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Factors affecting accident frequencies at 72 signalized intersections in the Gyeonggi-Do (province) over a four-year period (2007∼
2010) were explored using the random parameters negative binomial model. The empirical results from the comparison with fixed
parameters binomial model show that the random parameters model outperforms its fixed parameters counterpart and provides
a fuller understanding of the factors which determine accident frequencies at signalized intersections. In addition, elasticity and
marginal effect were estimated to gain more insight into the effects of one-percent and one-unit changes in the dependent variable
from changes in the independent variables.

1. Introduction

Improvement of road safety has become an increasingly
important issue throughout the following road-construction
processes: planning, design, construction, and operation
and maintenance. In many cases, road safety issues are
analyzed by comparing the relationships between accident
frequencies and factors including traffic volume, weather
conditions, characteristics of drivers and vehicles, and geo-
metric conditions. Intersections in particular are important
places where diverse treatments are needed for accident
reduction because of the high instances of vehicle-vehicle
and vehicle-pedestrian conflicts [1–6]. Moreover, Korea is
ranked first among OECD nations in number of traffic
accidents, and more accidents have occurred in and around
intersections than at other road segments in Korea. Studies
have shown that 80.4 percent of places where more than
100 accidents have occurred in the past five years are in or
around intersections [7]. For those reasons, improving safety
at signalized intersections is one of the most important issues
in safety improvement projects.

For this reason, the purpose of this study was to inves-
tigate the relationships between accident occurrences and
intersection conditions that affect intersection safety. The

data used in this analysis were from major intersections
in the Gyeonggi province, where about 25 percent of the
entire Korean population (13 million people) live. Although
there have been numerous studies that have attempted to
understand factors that influence accident frequencies at
intersections in Korea using various statistical modeling
methods (linear regression [8], Poisson model [9, 10], nega-
tive binomial model [11–13], and logistic regression [14]), few
researchers have used a random parameter count models as
another methodological alternative in accident frequencies
analysis [15, 16].

From the perspective of statistical modeling, the Poisson
and negative binomial count models have typically been
used for traffic accident analyses. Negative binomial models
in particular are commonly used because they account for
the overdispersion problem that generally occurs in traffic
accident frequency data [17–23]. Despite using the more
accurate negative binomial model instead of the Poisson
model, the parameters of these traditional countmodels were
assumed to be fixed when they can actually vary across obser-
vations; thus the heterogeneity problem remains unsolved.
By unobserved heterogeneity, the effect of an independent
variable on accident frequencies may vary for different
observations; one intersection with high traffic volume may
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have a higher frequency of accidents compared to a similar
intersection with a lower traffic volume. Moreover, weather
conditions such as heavy snow and rain could contribute
to the frequency of vehicle collisions by limiting visibility
and steering control, which are obviously factors in accident
frequencies but are not revealed in aggregated accident data.
Therefore constraining the parameters to be constant (fixed)
could lead to inconsistent and biased parameter estimations
when parameters actually vary across observations [24].

This study investigated how heterogeneity effects vary
at intersections and found specific heterogeneity effects of
unobserved variables, including some of intersection geo-
metrics, traffic characteristics, driver behavior, and other
unobserved variables which are not implicitly accounted for
in the data. These are useful variables to establish effective
and proactive safety guides and policies to improve safety at
intersections. To achieve these objectives, a fixed parameters
negative binomialmodel with constant parameters and a ran-
dom parameters negative binomial model were developed,
and the modeling results were compared to explore which
approach may be appropriate (this statement means that the
traditional negative binomial model (fixed parameters) is
suitable for some cases and random parameters binomial
model is suitable for others; so all considerable models need
to be taken into account in the accident frequency analysis).

2. Methodology

Since the number of accidents consist of a nonnegative
integer, count data modeling is commonly used in accident
frequency analysis. As mentioned above, Poisson and neg-
ative binomial models are the main methods of count data
analyses, and the basic Poisson model is presented in
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Conversely, a negative binomial distribution (based on a
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where exp(𝜀
𝑖
) is a Gamma-distributed error term with mean

1 and variance 𝛼 and 𝛽 are the same as in the Poisson
model. Although these count models have been successfully
used to correlate accident frequencies and variables related
to accident occurrences, the traditional Poisson and neg-
ative binomial models cannot consider the heterogeneity

of observation 𝑖. Thus, standard errors in the regression
coefficients were underestimated (𝑡-ratios were inflated), and
subsequently the reliability of the entire model was reduced.

To account for problems of unobserved heterogeneity,
Greene [25] developed simulated maximum likelihood esti-
mation procedures to incorporate random parameters that
could vary across observations into Poisson and negative
binomial models. The estimable parameters are expressed by
the following:
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where 𝑔(⋅) refers to the probability density function of 𝜑
𝑖
.

Because the numerical integration of the Poisson andneg-
ative binomial models with random parameter distribution is
computationally cumbersome, a simulation-basedmaximum
likelihood method is used to maximize the simulated log-
likelihood function. To perform this process, a Halton draw
has been imposed. Previous studies [15, 16, 24–27] found
that the Halton draw provides a more efficient distribution
of draws for numerical integration than random draws.

Once the coefficients of the parameters are estimated, the
elasticity process can be conducted to measure the true effect
of the independent variables on accident frequency. Shankar
et al. [20] recommended the use of elasticity, which can be
roughly interpreted as the percentage change in the average
frequency of accidents caused by a one-percent change in the
independent variable and can be defined as
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which means elasticity of accident frequency with respect to
the 𝑘th independent variable for section 𝑖. With the negative
binomial model (3), (6) gives 𝐸𝜆𝑖𝑗𝑥𝑖𝑘 = 𝛽𝑥𝑖𝑘, where 𝛽 is the
coefficient corresponding to covariate 𝛽𝑥

𝑖𝑘
.

The elasticity in (6) is only valid for continuous variables
such as traffic volume, lane width, and length and not for
noncontinuous variables such as dummy variables taking on
zero value or one value.

Marginal effect [24] is another way to interpret the
effect of an independent variable, typically, indicator and
some integer variables, on a dependent variable, which
reflects the effect of a “one-unit” change of an independent
variable on the dependent variable, calculated as the partial
derivative 𝜕𝜆

𝑖
/𝜕𝑥

𝑖𝑘
. Although it sounds similar to elasticity,

the marginal effect measures the effect on the dependent
variable from a one-unit change in the independent variable.
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Reporting one or the other—but not both—is a common
way since both elasticities andmarginal effects determine the
impact of specific variables [24].

3. Model Estimation

3.1. Data. The data set used in this study is composed of
accident records, traffic flow information, and geometric
features for 76 signalized intersections during 4 years (2007–
2010) in Gyeonggi province, Korea. Accident data were
developed based on police reports, and data of traffic volumes
and geometric conditions were developed from field data
collection and design drawings. Each intersection’s geometric
variables and traffic volumes for all movements on major
and minor roads were used in establishing the models
to analyze their relationships with accident frequencies at
signalized intersections. The descriptive statistics for the
primary variables used in the modeling are shown in Table 1.

As shown in Table 1, the mean and maximum annual
crash frequencies are 10.6 and 57, respectively. The mean
number of lanes on major and minor streets are 15.82 and
10.22, and lane widths on major and minor streets are
53.84 and 34.27 meters, respectively. In the estimated model,
traffic volume was used in a logarithmic form, which yielded
statistically better fits.The number of entrances and exits had
a maximum value of six on both major and minor roads.The
length of left-turn exclusive lanes had ameanof 280meters on
major streets and 140 meters on minor streets, and the mean
of a median barrier’s length was 32 meters on major streets
and 12 meters on minor streets, with a maximum length of
280 meters and 140 meters, respectively. The last geometric
value was for a right shoulder width of around 0.6 meters on
both major and minor roads.

3.2. Model Results and Findings. As the first process to
develop the best statistically fitted model, all independent
variables described in Table 1 were taken into consideration
to find statistically significant variables, and insignificant
variables were eliminated step by step. The fixed parameters
negative binomial model without heterogeneity effects was
derived as well to determine which model best explained
the relationship between geometric features, traffic volume,
and traffic accident frequency. As a result, it was found that
the negative binomial model was more appropriate than the
Poisson model since the dispersion parameter is statistically
significant with a 𝑡-value of 20.12. Based on this result, the
negative binomial model was developed and provided as the
final fixed parameters count model.

To develop the random parameters negative binomial
model, simulation-based maximum likelihood with 200 Hal-
ton draws was used to estimate parameters. The number of
200 in Halton draws was selected because it has been found
to produce consistent and accurate parameter estimates [27–
30] and this Halton draws parameter estimation method
was proved as well in previous research [27, 28, 31] as a
method to estimate empirically accurate parameters. With
regard to the random parameters’ density functional forms,
the normal distribution gave the best statistical results among
the normal, uniform, and lognormal distributions.Themodel

development results and the marginal effect and elasticity
of the random parameters and fixed parameters models are
explained in Tables 2 and 3, respectively.

First, the overall log-likelihood at convergence in the ran-
dom parameters model, −937.131, shows a relative improve-
ment from the log-likelihood starting value of −965.224,
which is a baseline in the fixed parameters model. A total
of 14 variables were found to affect intersection safety, 9 of
which had random parameters with a statistically significant
standard deviation, meaning that their effects on accident
occurrences could vary by observations.

Generally, randomparameters are adapted if the standard
deviation of the parameter density is statistically significant.
If the standard deviation value of the parameter is not sta-
tistically significant, a fixed parameter model is adapted, and
the parameter is fixed (constant) across the population. The
following variables were found to have random parameters
where the standard deviation of the parameter’s distribution
was statistically different from 0: the number of major road
lanes, lane width of major roads, logarithm of heavy vehicle
volume turning left on major roads, logarithm of total traffic
volume driving straight on major roads, logarithm of total
traffic volume turning left on major roads, logarithm of total
traffic volume turning right onminor roads, length ofmedian
barrier on major roads, length of median barrier on minor
roads, and the existence of a traffic island on major roads.

The interpretation of the parameters’ effects begins with
an analysis of fixed parameters. The coefficient of a left-turn
exclusive lane length on major roads was shown to have a
negative sign, meaning the number of accidents decreases as
the length of the left-turn exclusive lane increases. In other
words, the length of left-turn exclusive lane, that is, capacity
for left-turning vehicles, is an important factor in accident
reductions because the number of conflicts between vehicles
driving straight and vehicles turning left can be reduced by
increasing the length of the queue. Marginal effect values
show that a one-meter increase in left-turn exclusive lane
length results in average 0.064 (random parameters model)
and 0.09 (fixed parameters model) decrease in the number of
accidents. In the same vein, existence of left-turn exclusive
lane on minor roads resulted in a reduction in average
accident frequency.

It was found that the existence of a pedestrian crossing
on minor roads decreases the frequency of accidents. Con-
versely, a pedestrian crossing on major roads does not have a
statistically significant effect on the frequency of accidents.

The coefficients of existence of median barriers on both
minor and major roads had a negative sign, which is con-
sistent with the expectation that the frequency of crashes is
lower in the presence ofmedian barriers, whichwere installed
to separate traffic flowing in two different directions.

In terms of the random parameters, the variable for
number of lanes onmajor roads has a randomparameter with
a normal distribution having a mean of 0.226 and a standard
deviation of 0.043. This result indicates that the number of
lanes on major roads positively affects accident frequency.
In other words, the number of accidents increases as the
number of lanes increases at most intersections. Since the
number of lanes is correlated with exposure rate on the roads,
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Table 1: Description and statistics of variables.

Variable description Mean Std. dev. Minimum Maximum
Number of accidents per year 10.628 9.999 0 57
Number of major road lanes 15.816 4.164 7 24
Number of minor road lanes 10.224 4.422 2 22
Lane width of major roads (m) 53.838 7.681 26 92
Lane width of minor roads (m) 34.266 6.929 12 76
Logarithm of heavy vehicle volume driving straight on major roads 5.996 0.516 4.567 7.083
Logarithm of heavy vehicle volume driving straight on minor roads 5.033 0.618 4.152 6.514
Logarithm of heavy vehicle volume turning left on major roads 4.443 1.183 0 6.018
Logarithm of heavy vehicle volume turning left on minor roads 4.049 1.705 0 6.03
Logarithm of heavy vehicle volume turning right on major roads 4.767 0.373 4.032 5.6
Logarithm of heavy vehicle volume turning right on minor roads 4.632 0.468 3.511 5.526
Logarithm of total traffic volume driving straight on major roads 8.191 0.539 6.794 8.988
Logarithm of total traffic volume driving straight on minor roads 7.427 0.603 5.954 8.782
Logarithm of total traffic volume turning left on major roads 6.439 1.670 0 7.6
Logarithm of total traffic volume turning left on minor roads 5.724 2.413 0 7.775
Logarithm of total traffic volume turning right on major roads 6.711 0.363 5.632 7.179
Logarithm of total traffic volume turning right on minor roads 6.482 0.479 4.889 7.194
Number of entrances/exits on major roads 0.789 1.219 0 6
Number of entrances/exits on minor roads 1.605 1.781 0 6
Left-turn exclusive lane on major roads (yes 1, otherwise 0) 0.658 0.475 0 1
Length of left-turn exclusive lane on major roads (m) 39.142 40.002 0 280
Left-turn exclusive lane on minor roads (yes 1, otherwise 0) 0.434 0.496 0 1
Length of left-turn exclusive lane on minor roads (m) 25.940 31.199 0 140
Pedestrian crossing on major roads (yes 1, otherwise 0) 0.987 0.114 0 1
Width of pedestrian crossing on major roads (m) 4.274 3.898 0 20
Pedestrian crossing on minor roads (yes 1, otherwise 0) 0.974 0.160 0 1
Width of pedestrian crossing on minor roads (m) 3.062 2.394 0 12.5
Left-turn exclusive signal on major roads (yes 1, otherwise 0) 0.882 0.324 0 1
Left-turn exclusive signal on minor roads (yes 1, otherwise 0) 0.974 0.160 0 1
Existence of median barrier on major roads (yes 1, otherwise 0) 0.579 0.495 0 1
Length of median barrier on major roads (m) 32.995 45.266 0 240
Existence of median barrier on minor roads (yes 1, otherwise 0) 0.171 0.377 0 1
Length of median barrier on minor roads (m) 12.927 33.642 0 200
Existence of traffic island on major roads (yes 1, otherwise 0) 0.105 0.307 0 1
Existence of traffic island on minor roads (yes 1, otherwise 0) 0.066 0.248 0 1
Taxiway line for exclusive left-turn on major roads (yes 1, otherwise 0) 0.684 0.466 0 1
Taxiway line for exclusive left-turn on minor roads (yes 1, otherwise 0) 0.697 0.460 0 1
Right shoulder width on major roads (m) 0.625 0.114 0.5 1.1
Right shoulder width on minor roads (m) 0.619 0.118 0.5 1.05
No missing or omitted values were found in dataset.

the likelihood of vehicle crashes increases with the number
of lanes. The average marginal effect for this variable shows
that additional one more lane on major road will result in
an average 1.414 increase (random parameters model) and
2.215 increase (fixed parameters model) in the number of
accidents.

Lane width on major roads has a normally distributed
random parameter with a mean of −0.065 and a standard

deviation of 0.030. Given these distributional parameters,
98.56% of intersections show a decrease in accident fre-
quencies as lane width increases, and 1.44% of intersections
show an increase in crashes as lane width increases. This
result implies that the likelihood of vehicle crashes usually
goes down because wide lanes provide more comfort space
(forgiveness) than narrow lanes for drivers, especially for
drivers experiencing poor weather conditions.The parameter
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Table 2: Estimation results for random parameters and fixed parameters negative binomial models.

Variable
Random parameter negative

binomial model
Fixed parameters negative

binomial model
Coefficient 𝑡-statistics Coefficient 𝑡-statistics

Constant −8.757 −10.522 −6.430 −3.842
Length of left-turn exclusive lane on major roads (m) −0.010 −10.23 −0.008 −4.012
Left-turn exclusive lane on minor roads (yes 1, otherwise 0) −0.638 −10.27 −0.390 −2.502
Pedestrian crossing on minor roads (yes 1, otherwise 0) −3.204 −7.842 −2.697 −4.38
Existence of median barrier on major roads (yes 1, otherwise 0) −0.953 −10.417 −0.816 −4.325
Existence of median barrier on minor roads (yes 1, otherwise 0) −1.684 −11.588 −1.221 −4.212
Number of major road lanes 0.226 13.876 0.202 7.554

Standard deviation of parameter distribution 0.043 2.836 n.a. n.a.
Lane width of major roads (m) −0.065 −7.225 −0.067 −3.602

Standard deviation of parameter distribution 0.030 7.000 n.a. n.a.
Logarithm of heavy vehicle volume turning left on major roads 0.511 6.28 0.436 2.24

Standard deviation of parameter distribution 1.668 16.836 n.a. n.a.
Logarithm of total traffic volume turning left on major roads 0.323 5.185 0.377 2.778

Standard deviation of parameter distribution 0.100 2.93 n.a. n.a.
Logarithm of total traffic volume turning right on minor roads 0.669 8.094 0.396 2.561

Standard deviation of parameter distribution 0.026 5.069 n.a. n.a.
Logarithm of total traffic volume driving straight on major roads 0.271 4.637 0.260 2.118

Standard deviation of parameter distribution 0.808 14.751 n.a. n.a.
Length of median barrier on major roads (m) 0.020 15.707 0.013 5.201

Standard deviation of parameter distribution 0.002 4.79 n.a. n.a.
Length of median barrier on minor roads (m) 0.018 10.62 0.012 3.405

Standard deviation of parameter distribution 0.003 4.713 n.a. n.a.
Existence of traffic island on major roads (yes 1, otherwise 0) −0.806 −5.566 −0.771 −3.307

Standard deviation of parameter distribution 0.386 4.022 n.a. n.a.
Dispersion parameter (𝑡-statistics) 1.816 (20.120) 0.675 (10.218)
Number of observations 304
Log-likelihood with constant only −1,980.07
Log-likelihood at convergence −937.131 −965.224
n.a: not applicable.

estimates translate into a unit increase in lane width of major
roads decreasing the number of accidents by an average
of 0.409 in random parameters model and 0.729 in fixed
parameters model.

Four variables were found to have random parameters
with respect to traffic volumes. The volume of heavy vehicles
turning left on major roads has a normally distributed
parameter with a mean value of 0.511 and a standard devi-
ation of 1.668 that is negative for 37.98% of intersections
and positive for 62.02% of intersections under the normal
distribution. In terms of elasticity, increasing the number
of heavy vehicles turning left by 1% positively affects 0.51%
(random parameters model) and 0.43% (fixed parameters
model) of average accident occurrences. The other random
parameter variables related to traffic volumes included the
volume of vehicles turning left on major roads and the
volume of vehicles turning right on minor roads, both of
which resulted in increasing accident frequency at most
intersections. Total traffic volumes driving straight on major

roads had a mean of 0.271 and a standard deviation of 0.260,
which means the likelihood of accidents increases by 36.89%
at some intersections and decreases by 63.11% at others. The
elasticity of these variables indicates that a 1% increase of
traffic volume contributes to 0.271% (going straight), 0.32%
(turning left), and 0.66% (turning right) increases in the
random parameters model and 0.26% (going straight), 0.37%
(turning left), and 0.39% (turning right) increases in the
fixed parameters model. The reason for those results can be
related to exposure rate, which is described by the number
of lanes. As the exposure rates such as number of lanes and
traffic volume on the road increase, the likelihood of accident
occurrences increase as well [32, 33].

The length of a median barrier onmajor andminor roads
results in a normally distributed random parameter with a
mean of 0.02 and 0.018 and a standard deviation of 0.002
and 0.003, respectively, implying that accident frequency
increases as the length of themedian barrier increases atmost
intersections. This result is interesting with consideration
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Table 3: Marginal effect/(elasticity) of random parameters and fixed parameters negative binomial models.

Variable Random parameters
negative binomial model

Fixed parameters negative
binomial model

Length of left-turn exclusive lane on major roads (m)
−0.064 −0.090

Left-turn exclusive lane on minor roads (yes 1, otherwise 0)
−3.995 −4.271

Pedestrian crossing on minor roads (yes 1, otherwise 0)
−20.049 −29.542

Existence of median barrier on major roads (yes 1, otherwise 0)
−5.962 −8.939

Existence of median barrier on minor roads (yes 1, otherwise 0)
−10.538 −13.378

Number of major road lanes 1.414 2.215
Lane width of major roads (m)

−0.409 −0.729
Logarithm of heavy vehicle volume turning left on major roads (0.511) (0.436)
Logarithm of total traffic volume turning left on major roads (0.323) (0.377)
Logarithm of total traffic volume turning right on minor roads (0.669) (0.396)
Logarithm of total traffic volume driving straight on major roads (0.271) (0.260)
Length of median barrier on major roads (m) (0.657) (0.156)
Length of median barrier on minor roads (m) (0.236) (0.156)
Existence of traffic island on major roads (yes 1, otherwise 0)

−5.041 −8.449

of the previous existence of median barrier result showing
negative sign. Although a median barrier generally improves
traffic safety by separating opposing traffic flow [34, 35],
there were conflicting results in terms of the positive and
negative effect on crash occurrences [36, 37]. Considering the
existence of median barrier result, it suggests that the median
barrier has an impact on accident frequency reduction
because as the length increases, it could also be obstacle to
drivers, especially if they are installed on narrow median
lanes. This might lead to a great likelihood that the median
will be struck due to its nearness to moving vehicles [37].
Although the median barrier clearly has a positive effect in
reducing accident severity, some contradictory results could
be derived with respect to accident frequency [36, 37].

The last variable with a randomparameter is the existence
of a traffic island onmajor roads.The derivedmean of −0.806
and standard deviation of 0.386 show that, under the normal
distribution, 98.16% of intersections experience a reduced
number of accidents while 1.84% of intersections experience
an increased frequency of accidents.This reaffirms the pedes-
trian island’s important role in accident reductions between
vehicles and pedestrians. However traffic islands on minor
roads were not found to be a statistically significant variable.

4. Conclusions and Recommendations

The relationship between accident frequencies and various
driving condition variables, including geometric conditions,
traffic volume, and other variables at 76 signalized inter-
sections from 2007 to 2010, was investigated using fixed
parameters and random parameters models. Most agencies,
such as institutes and corporations in Korea, use the fixed
parameters model to predict the number of accidents and
determine which road segments should be prioritized for
improving safety. The fixed parameters negative binomial
method, however, has a significant limitation in the degree
of uncertainty and randomness through accident predictions.

The random parameters model suggested in this paper is
an important methodological approach since it takes into
account and corrects for heterogeneity that could arise from
factors such as vehicles, road environment, weather, and
other unobserved factors not captured in the collecting data
process. In this way, its fit was found to be better than that
of the existing fixed parameters model by deriving some
parameters as randomwhile leaving others as plausibly fixed.
This process could be confirmed by testing variables’ impact
on accident frequencies [22]. Some geometric features can
increase the likelihood of accidents in some locations while
decreasing it in others.

Nine independent variables were found to have statisti-
cally significant random parameters that affect intersection
safety differently at different places.These were the number of
major road lanes, the lanewidth ofmajor roads, the logarithm
of heavy vehicle volume turning left on major roads, the
logarithm of total traffic volume driving straight on major
roads, the logarithm of total traffic volume turning left on
major roads, the logarithm of total traffic volume turning
right on minor roads, the length of median barrier on major
roads, the length of median barrier on minor roads, and the
existence of a traffic island on major roads.

The proposed model provides insights into safety effects
of the geometry at intersections to benefit new construction
or control of intersections. For example, it was illustrated that
left-turn exclusive lanes are an important factor for accident
reductions by providing enough length for the left-turn
waiting queue. Based on the result, it can be concluded that
the left-turn exclusive lane would better need to be installed
where enough space for adding left-turn exclusive lane is
allowed. In addition, the decision for the proper length of
the left-turn exclusive lane based on traffic conditions related
to intersection capacity would be another academic issue
to improve the safety and the efficiency at the intersection.
In terms of median barriers, data in this study could not
consider the width of the median lane for barrier installation,
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which numerous previous studies have included. By includ-
ing the width data in future studies, guideline for median
barrier construction could be established and help to improve
intersection safety.

Although the random parameters model was shown to
yield better likelihood than the fixed parameters model in
this investigation, the randomparametersmodel is not always
the best fit for all data. For exploring the best model, it is
recommended that all considerable models should be used
in accident frequency analysis. In addition, using the higher
number ofHalton draws is recommended to better ensure the
quality of the estimates.
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