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An inventory model for Weibull-distributed deteriorating items is considered so as to minimize the total cost per unit time in
this paper. The model starts with shortage, allowed partial backlogging, and trapezoidal demand rate. By analyzing the model, an
efficient solution procedure is proposed to determine the optimal replenishment and the optimal order quantity and the average
total costs are also obtained. Finally, numerical examples are provided to illustrate the theoretical results and a sensitivity analysis
of the major parameters with respect to the stability of optimal solution is also carried out.

1. Introduction

Deteriorating is a general phenomenon for many products,
in that fruits or vegetables are spoiled directly while alco-
hol undergoes physical depletion over time, and electronic
products deteriorate through a gradual loss of potential
utility as time passed. Based on the above situation, the
effect of deteriorating for items can not be disregarded in
many inventory systems. An inventorymodel with a constant
decaying rate for items is proposed by Ghare and Schrader
in 1963 [1], while Covert and Philip [2] extended Ghare and
Schrader’s model to an EOQ model with a two-parameter
Weibull-distributed deteriorating rate. Since then, there are
many researchers who focused on such topic; Wee et al. [3]
considered an inventory model for deteriorating items with
quantity discount, pricing, and partial backlogging, andmore
related articles can be referred to like Yang et al. [4], Shah et
al. [5], Yang et al. [6], and so forth.

However, it is impossible for deteriorating items that
the demand rate increases continuously during their full life
cycle. Based on such reasons, Hill [7] proposed an inventory
model with ramp-type demand rate, which extended to
allow shortage proposed by Mandal and Pal [8]. Further,

Wu [9] extended Mandal and Pal’s model to have Weibull-
distributed deterioration and time-dependent backlogging.
Skouri et al. [10] considered a model with general ramp-type
demand rate, partial backlogging, and Weibull deterioration
rate. Tan and Weng [11] considered a discrete inventory
model for deteriorating items with partial backlogging. Pal
et al. [12] considered a production inventory model for
deteriorating items with ramp-type demand rate under the
effect of inflation and shortages under fuzziness. There are
many other related literatures about such inventory model,
such as Ahmed et al. [13], Agrawal et al. [14], Singh and
Pattnayak [15], Wu et al. [16], and Rabbani et al. [17].

While, for some short life cycle products, the demand
rate may increase up to a certain level in the early stage of
marketing, then reach a stabilized period, and finally decrease
to zero and reach the end of their life cycle, Cheng and
Wang [18] proposed an inventory model for deteriorating
items with trapezoidal type demand rate. Further, Cheng et
al. [19] extended the model to be of time-dependent deterio-
rating items with trapezoidal type demand rate and partial
backlogging. Uthayakumar and Rameswari [20] studied a
model for defective items with trapezoidal type demand rate
to determine the optimal product reliability. Lin [21] and
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Figure 1: Graphical representation of inventory level over the cycle starting with shortage.

Lin et al. [22] considered the inventory model which was
proposed by Cheng and Wang [18]. Zhao [23] studied an
inventory model for Weibull-distributed deterioration items
with trapezoidal type demand rate and partial backlogging in
which themodel begins with no-shortage.While, in real situ-
ation, customers will respond differently in case of shortages,
either to wait until replenishment or to look for alternative
products, in this paper, we study an inventory model begin-
ning with shortage, Weibull-distributed deterioration items,
trapezoidal type demand rate, and time-dependent partial
backlogging. By analyzing the studied model, we propose an
optimal replenishment strategy for it and also carry out a
sensitivity analysis of the main parameters.

The remainder of the paper is organized as follows.
Notations and assumptions are described in Section 2. Sec-
tion 3 constructs and analyzes the inventory model starting
with shortage. Some numerical examples to illustrate the
solution procedure are provided; then sensitivity analysis of
the major parameters is also carried out in Section 4. Finally,
a conclusion is presented.

2. Notations and Assumptions

The fundamental notations and assumptions used in this
paper are given as follows.

(i) 𝐼(𝑡) is the inventory level at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇, where
𝑇 is the length of inventory cycle.

(ii) 𝑡
1
denotes the replenishment time, and 𝑡∗

1
denotes the

optimal 𝑡
1
.

(iii) 𝑆 is the maximum inventory level for each ordering
cycle.

(iv) 𝑄∗ denotes the optimal ordering quantity.
(v) 𝐴

0
denotes the fixed cost per order.

(vi) c
1
is the cost of each deteriorated item, c

2
is the unit

inventory holding cost per unit time, c
3
is the unit

shortage cost per unit time, and c
4
is the unit lost sales

cost.
(vii) C

𝑖
(𝑡
1
), 𝑖 = 1, 2, 3, denotes the average total cost per

unit time under different conditions, respectively.

(viii) TC(𝑡
1
) denotes the average total cost per unit time.

(ix) The demand rate,𝐷(𝑡), which is positive and consec-
utive, is assumed to be a trapezoidal type function of
time; that is,

𝐷 (𝑡) =

{{{{{

{{{{{

{

𝑓 (𝑡) , 𝑡 ≤ 𝜇
1
,

𝐷
0
, 𝜇

1
< 𝑡 < 𝜇

2
,

𝑔 (𝑡) , 𝜇
2
≤ 𝑡 < 𝑇,

(1)

where 𝜇
1
is time point changing from the increasing

demand function 𝑓(𝑡) to the constant demand 𝐷
0
,

and 𝜇
2
is time point changing from the constant

demand𝐷
0
to the decreasing demand function 𝑔(𝑡).

(x) The replenishment rate is infinite; that is, replenish-
ment is instantaneous.

(xi) The time to deterioration of the item is distributed as
Weibull (𝛼, 𝛽); that is, the deterioration rate is 𝜃(𝑡) =
𝛼𝛽𝑡
𝛽−1, where 𝛼 is the scale parameter, 0 < 𝛼 < 1,

and𝛽 is the shape parameter, 0 < 𝛽.

(xii) Shortage is allowed and let 𝑒−𝛿𝑡 be fraction of short-
ages backlogged, where 𝑡 is the waiting time up to the
next replenishment and 𝛿 is a tiny positive constant;
that is, 𝛿 ≪ 1/𝑇.

3. Inventory Model Starting with Shortage

The system of model begins with shortage and until 𝑡
1
the

shortage achieves its maximum; then replenishment occurs
at time 𝑡 = 𝑡

1
. All of the shortage demand during (0, 𝑡

1
)

is partial backlogged (Figure 1). At 𝑡
1
, the total number of

backlogged items will be satisfied by the replenishment and
the inventory level up to 𝑆, while the deteriorating occurs
during the time of [𝑡

1
, 𝑇]. According to the notations and
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assumptions mentioned above, the model is described as
shown in Figure 1:

𝑑𝐼 (𝑡)

𝑑𝑡
=

{

{

{

−𝑒
−𝛿(𝑡
1
−𝑡)
𝐷 (𝑡) , 0 < 𝑡 < 𝑡

1
,

−𝜃 (𝑡) 𝐼 (𝑡) − 𝐷 (𝑡) , 𝑡
1
< 𝑡 < 𝑇,

(2)

with boundary condition 𝐼(0) = 0, 𝐼(𝑡
1
) = 𝑆, 𝐼(𝑇) = 0.

Based on the values of 𝑡
1
, 𝜇
1
, and 𝜇

2
, three possible cases

are presented as follows.

Case 1 (0 < 𝑡
1
≤ 𝜇
1
). If the replenishment time 𝑡

1
∈ (0, 𝜇

1
],

from (2), we have

𝑑𝐼 (𝑡)

𝑑𝑡
=

{{{{{{

{{{{{{

{

−𝑒
−𝛿(𝑡
1
−𝑡)
𝑓 (𝑡) , 0 < 𝑡 < 𝑡

1
,

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑓 (𝑡) , 𝑡
1
< 𝑡 < 𝜇

1
,

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝐷
0
, 𝜇

1
< 𝑡 < 𝜇

2
,

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑔 (𝑡) , 𝜇
2
< 𝑡 < 𝑇.

(3)

Solving the differential equations (3) with 𝐼(0) = 0, we have

𝐼 (𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

−∫

𝑡

0

𝑒
𝛿(𝑥−𝑡

1
)
𝑓 (𝑥) 𝑑𝑥, 0 < 𝑡 < 𝑡

1
,

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝑡

1
< 𝑡 < 𝜇

1
,

𝐷
0
∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝜇

1
< 𝑡 < 𝜇

2
,

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝜇

2
< 𝑡 < 𝑇.

(4)

The total replenishment quantity can be computed as

𝑆 = 𝐼 (𝑡
1
)

= ∫

𝜇
1

𝑡
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
𝑓 (𝑥) 𝑑𝑥 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
𝑑𝑥

+ ∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑥) 𝑑𝑥.

(5)

The total shortage quantity 𝐵
𝑇
during the interval [0, 𝑡

1
) is

𝐵
𝑇
= ∫

𝑡
1

0

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡. (6)

The total number of perished items during the interval [𝑡
1
, 𝑇],

say𝐷
𝑇
, is

𝐷
𝑇
= ∫

𝜇
1

𝑡
1

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1)𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1) 𝑑𝑡

+ ∫

𝑇

𝜇
2

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1)𝑔 (𝑡) 𝑑𝑡.

(7)

The total number of inventories carried during the interval
[𝑡
1
, 𝑇], say𝐻

𝑇
, is

𝐻
𝑇
= ∫

𝜇
1

𝑡
1

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
1

𝑡
1

∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝜇
2

𝑡
1

∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝜇
2

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡.

(8)

The total of lost sales during the interval [0, 𝑡
1
], say 𝐿

𝑇
, is

𝐿
𝑇
= ∫

𝑡
1

0

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑓 (𝑡) 𝑑𝑡. (9)

Therefore, the average total cost per unit time under the
condition 𝑡

1
≤ 𝜇
1
can be given by

C
1
(𝑡
1
) =

1

𝑇
[𝐴
0
+ c
1
𝐷
𝑇
+ c
2
𝐻
𝑇
+ c
3
𝐵
𝑇
+ c
4
𝐿
𝑇
]

=
1

𝑇
{𝐴
0
+ c
3
[∫

𝑡
1

0

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡]

+ c
4
[∫

𝑡
1

0

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑓 (𝑡) 𝑑𝑡]

+ c
1
[∫

𝜇
1

𝑡
1

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1)𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1) 𝑑𝑡
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+ ∫

𝑇

𝜇
2

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1)𝑔 (𝑡) 𝑑𝑡]

+ c
2
[∫

𝜇
1

𝑡
1

∫

𝜇
1

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
1

𝑡
1

∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝜇
2

𝑡
1

∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝜇
2

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡]} .

(10)

Taking the first and the second order derivative of C
1
(𝑡
1
)with

respect to 𝑡
1
, respectively, we have

𝑑C
1
(𝑡
1
)

𝑑𝑡
1

=
1

𝑇
{c
3
∫

𝑡
1

0

(1 − 𝛿𝑡
1
+ 𝛿𝑡) 𝑒

𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ c
4
𝛿∫

𝑡
1

0

𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡 − (c

2
+ c
1
𝛼𝛽𝑡
𝛽−1

1
)

⋅ ∫

𝑇

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝐷 (𝑡) 𝑑𝑡} ,

(11)

𝑑
2C
1
(𝑡
1
)

𝑑𝑡
2

1

=
1

𝑇
{c
3
[𝑓 (𝑡
1
)

+ 𝛿∫

𝑡
1

0

(𝛿𝑡
1
− 𝛿𝑡 − 2) 𝑒

𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡] + c

4
𝛿 [𝑓 (𝑡

1
)

− 𝛿∫

𝑡
1

0

𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡] + (c

1
𝛼𝛽𝑡
𝛽−1

1
+ c
2
) 𝑓 (𝑡
1
)

+ 𝛼𝛽𝑡
𝛽−2

1
[c
1
(𝛼𝛽𝑡
𝛽

1
− 𝛽 + 1) + c

2
𝑡
1
]

⋅ ∫

𝑇

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝐷 (𝑡) 𝑑𝑡} .

(12)

Then, we have

𝑑C
1
(𝑡
1
)

𝑑𝑡
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡
1
=0

= −
c
2

𝑇
∫

𝑇

0

𝑒
𝛼𝑡
𝛽

𝐷(𝑡) 𝑑𝑡 < 0, (13)

and let

Δ
1
= c
3
∫

𝜇
1

0

(1 − 𝛿𝜇
1
+ 𝛿𝑡) 𝑒

𝛿(𝑡−𝜇
1
)
𝑓 (𝑡) 𝑑𝑡

+ c
4
𝛿∫

𝜇
1

0

𝑒
𝛿(𝑡−𝜇

1
)
𝑓 (𝑡) 𝑑𝑡 − (c

2
+ c
1
𝛼𝛽𝜇
𝛽−1

1
)

⋅ (𝐷
0
∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑡
𝛽
−𝜇
𝛽

1
)
𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑡
𝛽
−𝜇
𝛽

1
)
𝑔 (𝑡) 𝑑𝑡) .

(14)

Therefore, (i) if Δ
1
> 0 and 𝑑

2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0, there exists

a unique solution 𝑡
∗

1
∈ (0, 𝜇

1
) satisfying 𝑑C

1
(𝑡
1
)/𝑑𝑡
1
= 0,

and C
1
(𝑡
1
) obtains its minimum at 𝑡

1
= 𝑡
∗

1
; (ii) if Δ

1
< 0

and 𝑑2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0, it means that C

1
(𝑡
1
) is a nonincreasing

function and obtains its minimum value at point 𝑡∗
1
= 𝜇
1
;

(iii) if the sign of 𝑑2C
1
(𝑡
1
)/𝑑𝑡
2

1
is indefinite, then the curve

of C
1
(𝑡
1
) is W-shape, and C

1
(𝑡
1
)may obtain its minimum at

more than one point; without loss of generality, set 𝑡
1
= 𝑡
∗

1
,

where 𝑡∗
1
is one of the solutions of 𝑑C

1
(𝑡
1
)/𝑑𝑡
1
= 0.

Thus, the optimal value of the order level, 𝑆 = 𝐼(𝑡
∗

1
), is

𝑆
∗
= ∫

𝜇
1

𝑡
∗

1

𝑒
𝛼(𝑥
𝛽
−𝑡
∗

1

𝛽
)
𝑓 (𝑥) 𝑑𝑥 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛼(𝑥
𝛽
−𝑡
∗

1

𝛽
)
𝑑𝑥

+ ∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
∗

1

𝛽
)
𝑔 (𝑥) 𝑑𝑥,

(15)

and the optimal order quantity 𝑄∗ is

𝑄
∗
= 𝑆
∗
+ ∫

𝑡
∗

1

0

𝑒
𝛿(𝑡−𝑡
∗

1
)
𝑓 (𝑡) 𝑑𝑡. (16)

Case 2 (𝜇
1
≤ 𝑡
1
≤ 𝜇
2
). If the replenishment time 𝑡

1
∈ [𝜇
1
, 𝜇
2
],

then from (2), we have

𝑑𝐼 (𝑡)

𝑑𝑡
=

{{{{{{

{{{{{{

{

−𝑒
−𝛿(𝑡
1
−𝑡)
𝑓 (𝑡) , 0 < 𝑡 < 𝜇

1
,

−𝑒
−𝛿(𝑡
1
−𝑡)
𝐷
0
, 𝜇

1
< 𝑡 < 𝑡

1
,

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝐷
0
, 𝑡

1
< 𝑡 < 𝜇

2
,

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑔 (𝑡) , 𝜇
2
< 𝑡 < 𝑇.

(17)

Solving the differential equation (17) with 𝐼(0) = 𝐼(𝑇) = 0,
we have

𝐼 (𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

−∫

𝑡

0

𝑒
𝛿(𝑥−𝑡

1
)
𝑓 (𝑥) 𝑑𝑥, 0 < 𝑡 < 𝜇

1
,

−
𝐷
0

𝛿
(𝑒
𝛿(𝑡−𝑡
1
)
− 𝑒
𝛿(𝜇
1
−𝑡
1
)
) − ∫

𝜇
1

0

𝑒
𝛿(𝑥−𝑡

1
)
𝑓 (𝑥) 𝑑𝑥, 𝜇

1
< 𝑡 < 𝑡

1
,

𝐷
0
∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝑡

1
< 𝑡 < 𝜇

2
,

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝜇

2
< 𝑡 < 𝑇.

(18)
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From (18), the total replenishment quantity can be computed:

𝑆 = 𝐼 (𝑡
1
) = 𝐷

0
∫

𝜇
2

𝑡
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
𝑑𝑥 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑥) 𝑑𝑥. (19)

The total shortage quantity during the interval (0, 𝑡
1
] is

𝐵
𝑇
= ∫

𝜇
1

0

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿
∫

𝑡
1

𝜇
1

(𝑒
𝛿(𝑡−𝑡
1
)
− 𝑒
𝛿(𝜇
1
−𝑡
1
)
) 𝑑𝑡.

(20)

The total number of perished items in the interval [𝑡
1
, 𝑇] is

𝐷
𝑇
= 𝐷
0
∫

𝜇
2

𝑡
1

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1) 𝑑𝑡

+ ∫

𝑇

𝜇
2

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1)𝑔 (𝑡) 𝑑𝑡.

(21)

The total number of inventories carried during the interval
[𝑡
1
, 𝑇] is

𝐻
𝑇
= 𝐷
0
∫

𝜇
2

𝑡
1

∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝜇
2

𝑡
1

∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝜇
2

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡.

(22)

The total of lost sales during the interval [0, 𝑡
1
] is

𝐿
𝑇
= ∫

𝜇
1

0

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝑡
1

𝜇
1

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑑𝑡.

(23)

Therefore, the average total cost per unit time under the
condition 𝜇

1
< 𝑡
1
≤ 𝜇
2
can be given by

C
2
(𝑡
1
) =

1

𝑇
[𝐴
0
+ c
1
𝐷
𝑇
+ c
2
𝐻
𝑇
+ c
3
𝐵
𝑇
+ c
4
𝐿
𝑇
]

=
1

𝑇
{𝐴
0
+ c
1
[𝐷
0
∫

𝜇
2

𝑡
1

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1) 𝑑𝑡

+ ∫

𝑇

𝜇
2

(𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
− 1)𝑔 (𝑡) 𝑑𝑡]

+ c
2
[𝐷
0
∫

𝜇
2

𝑡
1

∫

𝜇
2

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑑𝑥 𝑑𝑡

+ ∫

𝜇
2

𝑡
1

∫

𝑇

𝜇
2

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝜇
2

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡]

+ c
4
[∫

𝜇
1

0

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝑡
1

𝜇
1

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑑𝑡]

+ c
3
[∫

𝜇
1

0

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿
∫

𝑡
1

𝜇
1

(𝑒
𝛿(𝑡−𝑡
1
)
− 𝑒
𝛿(𝜇
1
−𝑡
1
)
) 𝑑𝑡]} .

(24)

Taking the first and the second order derivative of C
2
(𝑡
1
)

with respect to 𝑡
1
, respectively, we have

𝑑C
2
(𝑡
1
)

𝑑𝑡
1

=
1

𝑇
{c
4
𝛿 [∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝑡
1

𝜇
1

𝑒
𝛿(𝑡−𝑡
1
)
𝑑𝑡] − (c

1
𝛼𝛽𝑡
𝛽−1

1
+ c
2
)

⋅ [𝐷
0
∫

𝜇
2

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑡) 𝑑𝑡]

+ c
3
[∫

𝜇
1

0

(1 − 𝛿𝑡
1
+ 𝛿𝑡) 𝑒

𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

− 𝐷
0
(𝜇
1
− 𝑡
1
) 𝑒
𝛿(𝜇
1
−𝑡
1
)
]} ,

(25)

𝑑
2C
2
(𝑡
1
)

𝑑𝑡
2

1

=
1

𝑇
{𝛼𝛽𝑡
𝛽−2

1
(c
1
(𝛼𝛽𝑡
𝛽

1
− 𝛽 + 1) + c

2
𝑡
1
)

⋅ [𝐷
0
∫

𝜇
2

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑡) 𝑑𝑡]

+ (c
1
𝛼𝛽𝑡
𝛽−1

1
+ c
2
)𝐷
0
+ c
4
𝛿 [𝐷
0
𝑒
𝛿(𝜇
1
−𝑡
1
)

− 𝛿∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡]

+ c
3
[∫

𝜇
1

0

(𝛿
2
𝑡
1
− 𝛿
2
𝑡 − 2𝛿) 𝑒

𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
(1 + 𝛿𝜇

1
− 𝛿𝑡
1
) 𝑒
𝛿(𝜇
1
−𝑡
1
)
]} .

(26)

Let

Δ
2
= c
3
[∫

𝜇
1

0

(1 − 𝛿𝜇
2
+ 𝛿𝑡) 𝑒

𝛿(𝑡−𝜇
2
)
𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
(𝜇
2
− 𝜇
1
) 𝑒
𝛿(𝜇
1
−𝜇
2
)
]

+ c
4
𝛿 [∫

𝜇
1

0

𝑒
𝛿(𝑡−𝜇

2
)
𝑓 (𝑡) 𝑑𝑡 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛿(𝑡−𝜇

2
)
𝑑𝑡]

− (c
2
+ c
1
𝛼𝛽𝜇
𝛽−1

2
)∫

𝑇

𝜇
2

𝑒
𝛼(𝑡
𝛽
−𝜇
𝛽

2
)
𝑔 (𝑡) 𝑑𝑡.

(27)
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Therefore, (i) if Δ
1
< 0, Δ

2
> 0, and 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
> 0, there

exists a unique solution 𝑡∗
1
∈ (𝜇
1
, 𝜇
2
) satisfying 𝑑C

2
(𝑡
1
)/𝑑𝑡
1
=

0, and C
2
(𝑡
1
) obtains its minimum at 𝑡

1
= 𝑡
∗

1
; (ii) if Δ

1
<

0, Δ
2
≤ 0, and 𝑑

2C
2
(𝑡
1
)/𝑑𝑡
2

1
> 0, it means that C

2
(𝑡
1
) is

a nonincreasing function and obtains its minimum at point
𝑡
∗

1
= 𝜇
2
; (iii) if Δ

1
≥ 0, Δ

2
> 0, and 𝑑

2C
2
(𝑡
1
)/𝑑𝑡
2

1
> 0, it

means that C
2
(𝑡
1
) is a nondecreasing function and obtains its

minimum at point 𝑡∗
1
= 𝜇
1
; (iv) if the sign of 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
is

indefinite, then the curve of C
2
(𝑡
1
) is W-shape, and C

2
(𝑡
1
)

may obtain its minimum value at more than one point;
without loss of generality, set 𝑡

1
= 𝑡
∗

1
, where 𝑡∗

1
is one of the

solutions of 𝑑C
2
(𝑡
1
)/𝑑𝑡
1
= 0.

Thus, the optimal value of the order level, 𝑆 = 𝐼(𝑡
∗

1
), is

𝑆
∗
= 𝐷
0
∫

𝜇
2

𝑡
∗

1

𝑒
𝛼(𝑡
𝛽
−𝑡
∗

1

𝛽
)
𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛼(𝑡
𝛽
−𝑡
∗

1

𝛽
)
𝑔 (𝑡) 𝑑𝑡, (28)

and the optimal order quantity 𝑄∗ is

𝑄
∗
= 𝑆
∗
+ ∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑡
∗

1
)
𝑓 (𝑡) 𝑑𝑡 + 𝐷

0
∫

𝑡
∗

1

𝜇
1

𝑒
𝛿(𝑡−𝑡
∗

1
)
𝑑𝑡. (29)

Case 3 (𝜇
2
≤ 𝑡
1
< 𝑇). If the replenishment time 𝑡

1
∈ [𝜇
2
, 𝑇),

from (2), we have

𝑑𝐼 (𝑡)

𝑑𝑡
=

{{{{{{{

{{{{{{{

{

−𝑒
−𝛿(𝑡
1
−𝑡)
𝑓 (𝑡) , 0 < 𝑡 < 𝜇

1
,

−𝑒
−𝛿(𝑡
1
−𝑡)
𝐷
0
, 𝜇

1
< 𝑡 < 𝜇

2
,

−𝑒
−𝛿(𝑡
1
−𝑡)
𝑔 (𝑡) , 𝜇

2
< 𝑡 < 𝑡

1
,

−𝛼𝛽𝑡
𝛽−1

𝐼 (𝑡) − 𝑔 (𝑡) , 𝑡
1
< 𝑡 < 𝑇.

(30)

Solving (30) with 𝐼(0) = 𝐼(𝑇) = 0, we have

𝐼 (𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

−∫

𝑡

0

𝑒
𝛿(𝑥−𝑡

1
)
𝑓 (𝑥) 𝑑𝑥, 0 < 𝑡 < 𝜇

1
,

𝐷
0

𝛿
(𝑒
𝛿(𝜇
1
−𝑡
1
)
− 𝑒
𝛿(𝑡−𝑡
1
)
) − ∫

𝜇
1

0

𝑒
𝛿(𝑥−𝑡

1
)
𝑓 (𝑥) 𝑑𝑥, 𝜇

1
< 𝑡 < 𝜇

2
,

− ∫

𝑡

𝜇
2

𝑒
𝛿(𝑥−𝑡

1
)
𝑔 (𝑥) 𝑑𝑥 +

𝐷
0

𝛿
(𝑒
𝛿(𝜇
1
−𝑡
1
)
− 𝑒
𝛿(𝜇
2
−𝑡
1
)
) − ∫

𝜇
1

0

𝑒
𝛿(𝑥−𝑡

1
)
𝑓 (𝑥) 𝑑𝑥, 𝜇

2
< 𝑡 < 𝑡

1
,

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥, 𝑡

1
< 𝑡 < 𝑇.

(31)

From the last equation of (31), the total replenishment
quantity can be computed:

𝑆 = 𝐼 (𝑡
1
) = ∫

𝑇

𝑡
1

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑥) 𝑑𝑥. (32)

The total shortage quantity during the interval (0, 𝑡
1
] is

𝐵
𝑇
= ∫

𝜇
1

0

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑡
1

𝜇
2

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑔 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿2
(𝑒
𝛿(𝜇
1
−𝑡
1
)
− 𝑒
𝛿(𝜇
2
−𝑡
1
)
)

+
𝐷
0

𝛿
[(𝑡
1
− 𝜇
1
) 𝑒
𝛿(𝜇
1
−𝑡
1
)
− (𝑡
1
− 𝜇
2
) 𝑒
𝛿(𝜇
2
−𝑡
1
)
] .

(33)

The total number of perished items in the interval [𝑡
1
, 𝑇] is

𝐷
𝑇
= ∫

𝑇

𝑡
1

(𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
− 1)𝑔 (𝑥) 𝑑𝑥. (34)

The total number of inventories carried during the interval
[𝑡
1
, 𝑇] is

𝐻
𝑇
= ∫

𝑇

𝑡
1

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡. (35)

The total of lost sales during the interval [0, 𝑡
1
] is

𝐿
𝑇
= ∫

𝜇
1

0

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑑𝑡

+ ∫

𝑡
1

𝜇
2

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑔 (𝑡) 𝑑𝑡.

(36)

Therefore, the average total cost per unit time under the
condition 𝜇

2
< 𝑡
1
≤ 𝑇 can be given by

C
3
(𝑡
1
) =

1

𝑇
[𝐴
0
+ c
1
𝐷
𝑇
+ c
2
𝐻
𝑇
+ c
3
𝐵
𝑇
+ c
4
𝐿
𝑇
]

=
1

𝑇
{𝐴
0
+ c
1
∫

𝑇

𝑡
1

(𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽

1
)
− 1)𝑔 (𝑥) 𝑑𝑥

+ c
2
∫

𝑇

𝑡
1

∫

𝑇

𝑡

𝑒
𝛼(𝑥
𝛽
−𝑡
𝛽
)
𝑔 (𝑥) 𝑑𝑥 𝑑𝑡

+ c
4
[∫

𝜇
1

0

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑑𝑡
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+ ∫

𝑡
1

𝜇
2

(1 − 𝑒
𝛿(𝑡−𝑡
1
)
) 𝑔 (𝑡) 𝑑𝑡]

+ c
3
[∫

𝜇
1

0

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑡
1

𝜇
2

(𝑡
1
− 𝑡) 𝑒
𝛿(𝑡−𝑡
1
)
𝑔 (𝑡) 𝑑𝑡

+
𝐷
0

𝛿2
(𝑒
𝛿(𝜇
1
−𝑡
1
)
− 𝑒
𝛿(𝜇
2
−𝑡
1
)
)

+
𝐷
0

𝛿
((𝑡
1
− 𝜇
1
) 𝑒
𝛿(𝜇
1
−𝑡
1
)
− (𝑡
1
− 𝜇
2
) 𝑒
𝛿(𝜇
2
−𝑡
1
)
)]} .

(37)

Taking the first and the second order derivative of C
3
(𝑡
1
)

with respect to 𝑡
1
, respectively, we have

𝑑C
3
(𝑡
1
)

𝑑𝑡
1

=
1

𝑇
{− (c
2
+ c
1
𝛼𝛽𝑡
𝛽−1

1
) ∫

𝑇

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑡) 𝑑𝑡

+ c
4
𝛿 [∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛿(𝑡−𝑡
1
)
𝑑𝑡

+ ∫

𝑡
1

𝜇
2

𝑒
𝛿(𝑡−𝑡
1
)
𝑔 (𝑡) 𝑑𝑡]

+ c
3
[∫

𝜇
1

0

(1 + 𝛿𝑡 − 𝛿𝑡
1
) 𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑡
1

𝜇
2

(1 + 𝛿𝑡 − 𝛿𝑡
1
) 𝑒
𝛿(𝑡−𝑡
1
)
𝑔 (𝑡) 𝑑𝑡

+ 𝐷
0
((𝑡
1
− 𝜇
1
) 𝑒
𝛿(𝜇
1
−𝑡
1
)
− (𝑡
1
− 𝜇
2
) 𝑒
𝛿(𝜇
2
−𝑡
1
)
)]} ,

(38)

𝑑
2C
3
(𝑡
1
)

𝑑𝑡
2

1

=
1

𝑇
{𝛼𝛽𝑡
𝛽−2

1
[c
1
(𝛼𝛽𝑡
𝛽

1
− 𝛽 + 1) + c

2
𝑡
1
]

⋅ ∫

𝑇

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑡) 𝑑𝑡 + (c

2
+ c
1
𝛼𝛽𝑡
𝛽−1

1
) 𝑔 (𝑡
1
)

+ c
4
𝛿 [𝛿∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡 + 𝐷

0
𝛿∫

𝜇
2

𝜇
1

𝑒
𝛿(𝑡−𝑡
1
)
𝑑𝑡

+ 𝛿∫

𝑡
1

𝜇
2

𝑒
𝛿(𝑡−𝑡
1
)
𝑔 (𝑡) 𝑑𝑡 + 𝑔 (𝑡

1
)]

+ c
2
[𝛼𝛽𝑡
𝛽−1

1
∫

𝑇

𝑡
1

𝑒
𝛼(𝑡
𝛽
−𝑡
𝛽

1
)
𝑔 (𝑡) 𝑑𝑡 + 𝑔 (𝑡

1
)]

+ c
3
[∫

𝜇
1

0

(𝛿
2
𝑡
1
− 𝛿
2
𝑡 − 2𝛿) 𝑒

𝛿(𝑡−𝑡
1
)
𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑡
1

𝜇
2

(𝛿
2
𝑡
1
− 𝛿
2
𝑡 − 2𝛿) 𝑒

𝛿(𝑡−𝑡
1
)
𝑔 (𝑡) 𝑑𝑡 + 𝑔 (𝑡

1
)

+ 𝐷
0
((1 + 𝛿𝜇

1
− 𝛿𝑡
1
) 𝑒
𝛿(𝜇
1
−𝑡
1
)

− (1 + 𝛿𝜇
2
− 𝛿𝑡
1
) 𝑒
𝛿(𝜇
2
−𝑡
1
)
)]} .

(39)

We know that

𝑑C
3
(𝑡
1
)

𝑑𝑡
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡
1
=𝑇

=
1

𝑇
{c
4
𝛿 [∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑇)

𝑓 (𝑡) 𝑑𝑡

+ 𝐷
0
∫

𝜇
2

𝜇
1

𝑒
𝛿(𝑡−𝑇)

𝑑𝑡 + ∫

𝑇

𝜇
2

𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡]

+ c
3
[∫

𝜇
1

0

(1 + 𝛿𝑡 − 𝛿𝑇) 𝑒
𝛿(𝑡−𝑇)

𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜇
2

(1 + 𝛿𝑡 − 𝛿𝑇) 𝑒
𝛿(𝑡−𝑇)

𝑔 (𝑡) 𝑑𝑡

+ 𝐷
0
((𝑇 − 𝜇

1
) 𝑒
𝛿(𝜇
1
−𝑇)

− (𝑇 − 𝜇
2
) 𝑒
𝛿(𝜇
2
−𝑇)

)]}

> 0.

(40)

Therefore, (i) if Δ
2
< 0 and 𝑑

2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0, there exists

a unique solution 𝑡
∗

1
∈ (𝜇
2
, 𝑇) satisfying 𝑑C

3
(𝑡
1
)/𝑑𝑡
1
= 0,

and C
3
(𝑡
1
) obtains its minimum at 𝑡

1
= 𝑡
∗

1
; (ii) if Δ

2
≥ 0

and 𝑑2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0, it means that C

3
(𝑡
1
) is a nondecreasing

function and obtains its minimum value at point 𝑡∗
1
= 𝜇
2
;

(iii) if the sign of 𝑑2C
3
(𝑡
1
)/𝑑𝑡
2

1
is indefinite, then the curve of

C
3
(𝑡
1
) is W-shape, and C

3
(𝑡
1
)may obtain its minimum value

at more than one point; without loss of generality, set 𝑡
1
= 𝑡
∗

1
,

where 𝑡∗
1
is one of the solutions of 𝑑C

3
(𝑡
1
)/𝑑𝑡
1
= 0.

Therefore, the optimal value of the order level, 𝑆 = 𝐼(𝑡
∗

1
),

is

𝑆
∗
= ∫

𝑇

𝑡
∗

1

𝑒
𝛼(𝑥
𝛽
−𝑡
∗

1

𝛽
)
𝑔 (𝑥) 𝑑𝑥, (41)

and the optimal order quantity 𝑄∗ is

𝑄
∗
= 𝑆
∗
+ ∫

𝜇
1

0

𝑒
𝛿(𝑡−𝑡
∗

1
)
𝑓 (𝑡) 𝑑𝑡 + 𝐷

0
∫

𝜇
2

𝜇
1

𝑒
𝛿(𝑡−𝑡
∗

1
)
𝑑𝑡

+ ∫

𝑡
∗

1

𝜇
2

𝑒
𝛿(𝑡−𝑡
∗

1
)
𝑔 (𝑡) 𝑑𝑡.

(42)

From the above analysis, we obtain that the total average
cost of the system over the interval [0, 𝑇] is

TC (𝑡
1
) =

{{{{{

{{{{{

{

C
1
(𝑡
1
) , 0 < 𝑡

1
≤ 𝜇
1
,

C
2
(𝑡
1
) , 𝜇

1
< 𝑡
1
≤ 𝜇
2
,

C
3
(𝑡
1
) , 𝜇

2
< 𝑡
1
< 𝑇,

(43)

where C
1
(𝑡
1
), C
2
(𝑡
1
), and C

3
(𝑡
1
) are obtained from (10), (24),

and (37), respectively.
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Basing on the analyzed results above, we provide the
results which ensure the existence of a unique 𝑡

1
, say 𝑡∗

1
, to

minimize the total average cost for the model system starting
with shortages. The procedure is as follows:

Step 0. Input the parameters, 𝜇
1
, 𝜇
2
, 𝑇, 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝛼, 𝛽, 𝛿,

𝐷
0
, and c

𝑖
, 𝑖 = 1, 2, 3, 4.

Step 1. Calculate Δ
1
and 𝑑2C

1
(𝑡
1
)/𝑑𝑡
2

1
.

Step 1.1. If Δ
1
> 0 and 𝑑

2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0, solve a unique 𝑡∗

1

from𝑑C
1
(𝑡
1
)/𝑑𝑡
1
= 0, and the total average cost and the order

quantity can be obtained by (10) and (16), respectively.

Step 1.2. If Δ
1
≤ 0 and 𝑑

2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0, then the optimal

average cost and the optimal order quantity can be obtained
by (10) and (16) at 𝑡∗

1
= 𝜇
1
, respectively.

Step 1.3. If the sign of 𝑑2C
1
(𝑡
1
)/𝑑𝑡
2

1
is indefinite, then solve

equation 𝑑C
1
(𝑡
1
)/𝑑𝑡
1
= 0. If the solution is not unique, by

comparing their average costs C
1
(𝑡
1
) to obtain the optimal

replenishment point, compute the order quantity by (16).

Step 2. Calculate Δ
2
and 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
.

Step 2.1. If Δ
1
< 0, Δ

2
> 0, and 𝑑

2C
2
(𝑡
1
)/𝑑𝑡
2

1
> 0, then

seek a unique 𝑡∗
1
from equation 𝑑C

2
(𝑡
1
)/𝑑𝑡
1
= 0, and the

optimal total average cost and the optimal order quantity can
be obtained by (24) and (29) at 𝑡

1
= 𝑡
∗

1
, respectively.

Step 2.2. If Δ
1
> 0, Δ

2
> 0, and 𝑑

2C
2
(𝑡
1
)/𝑑𝑡
2

1
> 0, then

C
2
(𝑡
1
) obtains itsminimumat 𝑡∗

1
= 𝜇
1
, and compute the order

quantity by (29).

Step 2.3. If Δ
1
< 0, Δ

2
≤ 0, and 𝑑

2C
2
(𝑡
1
)/𝑑𝑡
2

1
> 0, then

C
2
(𝑡
1
) obtains itsminimumat 𝑡∗

1
= 𝜇
2
, and compute the order

quantity by (29).

Step 2.4. If the sign of 𝑑2C
2
(𝑡
1
)/𝑑𝑡
2

1
is indefinite, then solve

equation 𝑑C
2
(𝑡
1
)/𝑑𝑡
1
= 0. If the solution is not unique, by

comparing their average costs C
2
(𝑡
1
) to obtain the optimal

replenishment point, compute the optimal order quantity by
(29).

Step 3. Calculate 𝑑2C
3
(𝑡
1
)/𝑑𝑡
2

1
.

Step 3.1. If Δ
2
< 0 and 𝑑

2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0, seek the unique

𝑡
∗

1
from equation 𝑑C

3
(𝑡
1
)/𝑑𝑡
1
= 0, and the total average

cost and the order quantity can be obtained by (37) and (42),
respectively.

Step 3.2. If Δ
2
≥ 0 and 𝑑2C

3
(𝑡
1
)/𝑑𝑡
2

1
> 0, then C

3
(𝑡
1
) obtains

its minimum at 𝑡∗
1
= 𝜇
2
, and compute the order quantity by

(42).

Step 3.3. If the sign of 𝑑
2C
3
(𝑡
1
)/𝑑𝑡
2

1
is indefinite, then

solve equation 𝑑C
3
(𝑡
1
)/𝑑𝑡
1

= 0. If the solution is not
unique, by comparing their average costs C

3
(𝑡
1
) to obtain the

optimal replenishment point, compute the order quantity by
(42).

Step 4. Find TC(𝑡∗
1
) = min{C

1
(𝑡
∗

1
),C
2
(𝑡
∗

1
),C
3
(𝑡
∗

1
)} and

accordingly select the optimum 𝑡
∗

1
, and then obtain corre-

sponding optimal order quantity 𝑄∗.

4. Numerical Examples and
Sensitivity Analysis

In order to demonstrate the procedure to obtain the optimal
solution of the model, we present four examples for the
model. Examples are based on piece-wise demand rate, such
as 𝑓(𝑡) = 𝑎

1
+ 𝑏
1
𝑡 and 𝑔(𝑡) = 𝑎

2
𝑒
−𝑏
2
𝑡.

Example 1. The parameter values of an inventory system are
given as follows: 𝑇 = 12 weeks, 𝜇

1
= 4 weeks, 𝜇

2
= 8 weeks,

𝛼 = 0.005, 𝛽 = 2, 𝛿 = 0.04, 𝑎
1
= 30 units, 𝑏

1
= 5 units,

𝑎
2
= 100 units, 𝐴

0
= $500, c

1
= $2, c

2
= $3, c

3
= $12, c

4
= $8.

Since Δ
1

= 18.809 > 0, Δ
2

= 222.869 > 0,
𝑑
2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈ (0, 𝜇

1
), 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
> 0

for all 𝑡
1

∈ [𝜇
1
, 𝜇
2
), and 𝑑

2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈

[𝜇
2
, 𝑇), thenwe get localminimumvalueC

2
(𝜇
1
) = 763.891 in

[𝜇
1
, 𝜇
2
) and C

3
(𝑢
2
) = 1263.58 in [𝜇

2
, 𝑇). By solving equation

𝑑C
1
(𝑡
1
)/𝑑𝑡
1
= 0, we have 𝑡∗

1
= 3.664. From (10), we obtain

C
1
(𝑡
∗

1
) = 762.759. Therefore, the optimal ordering quantity is

𝑄
∗
= 637.839 and the total average cost is TC(𝑡∗

1
) = 762.759.

Example 2. The parameter values of an inventory system are
given as follows: 𝑇 = 12 weeks, 𝜇

1
= 4 weeks, 𝜇

2
= 8 weeks,

𝛼 = 0.005, 𝛽 = 2, 𝛿 = 0.02, 𝑎
1
= 30 units, 𝑏

1
= 5 units,

𝑎
2
= 100 units, 𝐴

0
= $500, c

1
= $5, c

2
= $10, c

3
= $12, c

4
= $8.

Since Δ
1

= −257.889 < 0, Δ
2

= 139.269 > 0,
𝑑
2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈ (0, 𝜇

1
], 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
> 0 for

all 𝑡
1
∈ [𝜇
1
, 𝜇
2
), and 𝑑

2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈ (𝜇
2
, 𝑇),

then we get local minimum value C
1
(𝜇
1
) = 1805.883 in

(0, 𝜇
1
] and C

3
(𝑢
2
) = 1582.32 in [𝜇

2
, 𝑇). By solving equation

𝑑C
2
(𝑡
1
)/𝑑𝑡
1
= 0, we have 𝑡∗

1
= 6.559. From (24), we obtain

C
2
(𝑡
∗

1
) = 1480.324. Therefore, the optimal ordering quantity

is 𝑄∗ = 571.827 and the total average cost is TC(𝑡∗
1
) =

1480.324.

Example 3. The parameter values of an inventory system are
given as follows: 𝑇 = 12 weeks, 𝜇

1
= 4 weeks, 𝜇

2
= 6 weeks,

𝛼 = 0.005, 𝛽 = 2, 𝛿 = 0.06, 𝑎
1
= 30 units, 𝑏

1
= 5 units,

𝑎
2
= 100 units, 𝐴

0
= $500, c

1
= $5, c

2
= $10, c

3
= $12, c

4
= $8.

Since Δ
1

= −249.329 < 0, Δ
2

= −121.869 < 0,
𝑑
2C
1
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈ (0, 𝜇

1
], 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
> 0 for

all 𝑡
1
∈ (𝜇
1
, 𝜇
2
], and 𝑑

2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈ [𝜇
2
, 𝑇),

then we get local minimum value C
1
(𝜇
1
) = 1417.134 in

(0, 𝜇
1
] and C

2
(𝑢
2
) = 1052.016 in (𝜇

1
, 𝜇
2
]. By solving equation

𝑑C
3
(𝑡
1
)/𝑑𝑡
1
= 0, we have 𝑡∗

1
= 9.120. From (37), we obtain

C
3
(𝑡
∗

1
) = 889.767. Therefore, the optimal ordering quantity is

𝑄
∗
= 278.960 and the total average cost is TC(𝑡∗

1
) = 889.767.

Example 4. The parameter values of an inventory system are
given as follows: 𝑇 = 12 weeks, 𝜇

1
= 4 weeks, 𝜇

2
= 6 weeks,

𝛼 = 0.005, 𝛽 = 1.6, 𝛿 = 0.02, 𝑎
1
= 30 units, 𝑏

1
= 5 units,

𝑎
2
= 100 units, 𝐴

0
= $500, c

1
= $5, c

2
= $10, c

3
= $12, c

4
= $8.

Since Δ
1

= −197.263 < 0, Δ
2

= −86.675 < 0,
𝑑
2C
4
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈ (0, 𝜇

1
], 𝑑2C

2
(𝑡
1
)/𝑑𝑡
2

1
> 0
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Table 1: The sensitivity of 𝛿 for the model in Example 1.

𝛿 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
𝑡
∗

1
3.4366 3.4905 3.5463 3.6042 3.6642 3.7263 3.7907 3.8574 3.9265

𝑆
∗ 515.0829 515.0829 511.4210 507.5965 503.6066 499.4433 495.0985 490.5641 485.8321
𝑄
∗ 648.1034 648.1034 644.8369 641.4184 637.8392 634.0900 630.1614 626.0436 621.7267

TC
2
(𝑡
∗

1
) 775.2147 771.8437 768.4699 764.9983 761.4252 757.7473 753.9611 750.063 746.0498

Table 2: The sensitivity of 𝛼 for the models in Example 1.

𝛼 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
𝑡
∗

1
3.0141 3.1325 3.2569 3.3870 3.5229 3.6642 3.8105 3.9614 4.1171

𝑆
∗ 415.8882 432.0629 448.9624 466.5543 484.7907 503.6066 522.9206 542.6345 575.5923
𝑄
∗ 522.8982 543.9279 565.9745 589.0106 612.9883 637.8392 663.4729 689.7782 723.0000

TC
2
(𝑡
∗

1
) 638.5314 661.4087 685.1585 709.7639 735.1984 761.4252 788.3972 816.0570 845.0147

Table 3: The sensitivity of 𝛽 for the models in Example 1.

𝛽 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
𝑡
∗

1
3.1114 3.1995 3.2513 3.3176 3.40332 3.5148 3.6613 3.8551 4.1128

𝑆
∗ 427.5053 440.1612 447.1691 456.2029 467.9084 483.1709 503.6066 529.5334 564.1669
𝑄
∗ 538.4988 554.7959 563.9494 575.7494 591.0495 611.0248 637.8392 672.0262 717.9964

TC
2
(𝑡
∗

1
) 644.4596 670.3559 680.1679 692.9359 709.5918 731.4743 761.4252 797.6508 845.0147

for all 𝑡
1

∈ (𝜇
1
, 𝜇
2
], and 𝑑

2C
3
(𝑡
1
)/𝑑𝑡
2

1
> 0 for all 𝑡

1
∈

[𝜇
2
, 𝑇), thenwe get localminimumvalueC

1
(𝜇
1
) = 1252.59 in

(0, 𝜇
1
] and C

2
(𝑢
2
) = 1052.016 in (𝜇

1
, 𝜇
2
]. By solving equation

𝑑C
3
(𝑡
1
)/𝑑𝑡
1
= 0, we have 𝑡∗

1
= 8.627. From (37), we obtain

TC(𝑡∗
1
) = 842.935. Therefore, the optimal ordering quantity

is 𝑄∗ = 241.524 obtained from (42), and the minimum cost
TC(𝑡∗
1
) = 842.935.

In order to clearly indicate the effects of parameters
such as 𝛿, 𝛼, and 𝛽 on 𝑆

∗, 𝑄∗, and TC
𝑖
(𝑡
∗

1
) (𝑖 = 1, 2),

respectively, we study the sensitivity of different parameters
under the studied inventory model.The sensitivity analysis is
performed on the base of Example 1, and the results are shown
in Tables 1–3, respectively.

From Table 1, we observe that inventory level 𝑆∗, order
quantity 𝑄

∗, and the total average cost TC
𝑖
(𝑡
∗

1
) (𝑖 = 1, 2)

gradually decrease as the shortage parameter 𝛿 increases
for the model, and the replenishment time 𝑡∗

1
increases as

𝛿 increases for the model starting with shortage. Also, we
observe that the values of 𝑡∗

1
, 𝑆∗, 𝑄∗, and TC(𝑡∗

1
) are slightly

sensitive to the changes of 𝛿.
From Table 2, we find that when the deterioration

parameter 𝛼 increases, then 𝑆∗, 𝑄∗, and TC(𝑡∗
1
) increase for

both models, and the replenishment time 𝑡∗
1
increases for the

model starting with shortage. We see that the values of 𝑡∗
1
, 𝑆∗,

𝑄
∗, and TC(𝑡∗

1
) all are temperately sensitive to the changes of

𝛼 for the model.
From Table 3, we find that 𝑆∗, 𝑄∗, and TC(𝑡∗

1
) increase

as the deterioration parameter 𝛽 increases for both models.
Also, we find that the replenishment time 𝑡∗

1
increases as 𝛽

increases for themodel startingwith shortage.We see that the
values of 𝑡∗

1
, 𝑆∗, 𝑄∗, and TC(𝑡∗

1
) all are moderately sensitive

to the changes of 𝛽 for the model.

5. Conclusion

This paper studies an inventory model for Weibull-
distributed deterioration with trapezoidal type demand rate
and partial backlogging. First, an optimal replenishment
strategy for deteriorating items with the model starting with
shortage is proposed.Then, numerical examples are provided
to illustrate the theoretical results. From the analysis of Tables
1–3, it can be found that the replenishment time point 𝑡∗

1
,

order quantity 𝑄
∗, and the total average cost TC(𝑡∗

1
) are

moderately sensitive to the changes of 𝛼 and 𝛽 and lowly
sensitive to the changes of 𝛿, respectively. However, if the
order cycle (𝑇) is a decision variable, such inventory model
will be of more practical significance, which provides us an
interesting topic in future.
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