R𝑛 is the state; 𝑢 and 𝑦 ∈ R are,
respectively, the input and output; 𝑏 is a known constant; 𝑑
is the external unknown disturbance; and 𝑓(⋅) stands for the
unknown nonlinear time-varying dynamics. Next, consider
the following extended observer (EOS) for system (25):

̇̂x𝑒 = 𝐴𝑛+1x̂𝑒 + 𝐵𝑛+1𝑢 + 𝑙 (𝑦 − 𝑦̂) ;
𝑦̂𝑒 = 𝐶𝑇𝑛+1x̂𝑒, (26)

where 𝐵𝑇𝑛 = [0, 0, . . . , 1, 0] ∈ R𝑛, and the estimation vector
x̂𝑒 ∈ R𝑛+1 is defined as

x̂𝑒 fl [𝑥̂1, 𝑥̂2, . . . , 𝑥̂𝑛, 𝑥̂𝑛+1]𝑇 = [x̂, 𝑓̂]𝑇 , (27)

and 𝑙 is the gains vector of the observer, set as
𝑙 = [𝑤0𝛼1, 𝑤20𝛼2, . . . , 𝑤𝑛+10 𝛼𝑛+1]𝑇 , (28)

where 𝑤0 > 0, with constants 𝛼𝑖 defined as

𝛼𝑖 fl (𝑛 + 1)!𝑖! (𝑛 + 1 − 𝑖)! ; 𝑖 = {1, 2, . . . , 𝑛 + 1} . (29)
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According to this fact, it is clear that the matrix,

𝐴 =
[[[[[[[[[[
[

−𝛼1 1 0 ⋅ ⋅ ⋅ 0
−𝛼2 0 1 ⋅ ⋅ ⋅ 0
... ... ... ⋅ ⋅ ⋅ 0
... ... ⋅ ⋅ ⋅ 1

−𝛼𝑛+1 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]
]

, (30)

is Hurwitz.

Theorem 2. Consider system (25), in closed loop with

𝑢 = −1𝑏 (𝐾𝑇 (x̂ − y𝑟) + 𝑥̂𝑛+1 − 𝑦(𝑛)𝑟 ) , (31)

where x̂ = [𝑥̂1, . . . , 𝑥̂𝑛]𝑇 and 𝑥̂𝑛+1 are computed via (26) and
(27), with 𝐾 ∈ 𝑅𝑛 selected, such that

𝐻𝑛 = 𝐴𝑛 − 𝐸𝑛𝐾𝑇 (32)

is a Hurwitz matrix, and y𝑇𝑟 = [𝑦𝑟, 𝑦̇𝑟, . . . , 𝑦(𝑛−1)𝑟 ] is the
reference vector, with |𝑦(𝑗)𝑟 | ≤ Γ𝑗, for 𝑗 = {0, . . . , 𝑛+1}, provided
that

(A1) ∇x𝑓 and 𝑓𝑑 = 𝜕𝑓/𝜕𝑑 are bounded within the domain
of interest, with 𝑑, 𝑑̇ ∈ 𝐿∞, and 𝑓(𝑥, 𝑑) being
continuous;

(A2) 𝜆𝑖{𝐻𝑛} ̸= 𝜆𝑗{𝑤0𝐴}, for all 𝑖 and 𝑗, where 𝑖 ={1, 2, . . . , 𝑛}, and 𝑗 = {1, 2, . . . , 𝑛 + 1};
(A3) 𝑤0 > max{1, ‖𝐻𝑛‖ ‖𝐴−1‖}. Then, the output feedback

dynamic, defined by (26) and (31), is practically stable.
Moreover, x̃𝑒 = x𝑒 − x̂𝑒 is bounded with the ultimate
bound given by 𝑂(1/𝑤0), where x𝑒 = [x, 𝑓]𝑇. Finally,
if Δ(𝑡) = 0, where,

Δ (𝑡) = 𝑓𝑑𝑑̇ + 𝜕𝑓𝜕𝑥𝑛𝑦(𝑛)𝑟 + (∇x𝑓)𝐴𝑛y𝑟, (33)

then x̃𝑒 exponentially converges to zero.The proof of this
theorem can be found in Appendix.

4. A GPI Observer-Based Active Disturbance
Rejection Controller

From the linearized control model (15), we use the following
simplified perturbed model for the unknown nonlinear
system (11), defined as

𝐹(4)𝛿 = −𝑢𝛿𝑁 + 𝜂 (𝑡) , (34)

where 𝜂(𝑡) acts in place of all the following: the state depen-
dent expressions, all the higher-order terms (h.o.t.) neglected
by the linearization, possibly of nonmodeled dynamics, and,
finally, the external unknown disturbances affecting the
system. All of these uncertain terms are grouped together

as a single time-varying function, which in our case has the
following form:

𝜂 (𝑡) = 1𝑁 (𝐹𝛿 + 𝐹(2)𝛿 ) − 𝜇𝑁𝐹(2)𝛿 + h.o.t. (35)

Assuming that 𝜂(𝑡) satisfies Assumption (A1) found in The-
orem 2, it is possible to solve the output feedback trajectory
control problem of the uncertain system (34). That is, we can
propose an admissible reference trajectory, 𝐹∗ = 𝐹∗(𝑡), in
order to carry out some controlledmaneuver tasks. Evidently,
this trajectory has to be chosen, such that it is very close to the
rest position (𝑥1𝛿 = 0, 𝑥2𝛿 = 0). Recall that the incremental
linear control model (34) is valid, as long as the trajectories
of the original system are in a vicinity close to the origin. In
order to solve this problem,we defined the trajectory tracking
control errors as

𝑒𝑖 = 𝐹(𝑖−1)𝛿 − 𝐹(𝑖−1)∗ (𝑡) , with 𝑖 = {1, 2, 3, 4} . (36)

Based on this definition, we can see that the errors evolve to

̇𝑒1 = 𝑒2;
̇𝑒2 = 𝑒3;
̇𝑒3 = 𝑒4;
̇𝑒4 = −𝑢𝛿𝑁 + 𝜂 (𝑡) .

(37)

Since variables 𝑥1𝛿 and 𝑥2𝛿 are available, then, fromRemark 1,
the flat outputs 𝐹𝛿 = 𝑥1𝛿 + 𝑥2𝛿 and 𝐹(2)𝛿 = −𝑥2𝛿 are also
available, implying that the tracking errors 𝑒1 = 𝐹𝛿 − 𝐹∗ and𝑒3 = 𝐹(2)𝛿 −𝐹(2)∗ can be measured simultaneously. Hence, a set
of decoupled high-gain extended linear Luenberger observers
for the estimation of the unknown variables {𝑒2, 𝑒4, 𝜂} is
proposed as follows:

̇̂𝑒1 = 𝑒̂2 + 2𝑤0 (𝑒1 − 𝑒̂1) ;
̇̂𝑒2 = 𝑒3 + 𝑤20 (𝑒1 − 𝑒̂1) ;
̇̂𝑒3 = 𝑒̂4 + 3𝑤0 (𝑒3 − 𝑒̂3) ;
̇̂𝑒4 = −𝑢𝛿𝑁 + 𝜂̂ + 3𝑤20 (𝑒3 − 𝑒̂3) ;
̇̂𝜂 = 𝑤30 (𝑒3 − 𝑒̂3) ,

(38)

where 𝑤0 > 1. Notice that the above linear observers are in
agreement with the EOS proposed in (26) and (28). Having
proposed the high-gain observers for the estimation of the
unknown variables, we proceed to design the linear controller
based on the ADRC approach. That is, the input 𝑢𝛿 will be
synthesized with an active disturbance canceling strategy for
the uncertain 𝜂, in terms of its estimated value 𝜂̂, and the use
of variables 𝑒̂2 and 𝑒̂4 instead of the actual variables 𝑒2 and𝑒4, respectively. Therefore, according to (18) and (31), we can
propose 𝑢𝛿 as

𝑢𝛿 = 𝑁(𝑘4𝑒̂4 + 𝑘3𝑒3 + 𝑘2𝑒̂2 + 𝑘1𝑒1 − 𝐹(4)∗ + 𝜂̂) , (39)
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where 𝐾𝑇 = [𝑘1, 𝑘2, 𝑘3, 𝑘4] must be selected, such that the
matrix

𝐻4 =
[[[[[
[

0 1 0 0
0 0 1 0
0 0 0 1
−𝑘1 −𝑘2 −𝑘3 −𝑘4

]]]]]
]

(40)

is Hurwitz (see definition in (32)).

Remark 3. Matrix 𝐴 is defined by

𝐴 = [[
[
−3 1 0
−3 0 1
−1 0 0

]]
]

(41)

(see (30)), with 𝜆𝑗{𝐴} = −1 and 𝑗 = {1, 2, 3}. On the other
hand, the first and second equations of (38) are neglected,
because the observation error 𝑒̃1 = 𝑒1 − 𝑒̂1 satisfies the
following equation:

̈̃𝑒1 + 2𝑤0 ̇̃𝑒1 + 𝑒̃1 = 0. (42)

This implies that 𝑒̃2 exponentially converges to zero.
From the discussion above, the following can be con-

cluded.

Fact 1. 𝜂(𝑡), defined in (35), satisfies the conditions in
Assumption (A1).

Fact 2. Selecting, for instance,𝐾𝑇, such that 𝜆𝑗{𝐻4} = −1 for𝑖 = {1, 2, 3, 4} and𝑤0 ≫ 1, we can always fulfill the conditions
in Assumptions (A2) and (A3).

From Facts 1 and 2 and according to Theorem 2, we can
assure that the system locally asymptotically and exponen-
tially converges to zero, if 𝐹∗ = 0. Besides, if 𝐹∗(𝑡) ̸= 0 and
its time derivatives up to order 4 are bounded, then we can
always assure that the tracking error is ultimately bounded,
where the confined region of the tracking error can be as
small as desired.

Remark 4. In order to avoid the large initial peaking phenom-
ena found in the response of observer variables, we suggest
using a clutch function to smooth these transient peaking
responses in all the observer variables used in the controller.
The “clutch” is defined as a time function smoothly increasing
from 0 to 1, during a small time interval [0, 𝛼). We fix the
smoothing function as

𝑠𝑓 (𝑡) = {{{{{
1 for 𝑡 > 𝛼;
sin𝑟 (𝜋𝑡2𝛼) for 0 ≤ 𝑡 < 𝛼, (43)

where 𝑟 is a suitably large positive even integer (see [19]).
Therefore, the “smoothing” of the observer variables may be
implemented as

𝑧̂𝑓 = 𝑧̂𝑠𝑓 (𝑡) , (44)

where 𝑧 = {𝑒2, 𝑒4, 𝜂}.

Remark 5. As alreadymentioned, an advantage of combining
the flatness and the ADRC methods is that it allows online
estimates and cancels the undesirable effects of the higher-
order nonlinearities discarded by the linearization approx-
imation. Because our result is based on this advantage, it
is important to provide some arguments to validate it. The
ADRC is based on restriction to (1) flat systems and their cor-
responding input-to-flat outputs dynamics (multivariable or
monovariable) and (2) a brute force exact linearization of the
underlying input output dynamics (monovariable) or the set
of statically or dynamically decoupled nonlinear dynamics,
written in Isidori’s canonical form.This is achieved by online
estimating and online feedback cancelling of absolutely
everything that perturbs the forced linear dynamics from
its desired nominal behaviour (trajectory tracking or stabi-
lization). This uncertainty cancelling includes poorly known
additive expressions containing state-dependent nonlinear-
ities and the unpredictable effects of unmodeled dynamics
and of external unknown disturbances. Very many examples
and applications regarding the effectiveness of this technique
as well as the theoretical results backing the methodology
actually constitute sufficient proof of the assertion made in
Abstract of the paper. References [13–19] are vivid proof of
the range of applications and effectiveness of the method, not
to mention the underlying simplicity. The following articles
also contain sufficient results and applications which validate
the technique in a generous manner [32–36]. Reference [37]
offers complete survey up to 2014.

Numerical Simulation. To test the performance of the pro-
posed ADRC in conjunction with the flatness controller, we
carried out two numerical simulations, with the following
setup:

𝑚 = 0.1Kg;
𝑀 = 0.5Kg;
𝐿𝑟 = 0.5m;
𝐿 = 0.5m;
𝐼𝑏 = 0.13Kgm2,

(45)

and the closed loop characteristic polynomial chosen as

𝑝 (𝑠) = (𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2𝑛)2 , (46)

with 𝜁 = 0.707 and 𝜔𝑛 = 1.2. Notice that 𝐼𝑏 was computed
via the formula 𝐼𝑏 = 𝑀(𝐿2𝑟 + 𝐿2/12). The aim of the first
simulation was to solve the stabilization of the BRT system
at the rest equilibrium position. The other simulation solved
the output feedback trajectory control. To this end, we use
the control equation, (39), with the decoupled corresponding
observer (38). The observer parameter was fixed as 𝑤0 = 10,
and the clutch parameters were set as 𝛼 = 0.1 [s] and 𝑟 = 3.
The Output Feedback Stabilizing Controller. The closed loop
stabilization to the GPI observer based on the ADRC of
the system (8) was carried out. To this end, the reference
trajectory, 𝐹∗, for the flat output, 𝐹𝛿(𝑡), was set to zero,
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Figure 2: Closed loop response of the ADRC for two different initial conditions: 𝑝1 and 𝑝2.
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Figure 3: A window time, from 5 to 30 seconds, of the tracking trajectory error when the reference is a sinusoidal signal.

as required by the stabilization task. The pair of initial
conditions, for equal numbers of executions, was selected as

𝑝1 = (𝑥1 = 0, 𝑥̇1 = 0.5 [m/s] , 𝑥2 = −0.2 [rad] , 𝑥̇2
= −0.1 [rad/s]) ,

𝑝2 = (𝑥1 = 0.1 [m] , 𝑥̇1 = 0.3 [m/s] , 𝑥2 = 0, 𝑥̇2
= −0.1) .

(47)

Figure 2 shows the closed loop responses of the ADRC for the
stabilization of system (8) at the rest position for each initial

condition. From this figure we can see that, before 4 seconds
elapse, the position variables and the control action go to zero.

The Output Feedback Trajectory Tracking Problem. A more
challenging control task was selected for the second experi-
ment, where the sine signal 𝐹∗(𝑡) = 0.4 sin(𝑡/2) was selected
as the reference trajectory. To this end, we fixed the initial
condition at the origin and used the same setup as in the
previous simulation.

Figure 3 shows a window from 5 to 30 seconds of the
evolution of the tracking errors 𝑒𝑖 = 𝐹(𝑖−1)𝛿 − 𝐹(𝑖−1)∗ (𝑡), with𝑖 = {1, 2, 3, 4}. The tracking errors 𝑒1, 𝑒2, 𝑒3, and 𝑒4, are,
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respectively, in the ranges of 10−6, 10−5, 10−4, and 10−3. From
these results we can claim that the system is able to effectively
track the proposed reference after 4 seconds has elapsed.
Additionally, the closed loop response showed a considerably
large domain of attraction.

Finally, Figure 4 shows the phase space of the position and
angular variables. There, we can see that those variables have
a limit cycle in their corresponding phase spaces.

5. Conclusions

The differential flatness approach, in conjunction with
ADRC, allows systematic solutions to a number of interest-
ing nonlinear control problems. In this instance, we have
exploited the local flatness property for the efficient stabiliza-
tion and tracking of the underactuated BRT. It is important to
emphasize that this system is not feedback-linearizable and
that its relative degree is not well defined. Moreover, as far
as we know, the stabilization of the BRT remained unsolved
by using either the shaping energy approach or the IDA-PBC
method. Nevertheless, this problem can be partially solved
using linear control theory.The fact that the tangent lineariza-
tion of this system, around the unstable equilibrium point,
is locally controllable implies that the system is also locally
flat. This allows us to use the robust ADRC in the efficient
online estimation of the locally neglected nonlinearities and
their active feedback cancelation.The solution, which is quite
robust with respect to unmodeled disturbances and neglected
nonlinearities, is, in fact, a linear controller with an online
compensator. It is based on a set of decoupled linear extended
observers and a single linear output feedback controller, with
disturbance cancelation features. The proposed controller
guarantees locally exponentially asymptotic stability for the
stabilization problem and practical and local stability in the
solution of the tracking error. To assess the effectiveness of the
proposed methodology, numerical simulations were carried
out. From the simulation results, we can demonstrate that
the proposed controller behaves remarkably well, having an
acceptable domain of attraction.

Appendix

Proof of Theorem 2

The following proof is based on the previous works [38–
40]. First of all, we define the actual extended state x𝑒 =[𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑓]𝑇 ∈ R𝑛+1. Hence, system (25) can be
rewritten as

ẋ𝑒 = 𝐴𝑛+1x𝑒 + 𝐵𝑛+1𝑢 + 𝐸𝑛+1𝜂;
𝑦𝑒 = 𝐶𝑇𝑛+1x𝑒, (A.1)

with 𝜂 := 𝑓̇. Evidently, system (26) is a Luenberger observer
for the system above. Defining the observation error vector
as x̃𝑒 = x𝑒 − x̂𝑒, we can easily obtain, from (A.1) and (26), the
following equation:

̇̃x𝑒 = (𝐴𝑛+1 − 𝑙𝐶𝑇𝑛+1) x̃𝑒 + 𝐸𝑛+1𝜂, (A.2)

which is equivalent to

𝜉̇ = 𝑤0𝐴𝜉 + 𝑤−(𝑛+1)0 𝐸𝑛+1𝜂, (A.3)

where we use the following transformation:

x̃𝑒 fl diag {𝑤0, 𝑤20 , . . . , 𝑤𝑛+10 } 𝜉 = 𝑊𝑛+1𝜉. (A.4)

Using the definition of 𝜂 = 𝑓̇ and (33), we obtain

𝜉̇ = 𝑤0𝐴𝜉 + 𝑤−(𝑛+1)0

𝜕𝑓𝜕𝑥𝑛
⋅ 𝐸𝑛+1 ((∇x𝑓𝐴𝑛 − 𝐾𝑇) e + 𝐾𝑇𝑊𝑛+1𝜉)

+ 𝑤−(𝑛+1)0 𝐸𝑛+1Δ (𝑡) ,
(A.5)

where the definition of 𝐴 was defined in (30).

Stability Analysis of the Trajectory Tracking Error e = x − y𝑟.
Substituting the value of (31) in (25) leads to

ẋ = 𝐴𝑛x + 𝐸𝑛 (−𝐾𝑇 (x̂ − y𝑟) + 𝑤𝑛+10 𝜉𝑛+1 + 𝑦(𝑛)𝑟 ) . (A.6)
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Expressing the last equation in terms of the tracking error, we
obtain

ė = 𝐻𝑛e + 𝐸𝑛𝐾𝑇𝑊𝑛+1𝜉. (A.7)

where 𝐾𝑇 = [𝐾𝑇 1] and 𝐻𝑛 = 𝐴𝑛 − 𝐸𝑛𝐾𝑇. Now, we analyse
the convergence of (A.7) and (A.5). Then, both equations are
easily rewritten as

[ė𝜉̇] = [𝐻𝑛 𝐸𝑛𝐾𝑇𝑊𝑛+10 𝑤0𝐴 ][e𝜉] + [[[
0𝑛×1𝐸𝑛+1𝑤𝑛+10

]]
]
Φ (⋅) , (A.8)

where

Φ (x, e, 𝜉, 𝑡) = 𝐹1 (x) e + 𝐹2 (x) 𝜉 + Δ (𝑡) ;
𝐹1 (⋅) = 𝜕𝑓𝜕𝑥𝑛 (∇x𝑓𝐴𝑛 − 𝐾𝑇) ;
𝐹2 (⋅) = 𝜕𝑓𝜕𝑥𝑛𝐾

𝑇𝑊𝑛+1.
(A.9)

Hence, Φ(⋅) is continuous and bounded, according to
Assumption (A1). Introduce the following change of coordi-
nates:

𝜁 = e + 𝑁𝜉, (A.10)

where 𝑁 is a constant matrix, which is a solution of the
following Sylvester equation:

𝐸𝑛𝐾𝑇𝑊𝑛+1 = 𝐻𝑛𝑁 − 𝑤0𝑁𝐴. (A.11)

Assumption (A2) assures existence and uniqueness of𝑁 [41].
Consequently, (A.10) can be rewritten as

[𝜁̇𝜉̇] = [𝐻𝑛 0
0 𝑤0𝐴][

𝜁
𝜉] + [[[

0𝑛×1𝐸𝑛+1𝑤𝑛+10
]]
]
Φ (⋅) . (A.12)

Because 𝐻𝑛 is selected to be Hurwitz, we conclude that 𝜁
converges exponentially to zero. Finally, we need to prove
boundedness and convergence of the system:

𝜉̇ = 𝑤0𝐴𝜉 + 𝑤−(𝑛+1)0 𝐸𝑛+1Φ (x, 0, 𝜉, 𝑡) . (A.13)

To this end, we need to introduce the following auxiliary
lemma to estimate the norm of the matrix 𝑁, without the
need to compute it.

LemmaA.1. Under Assumptions (A2) and (A3), thematrix𝑁
of (A.11) is bounded by

‖𝑁‖ ≤ 𝑤𝑛0𝑘𝑁, 𝑘𝑁 fl
𝑤0 󵄩󵄩󵄩󵄩󵄩𝐾󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩󵄩𝑤0 − 󵄩󵄩󵄩󵄩𝐻𝑛󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐴−1󵄩󵄩󵄩󵄩 > 0. (A.14)

Besides, for 𝐾 that is sufficiently large, then lim‖𝐾‖→∞‖𝑁‖ ≤𝑤𝑛+10 ; because the proof of this fact is not difficult, it is omitted.

Resuming the stability proof, because 𝐴 is Hurwitz, there
exists 𝑃 = 𝑃𝑇 > 0, such that 𝑃𝐴 + 𝐴𝑇𝑃 = −2𝐼𝑛+1. Defining
the Lyapunov function𝑉 = (1/2)𝜉𝑇𝑃𝜉, it is easy to see that its
time derivative, along the trajectories of (A.13), can be upper
bounded by

𝑉̇ ≤ −𝑤0 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 𝜆max (𝑃)(𝑘𝐹1𝑘𝑁𝑤0 + 𝑘𝐹
2𝑤(𝑛+1)0 ) 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2

+ 𝜆max (𝑃) 𝑘Δ 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨𝑤(𝑛+1)0 ,
(A.15)

where |Δ| ≤ 𝑘Δ, ‖𝐹1‖ ≤ 𝑘𝐹
1

, and ‖𝐹2‖ ≤ 𝑘𝐹
2

. From the above,
we need to analyse two cases:

(𝑘Δ=0) Selecting 𝑤0 > 1, such that

𝜆max (𝑃) (𝑘𝐹1𝑘𝑁𝑤0 + 𝑘𝐹
2𝑤𝑛+10 ) = 𝑘𝜉 < 𝑤0, (A.16)

then 𝑉̇ < 0, concluding that 𝜉 exponentially converges to
zero. Notice that (A.16) can be always satisfied selecting the
free observer parameter 𝑤0 ≫ 1.

(𝑘Δ ̸= 0) If (A.16) holds, then from (A.15) the ultimate
boundedness of ‖𝜉‖ with ultimate bound is

󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩 ≤ 𝜆max (𝑃) 𝑘Δ𝑤(𝑛+2)0 (𝑤0 − 𝑘𝜉) . (A.17)

Notice that 𝑤0 − 𝑘𝜉 ≫ 1, by selecting 𝑤0 that is sufficiently
large. Hence, ‖𝜉‖ ∼ O(1/𝑤(𝑛+2)0 ). On the other hand, from
(A.10), since ‖𝜁‖ → 0, the error ‖e‖ ∼ O(1/𝑤20). That is, the
conditions of Theorem 2 are satisfied.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research was supported by the Centro de Investigación
en Computación of the Instituto Politécnico Nacional (CIC-
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[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Design
of trajectory stabilizing feedback for driftless at systems,” in
Proceedings of the Third ECC, pp. 1882–1887, Rome, Italy, 1995.
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[28] R. Ortega, M.W. Spong, F. Gómez-Estern, and G. Blankenstein,
“Stabilization of a class of underactuated mechanical systems
via interconnection and damping assignment,” IEEE Transac-
tions on Automatic Control, vol. 47, no. 8, pp. 1218–1233, 2002.

[29] R. Ortega and E. Garcia-Canseco, “Interconnection and damp-
ing assignment passivity-based control: a survey,” European
Journal of Control, vol. 10, no. 5, pp. 432–450, 2004.

[30] Q. Gao, Y. Hou, K. Li, Z. Sun, C. Wang, and R. Hou, “Neural
network based active disturbance rejection control of a novel
electrohydraulic servo system for simultaneously balancing and
positioning by isoactuation configuration,” Shock andVibration,
vol. 2016, Article ID 4921095, 9 pages, 2016.

[31] S. Galvan-Colmenares, M. A. Moreno-Armendáriz,, J. de Jesús
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