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It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order
smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of
nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only
has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two
numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

1. Introduction

With the advancement of science and technology, the nonlin-
ear problems have appeared in many fields.The conventional
linear approach cannot meet the requirements of solving
nonlinear problems. Therefore, the nonlinear dynamic has
been born, which aims at discovering complexity sciences
and provides an innovative way to recognize the real and
complicated systems. Bifurcation and chaos are the two
typical complex dynamic behaviors of nonlinear dynamic
systems. In a sense, nonlinear dynamic system is the key
topic of nonlinear problems, which can study the chaotic
or disordered issue and excavate the complex law of them
[1, 2]. For a nonlinear dynamic system, a suitable nonlinear
mathematical model should be established to reflect the
inherent law of the data and then obtain the characteristics of
the system. However, the nonlinear dynamic is diverse, and it
changes depending on the previous state in a more complex
way. Consequently, there has encountered insurmountable
obstruction for applying in the practical engineering. With
the existence of complicated chaotic state, it is very difficult to
obtain analytic solution in general case. Naturally, people give
up solving the exact solution and concentrate on studying the
method with characteristics of high approximation precision
and easy operation in order to describe the unknown system
state.

After years of accumulation and development, there
are too many methods to solve the numerical solution of
nonlinear dynamic systems; the mainmethods are as follows:
perturbationmethod [3], averagingmethod [4], Runge-Kutta
method [5], Euler method [6], gradient method [7] and
so on. Regretfully, these methods have certain advantages
in solving certain system but obtain unappealing outcomes
when solving problems of general nonlinear dynamic sys-
tems, like the lower precision, the complicity and large
calculation quantity, Runge phenomenon, and so forth. So
now comes the question, can we find the effective method
with high approximation precision as well as avoiding the
Runge phenomenon to study the nonlinear dynamic systems?
It is well known that the cubic spline function has advantages
of good convergence, approximation, stability, and second-
order smoothness. And not only that, the cubic spline func-
tion does not exist Runge phenomenon due to the restrictions
of interpolation conditions.

Given this, the purpose of this paper is to construct a
new method to solve the problem mentioned above which
replaces the integrand used in the existing way by the
constructed cubic spline function. The paper is organized
as follows. In Section 2, we recall the basic concepts from
approximation theory, such as modulus of continuity. In
addition, some basic knowledge of dynamic system and
definition of cubic spline function are introduced. In the
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following, the corresponding boundary conditions of general
cubic spline function are given and a particular class of
cubic spline function is constructed. In Section 4, we prove
our conclusions. Two numerical results are provided in
Section 5 by using the previously obtained theoretical results,
and the result indicates that the numerical approach based
on the cubic spline function has faster convergence and
higher approximation precision than existing methods. In
addition, the cubic spline function can approximate the
analytic solution of nonlinear dynamic system very well. In
Section 6, we briefly summarize our conclusions and foresee
problems for the further study.

2. Preliminaries

There is a fixed rule in the dynamic system to describe how
the point changes over time in the space, and a continuous
dynamic system is often represented as a set of differential
equations [8]:

𝑥̇ = 𝑓 (𝑥) , (1)

where 𝑥 : 𝑡 → 𝑥 ∈ 𝑅𝑁, a time variable function,
is used to describe the state of system 𝑓; at least, it is a
continuously differentiable function defined on Euclid space𝑅𝑁 or a subspace 𝑈 ∈ 𝑅𝑁.

The linear combination of linearly independent solutions{𝑥1(𝑡), . . . , 𝑥𝑁(𝑡)} can be used to express the general solution
of the linear dynamic system. But it is unable to work out
general solution of the nonlinear dynamic system. And for
all we know, the initial value problem of nonlinear dynamic
system is as follows [9]:

𝑥̇ = 𝑓 (𝑥, 𝑡) ,
𝑥 (𝑡0) = 𝑥0,

𝑥 ∈ 𝑅𝑁.
(2)

There is at least one solution from 𝑡 = 0 on the
interval of 𝑡 ∈ (−𝑐, 𝑐). However, it is impossible to give
a general calculation rule like the linear dynamic system.
Consequently, the numerical method is commonly used for
studying the solution of nonlinear dynamic system.

This so-called numerical method is actually a dis-
persed method. We can obtain the approximate solutions𝑥1, 𝑥2, . . . , 𝑥𝑛 of unknown function values 𝑥(𝑡1), 𝑥(𝑡2), . . . ,𝑥(𝑡𝑛) on a series of discrete points 𝑡1, 𝑡2, . . . , 𝑡𝑛. The discrete
points of independent variable can be fixed before and also
can select different step length along with the different nodes.𝑡𝑗, 𝑗 ∈ 0, 1, 2, . . . , 𝑛, are generally equidistant nodes, namely,𝑡1 = 𝑡0 + ℎ, 𝑡2 = 𝑡0 + 2ℎ, . . . , 𝑡𝑛 = 𝑡0 + 𝑛ℎ, where step lengthℎ > 0, 𝑥1, 𝑥2, . . . , 𝑥𝑛, are commonly referred to as numerical
solution of initial value problem.

Considering the nonlinear dynamic system with initial
value as form (2), we obtain

𝑥 (𝑡𝑗+1) − 𝑥 (𝑡𝑗) = ∫𝑡𝑗+1
𝑡𝑗

𝑓 (𝑥 (𝑡) , 𝑡) d𝑡. (3)

Definition 1. For every 𝑟 ∈ 𝑁+, 𝛿 > 0, any function𝑓 ∈ [𝑎, 𝑏],
the definition of 𝑟th order modulus of smoothness of 𝑓 is as
follows [10]:

𝑤𝑟 (𝑓, 𝛿) fl sup
𝑎≤𝑥,𝑥+𝑟𝑡≤𝑏,|𝑡|≤𝛿

󵄨󵄨󵄨󵄨Δ𝑟𝑡𝑓 (𝑥)󵄨󵄨󵄨󵄨 , (4)

where Δ𝑟𝑡𝑓(𝑥) fl Δ1𝑡Δ𝑟−1𝑡 𝑓(𝑥) and Δ1𝑡𝑓(𝑥) fl 𝑓(𝑥 + 𝑡) − 𝑓(𝑥).
When 𝑟 = 1, we have 𝑤1(𝑓, 𝛿) = 𝑤(𝑓, 𝛿). That is, the first-
order modulus of smoothness of 𝑓 is the same as modulus of
continuity of 𝑓.

The smooth interpolating curves of spline function are
unlikely to reveal the large oscillations feature of high-
dimension polynomials. It has been widely used in car-
tography, pyramidal, and numerical solution methods. For
example, spline function may be used for solutions of initial
value problems in ordinary differential equations [11, 12].

Let Δ fl {𝑎 = 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑏} be a partition of the
interval [𝑎, 𝑏].
Definition 2. A cubic interpolation function 𝑆 defined onΔ is
a real function 𝑆 : [𝑎, 𝑏] → 𝑅 with the characteristics [13]:

(a) 𝑆 ∈ 𝐶2[𝑎, 𝑏]; namely, 𝑆 is twice continuously differen-
tiable on [𝑎, 𝑏].

(b) 𝑆 coincideswith a polynomial of degree three on every
subinterval [𝑡𝑗, 𝑡𝑗+1], 𝑗 = 1, 2, . . . , 𝑛.

3. Construct the Cubic Spline Function

Cubic spline interpolation function has advantages of good
stability, convergence, and high approximation accuracy,
which has second-order smoothness at the interpolation
nodes and avoids the Runge phenomenon on account of
the limitation of the interpolation condition. So we hope
to replace the integrand 𝑓 in (3) by the constructed cubic
spline function 𝑆(𝑡).Meanwhile 𝑆(𝑡) satisfies the interpolation
conditions, 𝑦𝑗 = 𝑓(𝑥𝑗, 𝑡𝑗) (𝑗 = 1, 2, . . . , 𝑛), 𝑆(𝑡𝑗) = 𝑦𝑗,𝑗 = 1, 2, . . . , 𝑛, and {𝑡𝑗} are isometric interpolation nodes.The
corresponding boundary conditions are as follows [14]:

(1) The first boundary condition is as follows: 𝑆󸀠(𝑡1) = 𝑓󸀠1 ,𝑆󸀠(𝑡𝑛) = 𝑓󸀠𝑛.
(2) The second boundary condition is as follows: 𝑆󸀠󸀠(𝑡1) =𝑓󸀠󸀠1 , 𝑆󸀠󸀠(𝑡𝑛) = 𝑓󸀠󸀠𝑛 , or more special condition 𝑆󸀠󸀠(𝑡1) =𝑆󸀠󸀠(𝑡𝑛) = 0.
The spline function 𝑆(𝑡) is expressed by second derivative

value of cubic spline function 𝑆󸀠󸀠(𝑡𝑗) = 𝑚𝑗, 𝑗 = 1, 2, . . . , 𝑛.
The polynomial 𝑆󸀠󸀠(𝑡) is less than three order on the interval[𝑡𝑗, 𝑡𝑗+1] and it is a linear polynomial in particular; more
specifically,

𝑆󸀠󸀠 (𝑡) = 𝑚𝑗 𝑡𝑗+1 − 𝑡ℎ𝑗 + 𝑚𝑗+1 𝑡 − 𝑡𝑗ℎ𝑗 ,
𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1, ℎ𝑗 = 𝑡𝑗+1 − 𝑡𝑗.

(5)
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The integration constant is acquired by integrating the
above equation twice and utilizing interpolation condition.
And then the cubic spline function is constructed as follows:

𝑆 (𝑡) = 𝑚𝑗 (𝑡𝑗+1 − 𝑡)
3

6ℎ𝑗 + 𝑚𝑗+1 (𝑡 − 𝑡𝑗)
3

6ℎ𝑗
+ (𝑦𝑗 − 𝑚𝑗ℎ2𝑗6 ) 𝑡𝑗+1 − 𝑡ℎ𝑗
+ (𝑦𝑗+1 − 𝑚𝑗+1ℎ2𝑗6 ) 𝑡 − 𝑡𝑗ℎ𝑗 ,

(6)

where 𝑚𝑗 (𝑗 = 1, 2, . . . , 𝑛) are unknown. Thankfully, 𝑚𝑗
are obtained by adopting the first and second boundary
condition. As the expression of 𝑆(𝑡) is different on the interval[𝑡𝑗−1, 𝑡𝑗] and [𝑡𝑗, 𝑡𝑗+1], we also ensure its smoothness at nodes𝑡𝑗, namely, the smooth condition on the interpolation nodes:𝑆󸀠𝑗(𝑡𝑗−0) = 𝑆󸀠𝑗(𝑡𝑗+0).The tridiagonal equations about𝑚𝑗 can
be obtained from the above conditions. The equations have a
unique solution due to the fact that coefficient matrix of the
equations is diagonally dominant matrix. We can obtain 𝑚𝑗
based on pursing method [15] and then put 𝑚𝑗 into (6); the
cubic spline interpolation function 𝑆(𝑡) is acquired at last.

4. Theoretical Results

Theorem 3. If the integrand in (3) is replaced by the con-
structed cubic spline function (6), then the relationship of states
at adjacent moment can be approximately represented as

𝑥𝑗+1 ≈ 𝑥𝑗 + ℎ2𝑗12 (𝑚𝑗 + 𝑚𝑗+1)(
ℎ𝑗2 − 1) + 𝑓𝑗. (7)

Proof. Now, the integrand in (3) is approximated by 𝑆(𝑡), 𝑡𝑗
are interpolation nodes, and ℎ𝑗 = 𝑡𝑗+1 − 𝑡𝑗; then

𝑥 (𝑡𝑗+1) − 𝑥 (𝑡𝑗) = ∫𝑡𝑗+1
𝑡𝑗

𝑓 (𝑥 (𝑡) , 𝑡) d𝑡 ≈ ∫𝑡𝑗+1
𝑡𝑗

𝑆 (𝑡) d𝑡

= ∫𝑡𝑗+1
𝑡𝑗

[
[
𝑚𝑗 (𝑡𝑗+1 − 𝑡)

3

6ℎ𝑗 + 𝑚𝑗+1 (𝑡 − 𝑡𝑗)
3

6ℎ𝑗
+ (𝑦𝑗 − 𝑚𝑗ℎ2𝑗6 ) 𝑡𝑗+1 − 𝑡ℎ𝑗
+ (𝑦𝑗+1 − 𝑚𝑗+1ℎ2𝑗6 ) 𝑡 − 𝑡𝑗ℎ𝑗 ]

]
d𝑡 = ∫𝑡𝑗+1

𝑡𝑗

𝑚𝑗

⋅ (𝑡𝑗+1 − 𝑡)
3

6ℎ𝑗 d𝑡 + ∫𝑡𝑗+1
𝑡𝑗

𝑚𝑗+1 (𝑡 − 𝑡𝑗)
3

6ℎ𝑗 d𝑡 + ∫𝑡𝑗+1
𝑡𝑗

(𝑦𝑗

− 𝑚𝑖ℎ2𝑗6 ) 𝑡𝑗+1 − 𝑡ℎ𝑗 d𝑡 + ∫𝑡𝑗+1
𝑡𝑗

(𝑦𝑗+1 − 𝑚𝑗+1ℎ2𝑗6 )

⋅ 𝑡 − 𝑡𝑗ℎ𝑗 d𝑡 = ℎ3𝑗24 (𝑚𝑗 + 𝑚𝑗+1) + 𝑦𝑗 −
ℎ2𝑗12 (𝑚𝑗

+ 𝑚𝑗+1) = ℎ2𝑗12 (𝑚𝑗 + 𝑚𝑗+1)(
ℎ𝑗2 − 1) + 𝑦𝑗.

(8)

According to interpolation condition 𝑦𝑗 = 𝑓(𝑥(𝑡𝑗), 𝑡𝑗),
then

𝑥 (𝑡𝑗+1) − 𝑥 (𝑡𝑗) ≈ ℎ2𝑗12 (𝑚𝑗 + 𝑚𝑗+1)(
ℎ𝑗2 − 1)

+ 𝑓 (𝑥 (𝑡𝑗) , 𝑡𝑗) .
(9)

In the approximate equality equation (9), 𝑥(𝑡𝑗) is replaced
by 𝑥𝑗, 𝑓 is represented by 𝑓𝑗, and then

𝑥𝑗+1 ≈ 𝑥𝑗 + ℎ2𝑗12 (𝑚𝑗 + 𝑚𝑗+1)(
ℎ𝑗2 − 1) + 𝑓𝑗. (10)

Theorem 4. If 𝑆 is a kind of cubic spline function as form (6),
then the nonlinear dynamic system 𝑓 can be approximated by𝑆 with the error:

𝑅 (𝑡) = 𝑆 (𝑡) − 𝑓 (𝑡) ≤ 16ℎ4𝑤(𝑓(4), ℎ) − ℎ424𝑓(4) (𝑡) , (11)

where 0 ≤ 𝑢 ≤ 1, 𝑡 ∈ [𝑡𝑗, 𝑡𝑗+1], 𝑗 = 1, 2, . . . , 𝑛, and step lengthℎ > 0.
Proof. According to (6) andPeano theorem [16], we can know
that if 𝑓 ∈ 𝐶4[0, 1], 𝑡 ∈ [𝑡𝑗, 𝑡𝑗+1], then 𝑓(𝑥, 𝑡) is given by

𝑓 (𝑥, 𝑡) = (𝑓󸀠󸀠𝑗 − ℎ212𝑓(4)𝑗 ) (𝑡𝑗+1 − 𝑡)36ℎ + (𝑓󸀠󸀠𝑗+1 − ℎ212
⋅ 𝑓(4)𝑗+1) (𝑡 − 𝑡𝑗)36ℎ + [𝑓𝑗 − ℎ26 (𝑓󸀠󸀠𝑗 − ℎ212𝑓(4)𝑗+1)]

⋅ (𝑡𝑗+1 − 𝑡)ℎ + [𝑓𝑗+1 − ℎ26 (𝑓󸀠󸀠𝑗+1 − ℎ212𝑓(4)𝑗+1)

⋅ (𝑡 − 𝑡𝑗)ℎ
− ∫1
0
[(𝑡𝑗+1 − V)3 − ℎ2 (𝑡𝑗+1 − V)] ⋅ 𝑓(4) (V) dV

⋅ (𝑡 − 𝑡𝑗)6ℎ ] + 16 ∫
1

0
(𝑡 − V)3 𝑓(4) (V) dV

+ ℎ72 [(𝑡 − 𝑡𝑗)3 − (𝑡 − 𝑡𝑗) ℎ2] (𝑓(4)𝑗+1 − 𝑓(4)𝑗 ) + ℎ224 (𝑡
− 𝑡𝑗)2 𝑓(4)𝑗 − ℎ324 (𝑡 − 𝑡𝑗)2 𝑓(4)𝑗 − ∫1

0
(𝑡𝑗+1 − V)
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⋅ 𝑓(4) (V) dV(𝑡 − 𝑡𝑗)
3

6ℎ ,
𝑅 (𝑡) = 𝑆 (𝑡) − 𝑓 (𝑡) = ℎ26 𝑚̃𝑗 [(1 − 𝑢)3 − (1 − 𝑢)] + ℎ26

⋅ 𝑚̃𝑗+1 (𝑢3 − 𝑢) + ℎ46 ∫1
0
(𝑢 − V)3 𝑓(4) (𝑡𝑗 + ℎV) dV

+ ℎ4𝑢36 ∫1
0
(1 − V) 𝑓(4) (𝑡𝑗 − ℎV) dV + ℎ46 𝑢

⋅ ∫1
0
[(1 − V)3 − (1 − V) 𝑓(4) (𝑡𝑗 + ℎV)] dV

− ℎ472 (𝑢3 − 𝑢) (𝑓(4)𝑗+1 − 𝑓(4)𝑗 ) + ℎ424 (𝑢 − 𝑢2) 𝑓(4)𝑗
= ℎ26 𝑚̃𝑗 [(1 − 𝑢)3 − (1 − 𝑢)] + ℎ26 𝑚̃𝑗+1 (𝑢3 − 𝑢)
+ ℎ46 ∫1

0
[(𝑢 − V)3 − 𝑢3 (1 − V)]

⋅ [𝑓(4) (𝑡𝑗 + ℎ𝑢) − 𝑓(4) (𝑡𝑗 + ℎV)] dV + ℎ46
⋅ 𝑢∫1
0
(V3 − V) [𝑓(4) (𝑡𝑗 − ℎV) − 𝑓(4) (𝑡𝑗)] dV

+ ℎ424𝑢2 [𝑓(4) (𝑡𝑗+1) − 𝑓(4) (𝑡𝑗)] − ℎ472 (𝑢3 − 𝑢)
⋅ [𝑓(4)𝑗+1 (𝑡𝑗+1) − 𝑓(4)𝑗 (𝑡𝑗)] − ℎ424𝑓(4) (𝑡) (𝑢4 − 2𝑢3

+ 𝑢2) = −ℎ424𝑓(4) (𝑡) (𝑢4 − 2𝑢3 + 𝑢2) + ℎ424
⋅ 𝑤 (𝑓(4), ℎ) 𝜃𝑗 (𝑡) [−𝑢4 − 53𝑢3 − 53𝑢2 + 4𝑢] .

(12)

Due to the fact that integral form is very complicated and𝜃𝑗(𝑡) does not have specific expression, |𝜃𝑗(𝑥) ≤ 1| can be
estimated.When 0 ≤ 𝑢 ≤ 1, 0 ≤ −𝑢4−5/3𝑢3−5/3𝑢2+4𝑢 ≤ 4,
and 0 ≤ 𝑢4 − 2𝑢3 + 𝑢2 ≤ 1, hence it may be

𝑅 (𝑡) = 𝑆 (𝑡) − 𝑓 (𝑡)
= −ℎ424𝑓(4) (𝑡) (𝑢4 − 2𝑢3 + 𝑢2)
+ ℎ46 𝑤 (𝑓(4), ℎ) 𝜙𝑗,0 (𝑡) ,

(13)

where 𝜙𝑗,0(𝑡) = 1/4𝜃𝑗(𝑡)[−𝑢4−5/3𝑢3−5/3𝑢2+4𝑢] and |𝜙𝑗,0| ≤1.
And finally, 𝑅(𝑡) ≤ 1/6ℎ4𝑤(𝑓(4), ℎ) − 1/24ℎ4𝑓(4)(𝑡).
Next, the second-order smoothness property of spline

function [17] is given below.

Theorem 5. The cubic spline function 𝑆(𝑡) defined on interval[𝑎, 𝑏]meets interpolation condition 𝑆(𝑥𝑗) = 𝑦𝑗, 𝑗 = 1, 2, . . . , 𝑛.
Then the function𝑓(𝑥) ∈ 𝐶𝑛[𝑎, 𝑏] satisfies the above condition:𝑓(𝑥𝑗) = 𝑦𝑗, 𝑗 = 1, 2, . . . , 𝑛.

We have that

∫𝑏
𝑎
[𝑆(𝑛) (𝑥)]2 d𝑥 ≤ ∫𝑏

𝑎
[𝑓(𝑛) (𝑥)]2 d𝑥. (14)

Meanwhile, ∫𝑏
𝑎
[𝑆(𝑛)(𝑥)]2d𝑥 = ∫𝑏

𝑎
[𝑓(𝑛)(𝑥)]2d𝑥 if and only if𝑓(𝑥) ≡ 𝑆(𝑥).

Proof. We proveTheorem 5 by proving

∫𝑥𝑛
𝑥1

[𝑆(𝑛) (𝑥)]2 d𝑥 ≤ ∫𝑥𝑛
𝑥1

[𝑓(𝑛) (𝑥)]2 d𝑥. (15)

Obviously,

∫𝑥𝑛
𝑥1

[𝑓(𝑛) (𝑥)]2 d𝑥
= ∫𝑥𝑛
𝑥1

[𝑆(𝑛) (𝑥)]2 d𝑥 + ∫𝑥𝑛
𝑥1

[𝑓(𝑛) (𝑥) − 𝑆(𝑛) (𝑥)]2 d𝑥
+ 2∫𝑥𝑛
𝑥1

𝑆(𝑛) (𝑥) [𝑓(𝑛) (𝑥) − 𝑆(𝑛) (𝑥)]2 d𝑥.
(16)

We use integral subsection integration such that

2∫𝑥𝑛
𝑥1

𝑆(𝑛) (𝑥) [𝑓(𝑛) (𝑥) − 𝑆(𝑛) (𝑥)]2 d𝑥
= 2 (−1)𝑛−1 𝑛−1∑

𝑗=1

∫𝑥𝑗+1
𝑥𝑗

𝑆(2𝑛−1) (𝑥) [𝑓󸀠 (𝑥) − 𝑆󸀠 (𝑥)] d𝑥,
(17)

where 𝑆(2𝑛−1)(𝑥) are constants on every interval (𝑥𝑗, 𝑥𝑗+1) and𝑓(𝑥) − 𝑆(𝑥) = 0 at interval endpoints 𝑥𝑗, 𝑥𝑗+1.
Consequently,

∫𝑥𝑛
𝑥1

[𝑓(𝑛) (𝑥)]2 d𝑥 = ∫𝑥𝑛
𝑥1

[𝑆(𝑛) (𝑥)]2 d𝑥
+ ∫𝑥𝑛
𝑥1

[𝑓(𝑛) (𝑥) − 𝑆(𝑛) (𝑥)]2 d𝑥.
(18)

Namely, ∫𝑥𝑛
𝑥1
[𝑆(𝑛)(𝑥)]2d𝑥 ≤ ∫𝑥𝑛

𝑥1
[𝑓(𝑛)(𝑥)]2d𝑥.

Let 𝑛 = 2 in Theorem 5; we can obtain

∫𝑏
𝑎
[𝑆󸀠󸀠 (𝑥)]2 d𝑥 ≤ ∫𝑏

𝑎
[𝑓󸀠󸀠 (𝑥)]2 d𝑥. (19)

The next section will cover two numerical examples, and
the result reflects the advantages of cubic spline function in
solving the nonlinear dynamic system.
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Figure 1: The curve of cubic spline interpolation function.

Table 1: Mean square errors of several numeric methods for first-
order nonlinear dynamic system.

Numeric method Mean square error
Fourth-order Runge-Kutta method 1.2415 × 10−4
Trapezoid method 9.1020 × 10−3
Euler method 1.6205 × 10−2
Cubic spline function 8.0240 × 10−5

5. Numerical Results

Example 1. Given a nonlinear dynamic system with an initial
value (20), then we solve the numeric solution by using a
variety of methods and compare them.

𝑥󸀠 = 𝑥 − 𝑒𝑡 cos 𝑡,
𝑥 (0) = 1,

0 ≤ 𝑡 ≤ 3.
(20)

The numeric curve of cubic spline interpolation function
is shown in Figure 1, and the approximate solution and exact
solution of nonlinear dynamic system based on cubic spline
interpolation function are given in Figure 2.

In the next moment, we solve numeric solution by adopt-
ing fourth-order Runge-Kutta method, trapezoidal algo-
rithm, and Euler method and then comparing with cubic
spline interpolation function.The mean square error and the
curve of numeric method are given at last; specifically see
Table 1 and Figure 3.

The curves of different approximation level by several
numeric methods are shown in Figure 3.

Furthermore, in order to observe approximation accu-
racy of nonlinear dynamic system by different numeric
methods intuitively, Figure 3(a) has been magnified in dif-
ferent proportions, and then we can obtain Figures 3(b),
3(c), 3(d), 3(e), and 3(f). We can find out Euler method

Precise curve
The cubic spline function
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Figure 2: The approximate solution and precise curve.

Table 2: Mean square errors of several numeric methods for the
second-order nonlinear dynamic system.

Numeric method Mean square error
Fourth-order Runge-Kutta method 0.1662
Euler method 0.5479
Adams algorithm 0.3792
Cubic spline interpolation function 0.0179

has low approximate accuracy and is great in error. The
precision of the fourth-order Runge-Kutta method is also
high and the calculation speed is better than trapezoidal
algorithm. Although we can intuitively observe that fourth-
order Runge-Kutta method has good precision compared to
other methods, which is inferior to the proposed method in
this paper from Figure 3.

Example 2. A second-order nonlinear dynamic system

𝑥󸀠󸀠 + 𝑥 = 2𝑒−𝑥 (𝑥 − 1) ,
𝑥 (0) = 1,
𝑥󸀠 (0) = 1,

0 ≤ 𝑥 ≤ 10,
(21)

is considered, and we solve the numeric solution of the
system. Next, several different numeric methods will be used
to solve this system; mean square errors and the curves
of numeric approximation will be given at last, specifically
shown in Table 2 and Figure 4.

It can be seen from Figure 4 that the approximation ratio
of second-order nonlinear dynamic system based on cubic
spline interpolation function is better than other numeric
methods, which avoids theRunge phenomenonon account of
the limitation of the interpolation condition. It can approach
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Figure 3:The different approximation level of several numeric methods. Note: (b), (c), (d), (e), and (f) are obtained from (a), which has been
magnified in different proportions.
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Figure 4: The numeric approximation curves by different methods. Note: (b), (c), and (d) are obtained from (a), which has been magnified
to some extent.

the analytic solution of second-order nonlinear dynamic
system with a high degree and is simple in calculation.

6. Conclusions and Prospects

We have discussed the numerical method based on cubic
spline interpolation function to solve the numeric solution
of nonlinear dynamic system in this paper.The basic theories
and knowledge are introduced primarily. In the nextmoment,
the cubic spline function is constructed according to the
boundary conditions and some theory results are also given.
Finally, we also demonstrate two numerical examples to
reveal the effectiveness of the method proposed in this paper.

The results indicate that the proposed method based on
cubic spline interpolation function is obviously advantageous
compared with other methods, which has quick calculation
speed and avoids the Runge phenomenon.

We finish this paper with the following prospects:

(a) We only give the upper approximation of the con-
structed cubic spline function in this paper.Therefore,
we hope to study the lower approximation in the
further study.

(b) The main theories only applied to first- and second-
order systems, but there are many of the more com-
plex systems in actual engineering. Consequently, it is
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interesting and significant to extend themain theories
in this paper to higher order nonlinear dynamic
system.
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[4] J. Giné, J. Llibre, K. Wu, and X. Zhang, “Averaging methods of
arbitrary order periodic solutions and integrability,” Journal of
Differential Equations, vol. 260, no. 5, pp. 4130–4156, 2016.

[5] H. de la Cruz, R. J. Biscay, J. C. Jimenez, and F. Carbonell,
“Local linearization—Runge–Kutta methods: a class of A-stable
explicit integrators for dynamical systems,” Mathematical and
Computer Modelling, vol. 57, no. 3-4, pp. 720–740, 2013.

[6] C. M. Duque and M. P. Almeida, “The Euler-Galerkin finite
element method for a non-local coupled system of reaction
diffusion type,”AppliedMathematics andComputation, vol. 296,
pp. 116–126, 2016.

[7] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method
with a strong global convergence property,” SIAM Journal on
Optimization, vol. 10, no. 1, pp. 177–182, 1999.

[8] D. A.Mâceş andM. A. Stadtherr, “Computing fuzzy trajectories
for nonlinear dynamic systems,” Computers and Chemical
Engineering, vol. 52, pp. 10–25, 2013.

[9] J. Guckenheimer andP.Holmes,NonlinearOscillations,Dynam-
ical Systems and Bifurcations of Vector Fields, Springer, New
York, NY, USA, 2013.

[10] O. Blasco, “Modulus of continuity with respect to semigroups
of analytic functions and applications,” Journal of Mathematical
Analysis and Applications, vol. 435, no. 1, pp. 616–626, 2016.

[11] F. R. Loscalzo and T. D. Talbot, “Spline function approximations
for solutions of ordinary differential equations,” SIAM Journal
on Numerical Analysis, vol. 4, no. 3, pp. 433–445, 1967.

[12] A. Bellour, D. Sbibih, and A. Zidna, “Two cubic spline methods
for solving Fredholm integral equations,” Applied Mathematics
and Computation, vol. 276, no. 5, pp. 1–11, 2016.

[13] B. Sepehrian and M. K. Radpoor, “Numerical solution of non-
linear Fokker-Planck equation using finite differences method
and the cubic spline functions,” Applied Mathematics and
Computation, vol. 262, pp. 187–190, 2015.

[14] V. Baramidze, “Smooth bivariate shape-preserving cubic spline
approximation,” Computer Aided Geometric Design, vol. 44, pp.
36–55, 2016.

[15] D. Wang, G. G. Wang, and G. F. Naterer, “Collaboration
pursuing method for multidisciplinary design optimization
problems,” AIAA Journal, vol. 45, no. 5, pp. 1091–1103, 2007.
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