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This study proposes a chaos robustness criterion for a kind of 2D piecewise smooth maps (2DPSMs). Using the chaos robustness
criterion, one can easily determine the robust chaos parameter regions for some 2DPSMs. Combining 2DPSM with a generalized
synchronization (GS) theorem, this study introduces a novel 6-dimensional discrete GS chaotic system. Based on the system, a 2'°-
word chaotic pseudorandom number generator (CPRNG) is designed. The key space of the CPRNG is larger than 2°°. Using the
FIPS 140-2 test suit/generalized FIPS 140-2 test suit tests the randomness of the 1000 key streams consists of 20,000 bits generated
by the CPRNG, the RC4 algorithm, and the ZUC algorithm, respectively. The numerical results show that the three algorithms do
not have significant differences. The CPRNG and a stream encryption scheme with avalanche effect (SESAE) are used to encrypt
an image. The results demonstrate that the CPRNG is able to generate the avalanche effects which are similar to those generated via
ideal CPRNGs. The SESAE with one-time-pad scheme makes any attackers have to use brute attacks to break our cryptographic

system.

1. Introduction

The dynamic behaviors of chaotic systems have some specific
features, such as their extreme sensitivity to the variables
of initial conditions and system parameters, pseudorandom
property, and ergodic and topological transitivity. Particu-
larly, the property of sensitive dependence on initial con-
ditions and parameters and robustness are suitably used in
information security field [1-4].

Piecewise smooth dynamical systems (PSDSs) can exhibit
complex dynamic phenomena, including chaos. PSDSs are
particularly relevant in many areas of engineering and applied
science. As early as in the last seventies, Feigin published
his pioneering work on the analysis of C-bifurcations in n-
dimensional PWS systems (e.g., see [5-7]), which proposed
the classification of the piecewise linear normal form for two-
and three-dimensional piecewise smooth continuous maps. It
makes it possible to follow closely the process of emergence
of complex structures due to parameter variation.

In 1999, Banerjee and Grebogi [8] redeveloped the clas-
sification proposed by Feigin, putting his earlier results in
the context of modern bifurcation analysis. Banerjee and
Grebogi investigated the various types of border collision
bifurcations that can occur in piecewise smooth maps by
deriving a piecewise affine approximation of the map in the
neighborhood of the border. In di Bernardo et al’s book
[9], the authors offer a very good survey of the rapidly
developing area of the dynamics of nonsmooth systems and
many beautiful examples of chaotic dynamics induced by
nonsmooth phenomena.

Practical applications in chaos-based cryptography
require the corresponding chaotic dynamical systems to be
robust with respect to system parameters. In [10], Banerjee et
al. have shown that such robust chaos can occur in piecewise
smooth maps and obtained the conditions of existence of
robust chaos. In [8], Banerjee and Grebogi have researched
two-dimensional piecewise smooth maps and proposed the
corresponding robust chaos theorems.



Since Matthews first proposed a chaotic encryption algo-
rithm [11], there are increasing researches of chaotic encryp-
tion technology [12-21]. In [14], a fast chaos-based image
encryption system with stream cipher structure is proposed.
The major core of the encryption system is a pseudorandom
key stream generator based on a cascade of chaotic maps,
serving the purpose of sequence generation and random
mixing. In [I8], a novel image encryption scheme was
presented, which uses a chaotic random bits generator. The
chaotic random bits generator is based on the coexistence
of two different synchronization phenomena. In [19], a novel
stream encryption scheme with avalanche effect (SESAE) was
introduced. Using the scheme and an ideal pseudorandom
number generator to generate a 2%-word key stream, one
can encrypt a plaintext such that by using any key stream
generated from a different seed to decrypt the ciphertext, the
decrypted plaintext will become an avalanche-like text which
has (2% - 1)/2¢ consecutive one’s with a high probability.

Based on one theorem proposed by Banerjee and Gre-
bogi, this paper introduces a chaos robustness criterion for
a kind of 2-dimensional piecewise smooth maps (2DPSMs)
and constructs a 2DPSM with robust chaos feature. Combing
the chaos generalized synchronization (GS) theorem with the
2DPSM, this paper proposes a 6-dimensional chaotic gener-
alized synchronization system (6DCGSS) and designs a 2'°-
word chaotic pseudorandom number generator (CPRNG). At
last, using the CPRNG and the SESAE encrypts an RGB image
Panda and shows the performance of the CPRNG.

The rest of this paper is organized as follows. Section 2
proposes the chaos robustness criterion for the 2DPSMs
and constructs a novel 2DPSM with robust chaos feature.
Section 3 introduces the definition and theorem for GS
and presents a novel 6DCGSS. Section 4 designs a 2'°-
word CPRNG and makes the statistic tests for the CPRNG.
Section 5 makes an image encryption experiment with
avalanche effect. Section 6 performs security analysis on the
proposed image encryption scheme. Finally, some conclud-
ing remarks are presented in Section 7.

2. The 2-Dimensional Piecewise Robust
Chaotic Map

2.1. The Robust Chaos of Normal Form. In [22], Nusse and
Yorke have proved that, using some coordinate transforma-
tions, any 2-dimensional piecewise smooth map (2DPSM)
can be reduced to the normal form in some small neighbor-
hood of the fixed point of the 2DPSM. The normal form is
defined as follows:

x(k+1)
(y(k+1))
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where p is a parameter and 77 z and 8}  are the traces and
determinants of the corresponding matrices of the linearized
map in the two subregions R; and Ry given by

RL={(x,y)€R2, x<0, yER},
()
RR:{(x,y)ERZ, x>0, yeR}.

Banerjee et al. have proposed the robust chaos theorem
on the normal form as follows [8, 10].

Theorem 1 (see [8, 10]). If

0<d; <1,

(3)
0<dg <1,
T, >1+6;,

(4)
T < —(1+8%),
01 7rA L = OrA i Aar + Oy — 8T + 0,7 - 81% 5)

- A,;6; >0,

where Ay, and A, are the eigenvalues of coefficient matrix,
then the 2DPSM has a bifurcation from no attractor to a chaotic
attractor. The chaotic attractor for u > 0 is robust.

Formulas (3)-(5) give the criteria of the chaotic attractor
appearing in 2DPSM (1). However, it will be difficult to deter-
mine the robust chaos regions for the system parameters.

Based on Theorem 1, this study proposes the following
theorem which provides parameters inequalities to deter-
mine easily the robust chaos regions for the system param-
eters.

Theorem 2. Let y > 0, y > 0. Denote
Tr=—(1+3)-y. (6)

If the following inequalities hold,

0<d, <1,
7)
0<dp <1,
T, > 140, (8)
1-6
T < (y+ L) )
(y +6g)

then conditions (3)-(5) hold. That is, 2DPSM (1) has a chaotic
attractor.

Proof. First, inequalities (6)-(8) are equivalent to conditions
(3)-(4). Second, we show that inequality (9) implies that
condition (5) holds.
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The eigenvalues of coefficient matrix are shown as follows:

T+ \[TE - 46,

Ayy=————
1L > >
(10)
T, — [T} — 46,
Ay = —
Let A = 17 — 40;; then
(1, + A) (1, — A) = 7} — A® = 45, 1)
Substituting (10) into (5) gives
B =68;1pA L — OpAipAar + 8pAy — 61 TR + 617, - 512‘
A A -A
D U S SRR TR S i s
2 2
- —A
T . NP i
A -A
:8LTR‘ TL+ _6R6L+8R' TL _6LTR
A 5 (12)
t1,0, 00 -8, LD HOLR 5 s,
2 2
1
+TLTR R S O ‘[Lzﬁ +§(5LTR

6, 48;) = % (210,70 — 26,8 + 710% — 20,75

+ 7,0, — 207 + A (8,1 — S +8,)].
Denote

C= A8, 15— Op +0,)
= |1} — 40, (8,13 — Oz +0,)
=12 - 46, (8 (1 + 1) - 8R) (13)
=- \/T% ~ 48, (8, (8 +y) +0r)

> —17 (8, (Og +y) +0g) = 7, (O 7r = O +01) .

Substituting (13) into (12) gives

B> 2[00, — 28,80 + 1,80 — 28,70 + 7,0, - 26
+ TL (8LTR - 6R + (SL)] = % [ZTL6LTR _ 28L6R

28T +21.6; - 28;] =0, [pTr —Or — TR+ 7L (14)
=08,] =68, [ty (1 +1) = (15 + 8) — ;]

=0, [t (Br+y) +(y+1)=8;] =6, [(y+1)

-y, - 1.0 -0, >0

3
15 _
= e1-8)12
14 .
1.3 |-
~
N
1.2
1.1 | 0.4
1 7
0

0.2
0
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FIGURE 1: The robust chaos regions of parameters {8;, 8y, 7} for
normal form (1) with y = 2.

because inequality (9) holds. In summary, this completes the
proof. O

Remark 3. Compared with inequalities (3)-(5), inequalities
(6)-(9) more easily determine the robust chaos regions for
the system parameters.

For any given nonnegative real numbers y, one can
determine the chaos regions on parameters {§;, 8, 7} from
inequalities (6)-(9). For example, choosing y = 2, the robust
chaos regions of 2DPSM are shown in Figure 1. The position
of the red dot in Figure 1is located in the robust chaos region
surrounding the two planes.

2.2. A Novel 2DPSM. Lety =1, = 0.9,6; = 0.09, 7, = 1.5,
Or = 0.2, and 1 = —2.2; then system (1) becomes

x(k+1)
(y(k+1))
) k
(15 1><x()>+0.9<1>, if x<o (15)
-0.09 0/ \ y(k) 0
(—2.2 1)<x(k)> <1>
+0.9 , if x>0.
0.2 0/ \ y(k) 0

The parameters satisfy the conditions given in Theorem 2:
u>0,
y >0,
0<d, <1,

0<ép<1,
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FIGURE 2: The evolution of state variables: (a) k — x(k) and (b) k — y(k). Here 1 < k < 5000.

T, > 146,
o< (y+1-9;)
t (y +0g)

(16)

Therefore system (15) has a chaotic attractor. Select the fol-
lowing initial conditions:

xy = 0.3,
17)
Yo = 0.01.

Then, the evolution of state variables k — x(k) and k — y(k)
is shown in Figures 2(a)-2(b). Extensive numerical simula-
tions show that the dynamic behaviors of the chaotic map
demonstrate chaotic attractor features as the theory expects.

3. A Novel 6DCGSS

3.1 Definition and Theorem on GS. First let us remember the
definition and theorem for GS.

Definition 4 (see [23]). Consider two systems

X(k+1)=F(X(K), (18)
Y(k+1)=G(Y(K),X, k), (19)
where
X (k) = (x, K),....x, (k)"
X, (k) = (x, (k),..., %, (k)"
Y(K) = (7 (K)o (0))' m<m, o0

FX(K) = (f; X(K)),.... f, X(K))",
G (Y (k),X,, (k)
= (91 (Y(R) . X, (K)o G (Y (). X, ()

If there exists a transformation H : R” — R, where

H (X, (k) = (b (X,,(K)).... b (X, (R))T, (2D)

and an open subset B = By X By ¢ R" x R™ such that
all trajectories of (18) and (19) with initial conditions (X(0),
Y(0)) € B satisfy

Jim [[H (X, (k) =Y 0] = 0, (22)

then the systems in (18) and (19) are said to be in GS with
respect to the transformation H(X,,,(k)). System (18) is called
the driving system; system (19) is said to be the driven system.

In order to construct the new discrete chaotic system
(DCS) with the generalized chaos synchronization (GCS)
property, we present the following theorem.

Theorem 5 (see [23]). Let X, X,,, Y, F(X), and G(Y,X,,) be
defined by (20).
Suppose that

(23)

H(X,) = (7 Vpreees V)

is an invertible transformation. If two systems (18) and (19) are
in GS via the transformation H(X,,), then the function G(Y,
X,,) given in (19) will have the following form:

G(Y.X,,) =H(F, (X)) -q(X,,Y), (24)
where
F, (X)=(f,X), HX)5..., £, (X))" (25)
and the function
q(X,,Y) o6

T

= (41 (X Y), @2 (X, Y) 55 G (X5 X))

guarantees that the zero solution of the following error equation
is asymptotically stable:

e(k+1)=H(X, (k+1)) - (Y(k+1))

=q(X,,Y).

(27)
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3.2. A Novel 6DCGSS. Firstly, we propose a novel 3-dimen-
sional chaotic system based on 2DPSM (15) and a trigono-
metric function:

x; (k+1)

x, (k+1)

x5 (k+1)

1.5x, (k) + x, (k) + 0.9
—0.09x;, (k)
sin (x; (k) + x, (k)) — cos (x5 (k)

, ifx (k) <0 (28)

-2.2x; (k) + x5 (k) + 0.9
-0.2x, (k)
sin (x; (k) + x;, (k)) — cos (x5 (k)

if x, (k) > 0.

2DPSM (15) is chaotic map, and trigonometric functions are
bounded function. Hence system (28) is chaotic.

Secondly, let the driving part of the 6DCGSS have the
following form with system (28):

x; (k+1)
X(k+1)=1x,(k+1) (29)
x5 (k+1).

In order to construct a GS driven system, define an invertible
transformation H : R* — R* by

H(X) = AX = (hy (X),hy (X),h, (X)), (30)
where
-3 7 4
A=| 6 -2 -2 (31)
5 0 6

is an invertible matrix. Now let the driven part have the form
Y0+ )= AX(K+ D=3 AXR®-Y ). (D)

From (32), it follows that g(X,Y) can be represented by
e(k)/9. It guarantees that the zero solution of the error equa-
tion (27) is asymptotically stable. From Theorem 5, systems
(29) and (32) are GS with respect to the transformation H = A
for any initial value (X(0),Y(0)) € R® x R>. Since H is
invertible, system (32) is also chaotic.

3.3. Numerical Simulations. Select the following initial con-
ditions:

X (0) = (0.3,0.01,0.2), (33)

Y (0) = AX (0) + 1. (34)

The chaotic orbits of the state variables {x,, x,, x5} for the first
5000 iterations are shown in Figures 3(a)-3(d). The evolution
of state variables k — x; (k), k — x,(k), and k — x5(k) is shown
in Figures 4(a)-4(c).

The chaotic orbits of the state variables {y,, y,, y;} for
the first 5000 iterations are shown in Figures 5(a)-5(d). The
evolution of state variables k — y,(k), k — y,(k), and k — y;(k)
is shown in Figures 6(a)-6(c). The dynamic behaviors of the
chaotic map demonstrate chaotic attractor characteristics.

Figures 7(a)-7(c) show that although the initial condition
(34) has a perturbation, X(k) and Y(k) are rapidly conversing
into generalized synchronization as Theorem 5 predicts.

4. Bit String CPRNG and
Pseudorandomness Tests

4.1. Chaotic Pseudorandom Number Generator. Denote

X;={x;(k) | k=1,2,...,N},
(35)
Y, ={y; (k)| k=1,2,...,N},

where i = 1,2,3 and x;’s and y;’s are generated by (29) and
(32). Introduce a transformation T} : R — {0,1,...,2'° - 1}
which transforms the chaotic streams of systems (35) into key
streams:

P=T,(S)

: 36
= mod(round <LS—m—m(.S)’216>>. (6
max (S) — min (S)

Here
S=X,+X5-Y,-Y,+Y;,, (37)

where L = 10".

Now we can design a CPRNG based on the transforma-
tions (36)-(37) and GS systems (29) and (32). The seeds of the
CPRNG are the initial conditions of the GS systems, which
can be chosen via random number generators. Therefore the
output key streams of the CPRNG can be obtained via (36),
GS systems (29) and (32).

4.2. Pseudorandomness Tests. The FIPS 140-2 test consists of
four subtests: Monobit Test, Poker Test, Runs Test, and Long
Runs Test. Each test needs a single stream of 20,000 one and
zero bits from the key stream generator. Any failure in the
first three tests means that the corresponding quantity of the
sequences falls out the required intervals listed in the second
column in Table 1. The Long Runs Test is passed if there are
no runs of length 26 or more.

It has been pointed out that the required intervals of the
Monotone test and the Porker Test correspond to significant
« = 107* for the normal cumulative distribution and the
yx* distribution, respectively, and the required intervals of
the Runs Tests correspond approximately to the significant
« = 1.6 x 1077 for the normal cumulative distribution
[24, 25]. If we select the significant & = 107 of all tests,
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x3(k)

x, (k)
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the corresponding accepted intervals are listed in the third
column in Table 1.

According to Golomb’s three postulates on the random-
ness [26], the ideal values of the first three tests should be
those listed in the 4th column in Table 1.

In order to test the pseudorandomness of the CPRNG, we
transform the 16-bit stream defined by (36) to the {0, 1} bit
stream as follows.

Construct a transform T, : {0, L...,2"% -1} -

which is defined by

{0, 1}

T, =TyoTy (38)

x, (k)
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0.1}

-0.1F

-0.2

x5 (k)
(d)
FIGURE 3: Chaotic trajectories of variables: (a) x, (k) —x, (k) —x5(k), (b) x, (k) —x,(k), (c) x, (k) —x5(k), and (d) x,(k)—x;(k). Here 1 < k < 5000.

s.t. for all y € {0, 1,...,2% - l}N:
T, (y) = dec2bin (y). (39)
Let z = dec2bin(Y); then
Ty (z)=2(), (40)

where dec2bin and z(:) are both Matlab commands. Then the

transformation T : R — {0, 1} is defined via
T=T,oT,. (41)

The FIPS 140-2 test is used to check 1,000 key streams ran-
domly generated by CPRNG with random perturbing of the
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FIGURE 4: The evolution of state variables: (a) k — x, (k), (b) k — x,(k), and (c) k — x;(k). Here 1 < k < 5000.

TaBLE 1: The required intervals of the FIPS 140-2 Monobit Test,
Porker Tests, Runs Test. Here, MT, PT, and LT represent the Monobit
Test, the Porker Test, and the Long Runs Test, respectively. k rep-
resents the length of the run of a tested sequence. y” DT represents
% distribution.

Test FIPS 140-2 a=10" Golomb’s
item Required intervals  Accepted intervals ~ postulates
MT 9,725~10,275 9,725~10,275 10000
PT 2.16~46.17 2.16~46.17 x’ DT
LT <26 <26 —

k Run Test Run Test Run Test
1 2,315~2,685 2,362~2,638 2,500

2 1,114~1,386 1,153~1,347 1,250

3 527~723 556~694 625

4 240~384 264~361 313

5 103~209 122~191 156

6+ 103~209 122~191 156

initial conditions X(0), Y(0), the parameters {7}, 8, O, ¢ ¥}
and the parameters of matrix A = («; ;) in the range |e| €
[107'°,107"], respectively.

All sequences pass the FIPS 140-2 test, and there are
12 sequences failing to pass the G FIPS 140-2 test. The sta-
tistic test results are listed in the 3rd column in Table 2, in
which the statistic results are described by mean values +
standard deviation (Mean + SD). In [27], a new CPRNGI was
proposed. The test results show that there are 2 sequences
failing to pass the FIPS 140-2 test, and there are 23 sequences
failing to pass the G FIPS 140-2 test. The statistic test results
are listed in the 4th column in Table 2.

The RC4 was designed by Rivest of the RSA Security in
1987, which has been widely used in popular protocols such
as Secure Sockets. The RC4 algorithm PRNG can be designed
via Matlab commands: as shown in Algorithm 1.

Here, “randi([0 254],1,255)” generates a vector of uni-
formly distributed random integers {0, 1, ..., 254} of dimen-
sion 255; “mod” means taking modulus after division;
“zeros(1, N)” is a zero row vector of dimension N.

N=20000;
K=randi ([0 254],1,255);
S=[0:255-1];j=0;

for i=1:255
j=mod (j+S(i)+K(i),255);
Sk=S(j+1);
S(j+1)=S(i);
S(i)=Sk;
end

C=zeros(1,N); j=0;i=0; k=1;
for 1=1:N/8
i=mod (i+1,255);
j=mod (j+S(i+1),255);
Sk=8(j+1);
S(j+1)=S(i+1);
S(i+1)=Sk;
C(1)=S(mod(S(j+1)+S(i+1),255)+1);
end
C=(dec2bin(C))’;
Cc=C(:);
C=bin2dec(C);

ALGORITHM 1

Consequently, the RC4 algorithm PRNG is designed.
Now, the FIPS 140-2 test is used to test the 1,000 key streams
randomly generated by RC4 algorithm. Results show that
1000 sequences all passed the FIPS 140-2 test criteria and
there are 18 sequences failing to pass the G FIPS 140-2 test.
The statistic test results are listed in the 5th column in Table 2.

ZUC is a stream cipher that forms the heart of the
third-generation partnership project (3 GPP) confidentiality
algorithm 128-EEA3 and the 3GPP integrity algorithm 128-
EIA3. Now, the FIPS 140-2 test suit is used to test the
1,000 key streams randomly generated by the ZUC algorithm
program (see Appendix A in [28]). Results show that the 1000
sequences all passed the FIPS 140-2 test criteria, and there are
21 sequences failing to pass the G FIPS 140-2 test criteria. The
statistic test results are listed in the 6th column in Table 2.
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(d)

FIGURE 5: Chaotic trajectories of variables: (a) y, (k)—y,(k)— y;(k), (b) y,(k)—y,(k), (c) y,(k)— y;(k), and (d) y,(k)—y;(k). Here 1 < k < 5000.

Observing the statistical properties of the pseudoran-
domness of the sequences generated via the new CPRNG,
RC4 algorithm, and the ZUC algorithm, we can find that
the three algorithms do not have significant differences. And
compared with CPRNGI, the new CPRNG has better ran-
domness performance.

4.3. Key Space. The key set parameters of CPRNG include
the initial conditions X(0), Y(0), the parameters set {r;,6;,
g, > v}, and the matrix A = (« ;). It can be proved that if the
perturbation matrix A = (J; j) satisfies

|6,.,j| < 0.98217 (42)

the matrix A + A is still invertible. Therefore the CPRNG has
3 + 3 + 5+ 9 key parameters denoted by

K, = {ki, ks, ... ko) (43)
Let the key set be perturbed by
K, (A) =K+ [6,,65,...,8], (44)
where

107 <|5] <107, i=1,...,20. (45)

The Matlab platform uses double precision decimal com-
putations. That means that each computed decimal number
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TABLE 2: The tested Mean + SD of the FIPS 140-2 tested values of 1,000 key streams generated by the new CPRNG, CPRNGI [27], the RC4,
and ZUC CPRNG. Here, MT, PT, and LT represent Monobit Test, Poker Test, and Long Runs Test. SD represents the standard diviation.

Test item Bits CPRNG CPRNGI1 RC4 ZUC
Mean + SD Mean + SD Mean + SD Mean + SD
MT 0 10000 + 71.328 10009 + 73.288 10001 +£71.472 9998.4 + 71.843
9999.4 + 71.328 9991.2 + 73.280 9999.2 + 71.278 10002 + 71.843
PT — 15.040 + 5.6514 15.208 + 5.5133 15.022 + 5.4730 15.043 + 5.5491
LT 0 13.587 +1.8830 13.874 £ 1.8710 14.004 + 2.0635 13.488 +1.829
1 13.558 +1.7747 13.699 + 2.0661 13.596 + 1.8759 13.595 +1.9305
k Bits Run Test Run Test Run Test Run Test
1 0 2499.6 + 46.302 2496.4 + 46.026 2501.1 + 49.008 2501.9 + 45.735
1 2498.8 + 45.166 2499.5 + 47.159 2500.9 + 46.437 2502.7 £ 46.121
5 0 1249.9 + 31.556 1250.2 + 32.381 1251.2 + 31.473 1252.1 + 32.606
1 1250.5 + 32.686 1247.6 +32.23 1249.8 + 32.095 1249.5 + 32.221
3 0 624.36 + 22.817 623.05 + 22.889 624.67 + 22.545 624.09 + 22.648
1 625.75 + 23.483 624.86 + 23.33 625.35 + 23.071 624.64 + 23.455
4 0 312.86 +16.369 312.34 + 16.687 312.50 +16.961 312.56 + 16.748
1 312.49 +16.970 312.21 + 16.986 312.04 +16.874 312.72 +16.506
5 0 156.70 +12.068 156.21 + 12.303 156.00 +12.713 155.65 +12.097
1 155.74 +12.134 155.711 + 11.773 155.94 +12.245 156.66 +12.369
6t 0 156.03 +12.079 157.94 + 11.808 156.21 + 12.331 155.75 +11.719
1 156.10 + 11.785 156.27 + 12.441 156.29 +12.372 155.82 + 11.497

yi(k)

y2(k)

2000

3000

1000 4000 5000 0 1000 2000 3000 4000 5000
k k
() (b)
5
. 0
X -5
L -10

1000

2000 3000

(c)

4000

5000

FIGURE 6: The evolution of state variables: (a) k — y,(k), (b) k — y,(k), and (c) k — y5(k). Here 1 < k < 5000.

has 16 bits’ accuracy. Therefore for each perturbed key param-
eter k; + 0; (please see formula (44)), |6;] € [107'%,107]; that
is, 6, has a representation:

0; = 0.0a,a5 - - - aye, (46)
where

a; €0,1,...,9]. (47)

Therefore, there are larger 10'® possible key values. According
to the permutation and combination theory, our 20 keys have
a key space which is larger than 10" > 2%%°,

4.4. The Correlation of Key Stream. Now we compare the
difference between the key stream S = T'(S) with 20000-code
length generated by key set (43) with the key streams S,’s
generated by perturbed key set (44), respectively.

The comparing results are shown in the 3rd column in
Table 3. Observe that the average percent of different codes is
50.029%. It is very close to the ideal different value of 50%.
Here SV represents statistic values, DC represents different
codes, and CC represents correlation coefficients between the
key stream and the perturbed key streams.

Let us compare 1000 different codes with length 20000
and the correlation coefficients of the key streams S5, S, s,
S,’s, and S,’s generated via our CPRNG, the CPRNGI [27],
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FIGURE 7: The state vectors X and Y are in generalized synchronization with respect to the transformation H. (a) h,(X(k)) — y,(k), (b)
h,(X(k)) = y,(k), and (c) h;(X(k)) — y;(k). Here 1 < k < 5000.

TaBLE 3: The statistic data for the percentages of the codes of the key streams variations between Sand S,’s, S; and S, 5, S,y and S,’s, and S
and S.’s.

Item NY S,s Sip8 S,’s S.’s
Min 48.995% 48.625% 48.765% 48.845%

DC Mean 50.029% 49.995% 49.987% 50.014%
Max 50.950% 51.020% 51.230% 51.120%
Min 0.0000030 0.0000007 0.0000018 0.0000022

CC Mean 0.0055411 0.0054141 0.0057124 0.0055848

Max 0.0201125 0.027542 0.0246616 0.0230973
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TABLE 4: The statistic data for the percentages of the codes of the key streams variations between Sand S,,’s, S, and S,,’s, S,, and S,,,’s, and S,

andS,’s.

Item Sv S S, S0 S
Min 48.920% 48.955% 48.855% 49.050%

DC Mean 49.989% 50.016% 49.980% 50.005%
Max 51.265% 51.110% 50.900% 51.050%
Min 0.0000054 0.0000049 0.0000077 0.0000010

CC Mean 0.0056671 0.0055194 0.0058262 0.0056874
Max 0.0252603 0.0222300 0.0228920 0.0209927

RC4 algorithm PRNG, and ZUC algorithm PRNG, respec-
tively. The comparing results are shown in Table 3. Compare
the unperturbed key streams S, S; [27], S,,, and S, of each
PRNG with the 1000 key streams S,,’s generated by the Matlab
function randi([0 1], 1,20000). The comparing results are
shown in Table 4.

The results suggest that the key streams generated via
the perturbed keys of our CPRNG are almost completely
independent.

5. A SESAE Experiment on CPRNG

Based on the 2'®-word CPRNG defined by (36) and the
stream encryption scheme with avalanche effect (SESAE)
[19], this subsection investigates an image encryption exam-
ple. And the secret key is changed for each plaintext.

First, let us remember the definition of SESAE.

Definition 6 (see [19]). Let P = {p,, p,,..., p,} be a binary
key stream with d-bit segments generated by a pseudoran-
dom number generator (PRNG), let M = {m,,m,,...,m,}
be a binary plaintext steam, and let C = {¢,¢,,...,¢,} be a
ciphertext stream. Then the stream encryption scheme with
avalanche effect (SESAE) is described as follows.

(1) The ciphertext C = E(M, P) is determined by

~pp it m=1,

where ~ p; is defined as the bit string obtained by
replacing all “1”s in p; with “0”s and all “0”s in p; with
“Is.
(2) The corresponding decrypted plaintext M = E~'(C,
P) is determined by
0, if p;=g¢
m; = (49)
1, if p; #¢.

Definition 7 (see [19]). A PRNG, S, which generates binary d-
bit key streams, is called an ideal PRNG, if S has the following
properties:
(1) The period of any key stream generated by the PRNG
islarger than 2. Its seed space and key space are larger
than 212,

(2) In one period of pseudorandom key streams gener-
ated by the PRNG, the distribution of different d-bit
segments in the key stream is homogenous. That is,
if the period p = n x 2%, then the number of each
different d-bit segment is equal to #. If the period p
is not an integer multiple of 2%, then the difference
between the numbers of different d-bit segments is at
most one.

(3) The two key streams P, P, generated by any two

different seeds have (Zd - 1)/2% x 100% different d-
bit segments.

Now let us consider a SESAE experiment on CPRNG,
encrypting and decrypting an RGB image “Panda” with 128 x
128 pixels as shown in Figure 8(a).

(1) A sender transforms the image Panda to a binary
plaintext steam M = {m,,m,,...,m,}, where n =
128 x 128 x 3 x 8.

(2) The sender uses CPRNG (36) with initial conditions
(33) and (34) to generate a 2'% word key stream with
length ©+1000. And then drop the first 1000 iterative
values to obtain a key stream:

P={pi,py.osPa}- (50)

(3) The sender uses formula (48) to encrypt the plaintext
steam M, obtaining a ciphertext C = E(M, P).

(4) The receiver uses formula (49) to decrypt the cipher-
text and obtain a decrypted plaintext image M =
E7Y(C, P) without errors (see Figure 8(b)).

(5) Randomly disturb initial conditions (33) and (34),
the parameters, and matrix (31), for 1000 times in
the range le| € [107%,107!], to obtain key streams
(dropping the first 1000 iterative values):

P, i=1,2,...,1000. (51)

(6) Use {P),..., Py} to decrypt the ciphertext and
obtain decrypted plaintext, respectively:

M;=E"'(C,P), i=1,...,1000. (52)

(7) Change M, to RGB images.
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FIGURE 8: (a) Original image beach. (b) Decrypted image without error. Ten decrypted images via key streams generated with slightly
perturbed initial conditions and system parameters in the range [107'%,107']: () Iy1s (d) Iy, (e) Iy, () Iy, (8) 15, (W) Ipsg, (i) I35, (G)

Iy (K) Iyy,and (1) Ig .

In order to increase the security of the SESAE, we now
propose one-time-pad scheme as follows: Let K, ¢ R" be
the seed space (i.e., perturbed initial conditions (33) and
(34)). Sender Alice and receiver Bob share a secret function
f: K, — K,. In the simplest case, f can be chosen as an
invertible matrix. Before each communication, Alice selects
randomly an element k € K, and sends it to Bob. Then, they
can use f as the seed for one-time encryption.

6. Security Analysis

A good encryption scheme should be able to resist all kinds
of known attacks, such as statistical attack and differential
attack. This study has performed some security analyses on
the proposed image encryption scheme, including key space
analysis, key sensitivity analysis, and correlation analysis.
They have demonstrated the security of the SESAE.

6.1. Key Space Analysis. The size of the key space is the total
number of different keys that can be used in the encryption.
The Matlab platform uses double precision decimal compu-
tations. That means that each computed decimal number has
16 bits’ accuracy.

Therefore, the size of the key space for our 20 keys is larger
than 10"°"%° > 2°%°_ The key space is large enough to make
brute-force attacks infeasible.

6.2. Key Sensitivity Analysis. After changing M; to RGB
images, all images become almost pure white images. There
are total of 393216 {0,1} codes in each decrypted image.
Among the decrypted images, the minimum number of 0s
in the decrypted images is 0 and the maximum one is 16. Let
I; j denote the jth image having number “i” of 0 codes.

The first five decrypted images with minimum zero codes
and the last five images with maximum zero codes (denoted
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TABLE 5: The statistical data of the first 10 images with minimum “0”s codes and the last 10 decrypted images with maximum “0”s codes.

Images N, N, Percentage Images N, N, Percentage
Iy, 0 0 100 I3, 13 13 99.9966
Iy, 0 0 100 Iis, 13 13 99.9966
I, 1 1 99.9997 I, 13 13 99.9966
I, 1 1 99.9997 I, 13 13 99.9966
I, 1 1 99.9997 L5 13 13 99.9966
I, 1 1 99.9997 I 13 13 99.9966
Is 1 1 99.9997 I, 13 13 99.9966
I 1 1 99.9997 Iy, 14 14 99.9964
I, 1 1 99.9997 Ly, 14 14 99.9964
I g 1 1 99.9997 L6, 16 16 99.9959

TaBLE 6: Differences between the original keystream S, and the

keystreams S, ;, measured by norm IS, — S; ;[I.

IS, = S,,1(x10)
SS,I S4,1 S4,2 S4,3 S4,4
So 0.25520 0.28385 0.24254 0.27552 0.24290
SZ4,1 824,2 SZS,l 525,2 827,1
So 0.5253 0.30803 0.28799 0.23376 0.29791

by Iy 1> Tos Iy 1o Ty oo 1y 35 11z 60 113 75 11a1s 1140 and gy, resp.)
are shown in Figures 8(c)-8(1), respectively.

Table 5 lists the statistical data of the first 10 decrypted
images with minimum “0”s codes and the last 10 decrypted
images with maximum “0”s codes. Here N; and N, represent
the number of “0”s and the number of the color pixels with
brightness less than 255, respectively. Percentage represents
the percentage of “1” codes in the decrypted image.

Observe that the percentages of the numbers of “1” codes
are in the range [99.9959%, 100%], which is very close to the
ideal value (2'° - 1)/2"° x 100% =~ 99.9984% [19].

In summary, the simulation shows that using the image
encrypting algorithm to encrypt RGB images is able to
generate encrypted images with significant avalanche effects
and be sensitive with respect to the secret key.

6.3. Correlation Analysis. Table 6 lists some statistic data of
the norms between the original key stream S, and the key
stream §; ; used in the ten decrypted images shown in Figures
8(c)-8(1), respectively.

The comparison results show that in the norms between
the original image and the corresponding decrypted images
there are no significant correlations.

7. Conclusions

The main results of this paper are summarized as follows:

(1) It proposes a chaos robustness criterion theorem
which provides parameter inequalities to determine
easily the robust chaos parameters regions for the
2DPSM. And a novel 2DPSM is designed to illustrate
the theorem.

(2) It constructs a 6-dimensional chaotic GS system
(6DCGSS), based on the 2DPSM and the GS theorem.
Using the 6DCGSS, we design a 2'°-word CPRNG.
The key space of the CPRNG is larger than 2°°°, which
is large enough against brute-force attacks.

(3) It compares the testing results by the FIPS 140-2
test suit/generalized FIPS 140-2 test suit for 1000 key
streams consisting of 20,000 bits generated by the
CPRNG, the RC4 algorithm, and the ZUC algorithm,
respectively. The numerical results show that the three
algorithms do not have significant differences. And
compared with CPRNG], the new CPRNG has better
randomness performance.

(4) It shows an image encryption example by using the
CPRNG and SESAE. The simulation results suggest
that the decrypted ciphertext will become a monotone
white text if a key stream is used with different seeds
generated by CPRNG to decrypt the ciphertext. The
results show that the encrypted image has significant
avalanche effect.

Furthermore, to prevent opponents’ attacks, we propose
“one-time-pad” scheme. In summary, chaotic map criterion
Theorem 2 and generalized synchronization Theorem 5 make
us able to design CPRNGs with large key space, which have
function similar to one-time-pad scheme.
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