
Research Article
A Novel Fuzzy Sliding-Mode Control for
Discrete-Time Uncertain System

T. H. Yan,1 B. Wu,1 B. He,2 W. H. Li,3 and R. B. Wang1

1School of Mechanical & Electrical Engineering, China Jiliang University, Hangzhou 310018, China
2School of Information Science and Engineering College, Ocean University of China, Qingdao 266100, China
3School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW, Australia

Correspondence should be addressed to T. H. Yan; thyan@163.com

Received 19 April 2016; Revised 20 July 2016; Accepted 10 August 2016

Academic Editor: Yan-Jun Liu

Copyright © 2016 T. H. Yan et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers the sliding-mode control problem for discrete-time uncertain systems. It begins by presenting a discrete
variable speed reaching law and a discrete-time sliding-mode controller (DSMC) designed using the proposed reaching law,
followed by an analysis of their stability and dynamic performance. A sliding-mode controller with simple fuzzy logic is then
proposed to further strengthen the dynamic performance of the proposed sliding-mode controller. Finally, the presented DSMC
and the DSMCwith fuzzy control for adjusting the parameters in this paper are compared with one of the previous proposed classic
DSMC systems. The results of this simulation show that the DSMC presented here can suppress chatter and ensure good dynamic
performances when fuzzy logic is used to tune the parameters.

1. Introduction

A sliding-mode control (SMC) system has proved to be
an effective control strategy for incompletely modeled or
uncertain systems, so much so that many relevant results can
be found in various publications, for example, [1–5]. SMC is
a popular robust strategy which can offer good robustness
against the parameter uncertainties and external disturbance
by limiting the effect in a bounded area. The main advantage
of SMC is that it can guarantee the stability of the system by
switching the control law.Movement in general SMC systems
can be divided into a reaching phase and a sliding mode [6]
because the basic idea of SMC is to drive system states onto
a predefined switching surface and move on it to the point
of origin after the system state reaches the switching surface.
The need to research SMC in discrete time (DSMC) is due
to the widespread use of computers for the control problem.
In recent years, DSMC has received a great deal of research
interests. A new method of DSMC is proposed in [7]. The
algorithm comprises not only functions in the sliding variable
but also functions in other variables. It provided a general
method to design reaching law. The ideal reaching law is

proposed in [8] which used LMI to list sufficient conditions
of switching surface existence in Delta operator system, and
the result was compared with the index reaching law. Fast
convergence and the attenuation of disturbance are studied
in [9–11]. In [9], a new controller is present which is able to
handle the effect of interconnection for large-scale systems
and unmatched uncertainty. It also shows a fast convergence
to the desired value. In [10, 11], quasi-sliding-mode control
was proposed to the system which has eternal disturbance.
Fast convergence and small chatting are ensured by using
these two algorithms. The applications of DSMC in practical
systems are also studied in [12, 13] which study the SMC on
servo system with external disturbance.

However, its major drawback in practical applications is
that the system trajectories of DSMC systems cannot reach
their origin. They only tend to reach a chattering stage
surrounding the origin [14–16]. Numerous methods have
been developed to eliminate this phenomenon in DSMC [17–
19]; for instance, in [18], robustness is ensured and chattering
is eliminated by using an optimal integral sliding surface. An
output-feedback quasi-sliding-mode control scheme is pro-
posed in [19] which eliminates the chattering phenomenon
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and also ensures the uncertainties and disturbances are
robust. Bartoszewicz designed a quasi-sliding-mode con-
troller for a discrete-time system in [20] that can reduce
chattering caused by high frequency. Qu et al. proposed a
DSMCwith a disturbance compensator in [10] that obviously
reduced chattering. A lot of effort has beenmade to overcome
the chattering problem, such as a state observer, adaptive
techniques, and an intelligent control method [21–25]. Some
other methods also can be applied into DSMC to overcome
chattering, like the neural network in [26] which designed
the adaptive adjusting parameters in scalar form to reduce
the online computation burden and can adjust the sliding
surface dynamically and the genetic algorithm in [27] which
can optimize the parameters in sliding-mode controller.

Fuzzy control (FC) has been widely used in many prac-
tical systems [28–33]. It is a technique that requires expert
knowledge to design a controller which is amodel-free design
method that is insensitive to variations in parameters and
external disturbances. In [29], an adaptive fuzzy sliding-
mode control is used for nonlinear systems to estimate
the unknown gain of the switching control. A fuzzy basis
function network is used to approximate the unknown
dynamics of a robot with two arms [30] and a fuzzy adaptive
state observer is designed to estimate the unmeasured state
in [32]. Fuzzy control has been widely used to adaptive
parameters and optimal control [34–41]. An adaptive fuzzy
decentralized output-feedback controller was designed for a
class of switched nonlinear large-scale systems which contain
the unknown nonlinearities and dead zone in [34]. Chen et
al. [35] proposed an adaptive tracking control for a class of
nonlinear stochastic systems with unknown functions. The
fuzzy-neural networks were used to approximate unknown
functions. In [36], Chen et al. considered the problem of
observer-based adaptive fuzzy control for a class of non-
linear time-delay systems in nonstrict-feedback form. The
fuzzy logic systems were used to approximate the unknown
nonlinear functions. In [37], a hybrid task-space trajectory
and force tracking based on fuzzy system and adaptive
mechanism were proposed to compensate for the external
perturbation, kinematics, and dynamic uncertainties. Liu et
al. [38] proposed an adaptive fuzzy optimal control for a
class of unknown nonlinear discrete-time systems which
contained unknown functions and nonsymmetric dead zone.
The fuzzy logic systems were employed to approximate
the functions in the systems. In [39], an adaptive fuzzy
inverse compensation control method was proposed for
uncertain nonlinear system, and an adaptive fuzzy controller
was developed to establish the close-loop system stability.
For the Henon Mapping chaotic system, Gao and Liu [40]
proposed a direct heuristic dynamic programming to handle
the optimal tracking control, and the fuzzy logic system is
applied to measure the long-term utility function. In [41],
an adaptive fuzzy controller was proposed for uncertain
nonlinear systems with backlash. The fuzzy logic systems
were used to approximate the unknown functions, unknown
backlash, and backlash inversion.One feature of fuzzy control
is that “if-then” rules are based on expert knowledge [42, 43].
Fuzzy sliding-mode control (FSMC) combines two theories
of FC and SMC, which means the fuzzy control method

can optimize SMC dynamically in more detail [44–46]. For
example, when a system trajectory is leaving the switching
surface, it can provide a large control force to drive the
trajectory back to the switching surface according to fuzzy
rules.

In order to reduce the chattering and accelerating con-
vergent speed in discrete-time uncertain systems, a new
reaching law is proposed for discrete-time systems with
external disturbances. It begins by introducing a discrete-
time system with external disturbances, the proposed SMC,
and then a FMSC is proposed to improve the reaching phase.
This method guarantees the robust behavior of the system,
whereas FSMC improves system performance based on a
performance analysis. Simulated examples are given to verify
the proposed method, followed by the conclusions.

2. System Description

The general description of a single-input uncertain system is
as follows:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐷𝑓, (1)

where 𝑥 = [𝑥

1
𝑥

2
⋅ ⋅ ⋅ 𝑥

𝑛
]

𝑇
∈ 𝑅

𝑛 is the state, 𝑢 ∈ 𝑅

1 is the
control input, and 𝑓 ∈ 𝑅

𝑛 denotes the external disturbance.
𝐴, 𝐵, and 𝐷 are known real constant matrices of appropriate
dimensions. Without losing any generality, it is assumed that
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𝑓 is bounded; that is,
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where𝑀 is a positive and known constant. It should be noted
that the uncertainty means the system contains external
disturbance in our system.

In order to alleviate chattering, the sample hold effects
should be taken into account, so by applying zero-order-hold
(ZOH) sampling [47], the discrete-time description of system
(1) can be written as

𝑥 (𝑘 + 1) = 𝐺𝑥 (𝑘) + 𝐻𝑢 (𝑘) + 𝑑 (𝑘) , (3)

where 𝑥(𝑘) = 𝑥(𝑘𝑇), 𝐺 = 𝑒

𝐴𝑇,𝐻 = ∫
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period.
The goal here is to design a suitable FSMC controller for

system (3). The switching function 𝑠(𝑘) is defined as

𝑠 (𝑘) = 𝐶

𝑇
𝑥 (𝑘) =
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where𝐶 = [𝑐

1
𝑐

2
⋅ ⋅ ⋅ 𝑐

𝑛
]

𝑇 is designed to drive the system to
the origin when travelling along the switching surface:

𝑆 = {𝑥 (𝑘) | 𝐶

𝑇
𝑥 (𝑘) = 0} . (5)

The control object is to drive the system to the switching
surface 𝑆 defined in (5) and travel to the origin point along
the switching surface 𝑆.



Mathematical Problems in Engineering 3

3. Fuzzy Sliding-Mode Control Design

Thevariable speed reaching law is a kind of common reaching
law [48] that can effectively overcome the chattering problem;
its continuous form is

̇𝑠 = −𝜀 ‖𝑥‖1
sgn (𝑠) (6)

and its discrete form is

𝑠 (𝑘 + 1) − 𝑠 (𝑘) = −𝜀𝑇 ‖𝑥 (𝑘)‖

1
sgn (𝑠 (𝑘)) , (7)

where 𝜀 > 0, ‖𝑥(𝑘)‖
1
is the state norm, and 𝑇 is the sampling

period.
From this reaching law, we get the following controller for

system (3):

𝑢 (𝑘) = (𝐶

𝑇
𝐻)

−1

(𝑠 (𝑘) − 𝜀𝑇 ‖𝑥 (𝑘)‖

1
sgn (𝑠 (𝑘))

− 𝐶

𝑇
𝐺𝑥 (𝑘) − 𝐶

𝑇
𝑑 (𝑘)) .

(8)

The variable speed reaching law (7) can overcome the
chattering problem, but there are two shortages: one is that
the chattering will be serious at the beginning of the reaching
phase, and the other is that the reaching speed is too slow
near the switching surface.These two shortages will seriously
affect the system performance.

3.1. The New Reaching Law Design. The discrete form of the
improved variable speed reaching law is

𝑠 (𝑘 + 1) − 𝑠 (𝑘) = −𝛼𝑇 log
2
(|𝑠 (𝑘)|

𝛽
+ 1) sgn (𝑠 (𝑘)) , (9)

where 𝛼, 𝛽 > 0.
From this reaching law, we get the following controller for

system (3):
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𝑇
𝐻)
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(10)

To ensure the system can meet its performance require-
ments, we analyzed the system as follows.

3.2. Stability Analysis. To design a sliding-mode controller
for discrete-time uncertain system, the following two con-
ditions should be met to guarantee the system trajectory
reaching the switching surface and converge to zero in a
limited time [49]:

(𝑠 (𝑘 + 1) − 𝑠 (𝑘)) 𝑠 (𝑘) < 0

(𝑠 (𝑘 + 1) + 𝑠 (𝑘)) 𝑠 (𝑘) > 0.

(11)

Substituting the reaching law (9) to condition (11) yields
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(12)

When 𝑠(𝑘) is very small, by using the equivalent infinitesimal,
we can get

(𝑠 (𝑘 + 1) + 𝑠 (𝑘)) 𝑠 (𝑘) ≈ 2 |𝑠 (𝑘)|

2
− 𝛼𝛽𝑇 |𝑠 (𝑘)|

2

= (2 − 𝛼𝛽𝑇) |𝑠 (𝑘)|

2
.

(13)

To guarantee (𝑠(𝑘 + 1) + 𝑠(𝑘))𝑠(𝑘) > 0, 𝛼𝛽𝑇must be less than
2. When 𝑠(𝑘) is big, we get the following formula:

(𝑠 (𝑘 + 1) + 𝑠 (𝑘)) 𝑠 (𝑘) > 2 |𝑠 (𝑘)|

2
− 𝛼𝑇 |𝑠 (𝑘)|

2

= (2 − 𝛼𝑇) |𝑠 (𝑘)|

2
.

(14)

So if 𝛼𝑇 < 2, then (𝑠(𝑘 + 1) + 𝑠(𝑘))𝑠(𝑘) > 0 is guaranteed. So
when 𝛼𝛽𝑇 < 2 and 𝛼𝑇 < 2, the system trajectory can reach
the switching surface and converge to zero in a limited time.

Specifically, when 𝑠(𝑘) = 0, we can get 𝑠(𝑘 + 1) = 0 from
(9). So in the next time, 𝑠(𝑘)will be zero all the time if there is
no disturbance.Therefore, the proposed reaching law (9) can
meet conditions (11), which means that the switching surface
is existent and the system trajectory will reach the surface in
a limited time.

According to the abovementioned analysis, the system
trajectory will enter a region near the switching surface and
will not go away. So we can conclude that system (3) with
controller (10) is stable and it will reach the surface in a
limited time.

3.3. Dynamic Performance Analysis. From reaching law (9),
we can obtain the following two formulas:

𝑠 (𝑘 + 1) = −𝛼𝑇 log
2
(|𝑠 (𝑘)|

𝛽
+ 1) , when 𝑠 (𝑘) = 0

+

𝑠 (𝑘 + 1) = 𝛼𝑇 log
2
(|𝑠 (𝑘)|

𝛽
+ 1) , when 𝑠 (𝑘) = 0

−
.

(15)

We define the switching region as

𝑆

Δ
= {𝑥 (𝑘) | −Δ < 𝐶

𝑇
𝑥 (𝑘) < Δ} , (16)

where Δ = 𝛼𝑇log
2
(|𝑠(𝑘)|

𝛽
+ 1). The width of the switching

region is

2Δ = 2𝛼𝑇 log
2
(|𝑠 (𝑘)|

𝛽
+ 1) . (17)

Meanwhile, the width in reaching law (7) is 2𝜀𝑇‖𝑥(𝑘)‖

1
.

Based on the functions 𝑓
1
(𝑥) = 𝑘 log

2
(𝑥 + 1) and 𝑓

2
(𝑥) = 𝑘𝑥,
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Figure 1: The effect of 𝛼 and 𝛽 on the reaching rate.

by comparing the width between reaching laws (9) and (7),
we find that the width we proposed is smaller than (7), which
means the system trajectory will be in a smaller region when
it crosses the switching surface. So the system with controller
(10) has a smaller chatting than controller (8).

To analyze the parameters of the proposed reaching law,
the derived reaching rate is given here. The derivative of a
continuous system is defined as follows [50]:

̇𝑠 (𝑡) = lim
Δ𝑡→0

𝑠 (𝑡 + Δ𝑡) − 𝑠 (𝑡)

Δ𝑡

. (18)

Assuming

Δs (𝑘) = 𝑠 (𝑘 + 1) − 𝑠 (𝑘) (19)

if the sampling period 𝑇 is small enough, the following
equation can be obtained:

̇𝑠 (𝑡) =

Δ𝑠

𝑇

=

𝑠 (𝑘 + 1) − 𝑠 (𝑘)

𝑇

= −𝛼 log
2
(|𝑠 (𝑘)|

𝛽
+ 1) sgn (𝑠 (𝑘)) .

(20)

For the first-order differential equation ̇𝑠 = 𝑓(𝑠), we give
a numerical solution for (20) with different values of 𝛼 and 𝛽.
Here, we assumed 𝑠(0) = 5. Figure 1 shows how 𝛼 and 𝛽 affect
the reaching rate.

Figure 1 indicates that when 𝛼 and 𝛽 are increasing, the
reaching rate is faster, but when 𝛽 is larger, the reaching rate
near the sliding surface is smaller. The results of simulating
sliding dynamics indicate that when 𝛼 and 𝛽 are too big,
the chattering problem will be terrible, so based on the
experience of 𝛼 and 𝛽, the reaching law (9) we presented here
has further improvements in DSMC.

3.4. Further Improvement. Based on shortages of the reaching
law (9), we used fuzzy control (FC) to adjust the parameters
𝛼 and 𝛽 by referring to Figure 1.
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Figure 2: Membership function of input variables.
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Figure 3: Membership function of output variables.

FC has replaced conventional technologies inmany fields.
One major feature of FC is its ability to express ambiguous
thinking, so when the mathematical model of a system exists
accurately or exists but with uncertainties, FC can deal with
the unknown process efficiently, although it will sometimes
complicate the analysis due to the huge number of fuzzy rules
for high-order systems. To eliminate the chattering problem
and accelerate the reaching rate in this study, a fuzzy sliding-
mode control method is proposed.Themembership function
of our FSMCmethod is shown in Figures 2 and 3; it is a one-
input-two-output FSMC, and because there is only one input,
the number of fuzzy rules is greatly reduced. Fuzzy control
rules are designed to map the input linguistic variables 𝑠 to
the output linguistic variables 𝛼 and 𝛽 as follows:

𝛼, 𝛽 = FSMC (𝑠) , (21)

where FSMC(𝑠) means that 𝛼 and 𝛽 are the function of
switching function 𝑠.

Here, the membership functions of 𝛼 and 𝛽 are normal-
ized in the interval [0.6, 1.8], such that 𝛼, 𝛽 > 0 and satisfy
condition (11).
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In our article, the Mamdani fuzzy inference method [51]
is used to determine the fuzzy rule such that

if 𝑠 is 𝑃

𝑖
, then 𝛼 is 𝑀

𝑖
and 𝛽 is 𝑁

𝑖
. (22)

The FC we proposed has one input (𝑠) and two outputs
(𝛼, 𝛽). Linguistic variables which imply inputs are classified as
NB, NS, ZO, PS, and PB, and outputs are classified as PZ, PS,
PM, and PB. Inputs are normalized in an interval of [−4, 4],
and outputs are normalized in [0.6, 1.8], as shown in Figures
2 and 3. It is possible to assign a set of decision rules as shown
in the following based on Figure 1. These rules contain the
relationships between input andoutput that define the control
strategy. Each control input has five fuzzy sets so there are
only 5 fuzzy rules; this overcomes the problem of complex
fuzzy rules.

The fuzzy rule set designed for FSMC is

if 𝑠 is NB, then 𝛼 is PS and 𝛽 is PB

if 𝑠 is NS, then 𝛼 is PS and 𝛽 is PM

if 𝑠 is ZO, then 𝛼 is PZ and 𝛽 is PZ

if 𝑠 is PS, then 𝛼 is PS and 𝛽 is PM

if 𝑠 is PB, then 𝛼 is PS and 𝛽 is PB.

(23)

Finally, defuzzification should be designed to determine
the numerical value of 𝛼 and 𝛽 based on the fuzzy rule set.
Here, the centre average method is used for defuzzification as
follows:

𝛼, 𝛽 =

∫

𝑉
V𝜇V (V) 𝑑V

∫

𝑉
𝜇V (V) 𝑑V

, (24)

where𝑉 is the domain of linguistic variables 𝛼 and 𝛽. V is the
point at which the membership function of 𝑀

𝑖
(𝑁

𝑖
) of 𝛼(𝛽)

achieves its maximum and 𝜇V(V) is the degree of membership
of 𝑠 to 𝑃

𝑖
.

From what has been discussed above, a fuzzy sliding-
mode controller can be obtained; however, the experience of
experts should be referred to if the membership function and
fuzzy rule set need to be adjusted for different problems.Here,
experience was gained from Figure 1, which shows how 𝛼 and
𝛽 affect system performance.

4. Numerical Simulation

Consider a second-order systemwith time-varying uncertain
[10] as follows:

𝑥̇ = [

0 1

5 −2

] 𝑥 + [

0

1

] 𝑢 + [

0

1 + 2.2 cos (0.5𝜋𝑡)
] . (25)

When the sampling period 𝑇 = 0.1, the discrete-time
description of system (25) can be obtained as

𝑥 (𝑘 + 1) = 𝐺𝑥 (𝑘) + 𝐻𝑢 (𝑘) + 𝑑 (𝑘) , (26)
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Figure 4: Switching function with controller (28).

where

𝐺 = [

1.02351 0.09139

0.45696 0.84073

] ,

𝐻 = [

0.00470

0.09139

] ,

𝑑 (𝑘) = [

0.10080 0.00470

0.02351 0.09139

] [

0

1 + 2.2 cos (0.5𝜋𝑘𝑇)

] .

(27)

Here, the initial state was assumed to be 𝑥(0) = [2.1 1]

𝑇 and
𝐶 = [1 1]

𝑇. It should be pointed out that a long sampling
period was chosen to exhibit the system dynamics.

In the following, we used different controllers to compare
the controlling performance of system (26).

Case 1. Consider system (26), when controller (14) in [10] is
implemented with the expression that is

𝑢 (𝑘) = (𝐶

𝑇
𝐻)

−1

{𝐶

𝑇
𝐺 − (1 − 𝑞) 𝑠 (𝑘)

+ 𝜀𝑇 sgn (𝑠 (𝑘)) +

𝑘

∑

𝑖=1

[𝑠 (𝑖) − (1 − 𝑞𝑇) 𝑠 (𝑖 − 1)

+ 𝜀𝑇 sgn (𝑠 (𝑖 − 1))]} ,

(28)

where 𝑞 = 5 and 𝜀 = 1. System performances are shown
in Figures 4–6 and indicate that when the system trajectory
is close to the sliding surface, chattering is small, but this
chattering cannot reach the origin; it can only surround the
origin.

Case 2. When controller (8) with parameters 𝛼 = 1, 𝛽 = 1

is implemented for system (26), then system performances
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Figure 5: System states with controller (28).
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Figure 6: Controller (28).

are shown in Figures 7–9, respectively. Unlike controller (28),
the reaching rate accelerates at the beginning and chattering
decreases, but the reaching rate at the beginning has evidently
not improved; this can also be gleaned from Figure 1 where
𝛼 = 𝛽 = 1.

Case 3. When controller (8) is implemented for system (26),
then by using FLC (21) to adjust parameters 𝛼 and 𝛽, the
switching function, system states, and controller are shown
in Figures 10–12. Figure 10 shows that the dynamics of FSMC
have improved the reaching rate in all regions and overcome
the chattering problem.

From what has been discussed above, the SMC and
FSMC methods we proposed for discrete-time system with
uncertainty are very capable, and the proposed reaching law
performed better than (28). By improving the reaching law
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Figure 7: Switching function with controller (10).
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Figure 8: System states with controller (10).

with fuzzy logic, the system presents much better dynamic
performances at every stage.

5. Conclusion

This paper has presented a new discrete reaching law, and
a discrete sliding-mode controller with fuzzy logical control
has been designed by using the proposed reaching law and
fuzzy set. A comparison of three cases, that is, (1) the previous
DSMC presented by [10], (2) the DSMC presented in the
paper, and (3) aDSMCpresentedwith fuzzy control, has been
carried out. The experimental results show the obvious effec-
tiveness of the proposed SMC, especially with fuzzy control.
In the method presented, the chattering phenomenon that
frequently appears in a conventional SMCwas overcome, and
the reaching rate has also been accelerated.
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Figure 9: Controller (10).
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Figure 11: System states with controller FSMC.
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