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We consider an inventory system where there is random demand from customers as well as unreliable supplying capacity from
supplier. In many real-world cases, supplier might fail to satisfy the amount of order from retailers or producers so that only
partial proportion of order is satisfied or even fail to deliver all of the order. Moreover, recently a concern regarding unreliable
supplying capacity has been increasing since the globalizationmakes the retailer or producer face the extended supply network with
complicated and risky supplying capacity. Also, we consider two classified customers, of which one is willing to pay extra charge for
expedited delivery service but the other is not reluctant to delay the delivery without any extra charge. We show that there exists an
optimal threshold for inventory and price for each service level in the following sense: if the inventory level is less than the predeter-
mined threshold, then the retailer or producer needs to order up to the threshold level and offer threshold price corresponding to ser-
vice level. Otherwise, the retailer does not need to order.The risk of stockout due to unreliable supplying capacity can bemitigated by
the dynamic pricing and inventory control with multiple service levels.

1. Introduction

Coordination of dynamic inventory and pricing control has
been used as main strategy for many companies such as
Amazon, Dell, and J. C. Penny [1]. In many traditional works
for inventory control problem, how to maximize the profit
and control the uncertainty of demand from customers has
been a stark issue, in which the optimal policy has been pro-
vided using either ordering quantity or pricing of each prod-
uct. Even some works show the optimal inventory control
policy using multiple pricing on single product depending
on the service levels. However, in addition to the random
demand from customers, it is not well addressed that most
firms experience the unreliable supplying capacity from
supplier, which is another randomness carried from supplier.
For example, suppose that Amazon.com orders 100 books to
a publisher. However, the publisher might fail to fulfill the
order and it may deliver only some of the ordered books
(i.e., 80 books) for its own supplying capacity problem. Some
recent works address this unreliable supply issue which is

incorporated with pricing on the product and replenishment
decisions but only addresses the pricing policy on a product
with a single-service level [2]. However, as shown in many
online stores, each product is delivered with more than a
single-service level where faster service can be suggested
to the customer willing to pay an extra charge. So, how to
balance the demand and supply by incorporating multiple
pricing corresponding to the service level is an important
issue faced by many firms, especially online firms. In this
paper, we show that there can be an optimal policy to
an inventory control problem in which each product is
priced depending on the service level and the supplying
capacity from the supplier is also random in addition to the
randomness of demand from the customer.

2. Literatures Review

Two streams of literatures are related to this paper:
(1) The inventory/production or pricing control problem

under reliable supplying capacity.
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(2) The inventory/production or pricing control problem
under unreliable supplying capacity.

There are many literatures that study the inventory or
pricing control problem under reliable supplying capacity.
Reference [1] gives a comprehensive survey on this problem,
in which only a single-service level is considered. Refer-
ences [3, 4] address a single-period problem under risk
neutrality, which is addressed using Newsvendor Model.
Reference [5] suggests optimal replenishment and pricing
policy of a single-period model under risk aversion. For
multiperiod system, when total ordering cost is a linear
function of ordering quantity, a base stock list price is
shown to be optimal for single-service level in [6] and for
multiple service level in [7]. References [8, 9] show that,
for multiperiod system, there is an optimal inventory and
pricing policy when a fixed ordering cost is considered and
backlogging is allowed. Reference [10] provides an optimal
inventory and pricing policy for multiperiod system when a
fixed ordering cost is considered and lost-sales are allowed.
Reference [11] addresses joint inventory and pricing model
where there is a single item with stochastic demand subject
to reference effects and the random demand is a function
of the current price and the reference price is acting as a
benchmark with which customers compare the current price.
Reference [12] suggests the joint pricing and inventorymodel
for a stochastic inventory system with perishable products,
where the inventory system under random demand and
reliable supplying capacity is modeled by a continuous-time
stochastic differential equation. Reference [13] considers joint
pricing and inventory replenishment decision problem over
an infinite horizon where sequentially arriving customers are
forward-looking to the price of a product sold by a seller. In
their model, so-called strategic customers wait and monitor
prices offered from the seller and then anticipate a lower
future price. Reference [14] addresses a joint pricing and
production decision problem for perishable items sold to
price-sensitive customers, assuming that shortages are not
allowed.

The other stream of literature relevant to our paper is
the inventory/production or pricing control problem under
unreliable supplying capacity. Reference [15] surveys the
literature on how to quantitatively determine lot sizes when
production or procurement yields are uncertain. Reference
[16] addresses an inventory control model for a periodic
review with unreliable production capacity, random yields,
and uncertain demand but does not consider the dynamic
pricing by considering the price as exogenous and thus
minimizing the total discounted expected costs which are
production, holding, and shortage costs. References [17, 18]
address the joint inventory and pricing decision problem
with random demand and unreliable suppling capacity, in
which there are no multiple service levels. Reference [19]
addresses the inventory (but no pricing) decision model
for production-inventory systems in which the stock can
deteriorate with time and supplying capacity from multiple
suppliers is unreliable. Reference [20] investigates an optimal
inventory strategy for a risk-averse retailer facing demand
uncertainty and unreliable supply in which the price is given

and is exogenous. Reference [21] considers a risk-neutral
monopolist manufacturer ordering a key component from
several suppliers using a single-period model, in which some
suppliers might face risks of complete supplying disruptions,
which are called unreliable suppliers. Reference [22] suggests
optimal sourcing strategies without pricing decision when
there are a perfectly reliable supplier and an unreliable
supplier.

3. Assumptions and Notations

In this paper, the following notations are used:

(1) 𝑐: per unit marginal cost,
(2) 𝑝
𝑅,𝑡
: price charged for regular service in period 𝑡,

(3) 𝑝
𝐸,𝑡
: price charged for express service in period 𝑡,

(4) 𝑝
𝑡
= 𝑝
𝐸,𝑡

−𝑝
𝑅,𝑡
: extra charge for the express service in

period 𝑡 on [0, 𝑝],
(5) 𝜖
𝑡
: random uncertainty term of demand which had a

known distribution,
(6) 𝐷

𝐸,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

): demand for the express service,
(7) 𝐷
𝑅,𝑡

(𝑝
𝑅,𝑡

): demand for the regular service,
(8) 𝑥
𝑡
: inventory level at the beginning of each period 𝑡

before ordering,
(9) 𝑦
𝑡
: inventory level at the beginning of each period 𝑡

after ordering,
(10) ℎ

𝑡
(𝐼): inventory cost (holding or backlogging) at the

end of each period 𝑡.

Assumption 1. Backlogging is allowed.

Assumption 2. Replenishment after ordering becomes avail-
able instantaneously.

Traditionally, in operations research literatures, the cus-
tomer’s demand is assumed to be decreasing concave function
or simply a decreasing linear function with the price as an
input variable. Also, the expected demand value is assumed to
be finite and strictly decreasing as the price increases, which is
generally acceptable and reasonable.This decreasing property
of demand can be negative if the value of price is sufficiently
large. Thus, we need to make another assumption such that
a feasible price should be selected on the restricted range in
order to be nonnegative valued [6, 9, 23, 24].

Assumption 3. In each period 𝑡 = 1, 2, . . . , 𝑇, the demand
function for regular service 𝐷

𝑅,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

) = 𝑑
𝑅,𝑡

(𝑝
𝑡
), where

𝑑
𝑅,𝑡

(𝑝
𝑡
) is given by 𝑑

𝑅,𝑡
(𝑝
𝐸,𝑡

− 𝑝
𝑅,𝑡

), and nondecreasing
linear function in 𝑝

𝑡
(=𝑝
𝐸,𝑡

− 𝑝
𝑅,𝑡

) ∈ [0, 𝑝]. The demand
function for express service 𝐷

𝐸,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

) = 𝑑
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝑡
),

where 𝑑
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝑡
) is given by 𝑎(𝑝

𝑅,𝑡
, 𝜖
𝑡
) − 𝐷

𝑅,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

) =

𝑎(𝑝
𝑅,𝑡

, 𝜖
𝑡
) − 𝑑
𝑅,𝑡

(𝑝
𝑡
), which is nonincreasing linear function

in 𝑝
𝑅,𝑡

∈ [𝑝
𝑅
, 𝑝
𝑅
] and 𝑝

𝑡
∈ [0, 𝑝]. Moreover, 𝑎(𝑝

𝑅,𝑡
, 𝜖
𝑡
) is the

possible maximum demand and nonincreasing and linear
function of 𝑝

𝑅,𝑡
∈ [𝑐, 𝑝

𝑅
]. Moreover, values for 𝑝 and 𝑝

𝑅
are

taken such that 𝑎(𝑝
𝑅
, 𝜖
𝑡
) −𝐷
𝑅,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

) is nonnegative with
probability 1.
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Assumption 3 came up from the following insight. The
number of customers using the express service would
decrease as the price difference 𝑝

𝑡
between regular and

express service increases. For example, when you try to buy
some product from an online store, the higher the price
difference between regular shipping and express shipping
service are, the more you are reluctant to select the express
shipping service. Thus, as the price difference 𝑝

𝑡
between

regular and express service increases, the customers who are
reluctant to select express service will become the customers
for regular service.

Assumption 4. The revenue in each period 𝑡 = 1, 2, . . . , 𝑇 is
given by

𝑝
𝑅,𝑡

𝐸 [𝐷
𝑅,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

)] + 𝑝
𝐸,𝑡

𝐸 [𝐷
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

)]

= 𝑝
𝑅,𝑡

𝐸 [𝑑
𝑅,𝑡

(𝑝
𝑡
)] + 𝑝

𝐸,𝑡
𝐸 [𝑑
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝑡
)]

(1)

and is finite and concave for 𝑝
𝑅,𝑡

∈ [𝑝
𝑅
, 𝑝
𝑅
] and 𝑝

𝑡
∈ [0, 𝑝],

where 𝑝
𝑡
= 𝑝
𝐸,𝑡

− 𝑝
𝑅,𝑡
.

Assumption 5. 𝐻
𝑡
(𝐼) = 𝐸[ℎ

𝑡
(𝐼)] is convex in 𝐼 and 𝐻

𝑡
(0) = 0

in each 𝑡 = 1, . . . , 𝑇.

Assumption 6. lim
𝑦→±∞

𝐻
𝑡
(𝑦 − 𝐷

𝐸,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

)) =

lim
𝑦→±∞

(𝑐𝑦+𝐻
𝑡
(𝑦−𝐷

𝐸,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

))) = ∞ for any𝑝
𝑅,𝑡

∈ [𝑝
𝑅
,

𝑝
𝑅
] and 𝑝

𝑡
∈ [0, 𝑝].

4. Mathematical Formulation

We consider an additive demand model, where the demand
uncertainty for regular and express service is represented by
an additive random noise 𝜖

𝑡
, respectively,

𝐷
𝑅,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

) = 𝑑
𝑅,𝑡

(𝑝
𝑡
) = D

𝑅,𝑡
(𝑝
𝑡
) + 𝜖
𝑡
,

𝐷
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

) = 𝑑
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝑡
) = D

𝐸,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝑡
) + 𝜖
𝑡
.

(2)

We assume that 𝜖
𝑡
has mean zero and support [𝜖, 𝜖]. For

any feasible choice of 𝑝
𝑅,𝑡

∈ [𝑝
𝑅
, 𝑝
𝑅
] and 𝑝

𝐸,𝑡
∈ [𝑝
𝐸
, 𝑝
𝐸
],

the demand is positive with probability one and the average
demands 𝐸[𝐷

𝑅,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

)] and 𝐸[𝐷
𝐸,𝑡

(𝑝
𝑅,𝑡

, 𝑝
𝐸,𝑡

)] are finite.
Given the inventory level 𝐼

𝑡
in period 𝑡, the inventory level

𝐼
𝑡+1

in period 𝑡 + 1 is given as follows:

𝐼
𝑡+1

= 𝐼
𝑡
+ (𝑦
𝑡
− 𝐼
𝑡
) ∧ 𝑘 − 𝑑

𝐸,𝑡
(𝑝
𝑅,𝑡

, 𝑝
𝑡
) , (3)

where 𝑘 ∈ [0, 𝑦
𝑡
− 𝐼
𝑡
] in period 𝑡 and 𝑎 ∧ 𝑏 = min[𝑎, 𝑏]. Let

𝑔
𝑡
(𝐼, 𝑥) be the optimal profit function in period 𝑡 when the

inventory level is 𝐼 and the demand from period 𝑡 − 1 is 𝑥.
Then, the optimality equation is given by

𝑔
𝑡 (
𝐼, 𝑥) = max

𝑦≥𝐼,𝑝
𝑅
≤𝑝𝑅≤𝑝𝑅,𝑝≤𝑝≤𝑝

𝜋
𝑡
(𝐼; 𝑦, 𝑝

𝑅
, 𝑝) , (4)

where
𝜋
𝑡
(𝐼; 𝑦, 𝑝

𝑅
, 𝑝)

= 𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [𝑔
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) , 𝑑

𝑅
(𝑝))] .

(5)

From Lemma 7, we can expect a dynamic programming
model with single state as an input variable which is equiva-
lent to (4). Moreover, we can see that the optimal solution to
the equivalent dynamic programmingmodel with single state
can be translated into the optimal solution to (4).

Lemma7. Let 𝐼 and𝑦 be defined as 𝐼−𝑥 and𝑦−𝑥, respectively.
Then, (𝑦∗

𝑡
+ 𝑥, 𝑝

∗

𝑅,𝑡
, 𝑝
∗

𝑡
) is the set of optimal solutions to (4) if

and only if (𝑦∗
𝑡
, 𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) is the set of optimal solutions to

G
𝑡
(𝐼) = max

𝑦≥𝐼,𝑝
𝑅
≤𝑝𝑅≤𝑝𝑅,𝑝≤𝑝≤𝑝

Π
𝑡
(𝐼 : 𝑦, 𝑝

𝑅
, 𝑝) , (6)

where

Π
𝑡
(𝐼 : 𝑦, 𝑝

𝑅
, 𝑝)

= 𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))] .

(7)

Proof. It is enough to show that, for all period 𝑡,

𝜋
𝑡
(𝐼; 𝑦, 𝑝

𝑅
, 𝑝) = Π

𝑡
(𝐼 : 𝑦, 𝑝

𝑅
, 𝑝) ∀𝐼, 𝑥, 𝑦, 𝑝

𝑅
, 𝑝. (8)

Since

(𝐼 + 𝑘) ∧ 𝑦 = (𝐼 − 𝑥 + 𝑘) ∧ (𝑦 − 𝑥)

=

{

{

{

𝐼 − 𝑥 + 𝑘, if 𝐼 − 𝑥 + 𝑘 ≤ 𝑦 − 𝑥

𝑦 − 𝑥, otherwise

= (𝐼 + 𝑘) ∧ 𝑦 − 𝑥,

(9)

for all period 𝑡, the first four terms of 𝜋
𝑡
(𝐼; 𝑦, 𝑝

𝑅
, 𝑝) andΠ

𝑡
(𝐼 :

𝑦, 𝑝
𝑅
, 𝑝) are equal to each other as follows:

𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

= 𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑥)] .

(10)
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In period 𝑇, trivially 𝑔
𝑇
(𝐼, 𝑥) = G

𝑇
(𝐼) = 0. In period 𝑇 − 1,

𝜋
𝑇−1

(𝐼; 𝑦, 𝑝
𝑅
, 𝑝)

= 𝑝
𝑅
𝐸 [𝑑
𝑅,𝑇−1

(𝑝)] + 𝑝
𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅,𝑇−1

, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸,𝑇−1

(𝑝
𝑅
, 𝑝) − 𝑥)]

= 𝑝
𝑅
𝐸 [𝑑
𝑅,𝑇−1

(𝑝)] + 𝑝
𝐸
𝐸 [𝑑
𝐸,𝑇−1

(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸,𝑇−1

(𝑝
𝑅
, 𝑝))]

= Π
𝑇−1

(𝐼 : 𝑦, 𝑝
𝑅
, 𝑝) .

(11)

So, 𝑔
𝑇−1

(𝐼, 𝑥) = G
𝑇−1

(𝐼)with 𝐼 = 𝐼−𝑥. By induction, suppose
that, for any 𝐼, 𝑥 with 𝐼 = 𝐼 − 𝑥,

𝑔
𝑛 (

𝐼, 𝑥) = G
𝑛
(𝐼) , 𝑛 = 𝑇, 𝑇 − 1, . . . , 𝑡 + 1. (12)

Then

𝜋
𝑡
(𝐼; 𝑦, 𝑝

𝑅
, 𝑝)

= 𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑥)]

+ 𝛼𝐸 [𝑔
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑥, 𝑑

𝑅
(𝑝))]

= 𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))] .

(13)

The second equality holds since (𝐼+𝑘)∧𝑦−𝑑
𝐸
(𝑝
𝑅
, 𝑝)−𝑑

𝑅
(𝑝) =

(𝐼+𝑘)∧𝑦−𝑑
𝐸
(𝑝
𝑅
, 𝑝)−𝑥−𝑑

𝑅
(𝑝). Therefore, the result holds.

4.1. Optimal Inventory Control Policy. Now, we will show the
following optimal inventory control policy: if the inventory
level at each period 𝑡 before ordering is less than a predeter-
mined level, then we need to order such that the inventory
level is increased up to the predetermined level. Otherwise,
no ordering will be made.

Lemma 8. Suppose that G
𝑡+1

(⋅) is concave function and, for
given 𝑝

𝑅
and 𝑝, let 𝑦∗(𝑝

𝑅
, 𝑝) be the maximizer of

𝑝
𝑅
𝑑
𝑅
(𝑝) + 𝑝

𝐸
𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑐 (𝑦 − 𝐼)

− 𝐻 (𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼G
𝑡+1

(𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝)) ,

(14)

where 𝑝
𝐸
= 𝑝
𝑅
+ 𝑝. Then, 𝑦∗(𝑝

𝑅
, 𝑝) is also the maximizer of

𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)]

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))]

(15)

for any 𝐼 and, moreover,

𝑝
𝑅
𝐸 [𝑑
𝑅
(𝑝)] + 𝑝

𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)] − 𝑐𝐸 [(𝐼 + 𝑘)

∧ (𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼) − 𝐼] − 𝐸 [𝐻 ((𝐼 + 𝑘)

∧ (𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼) − 𝑑

𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [G
𝑡+1

((𝐼 + 𝑘) ∧ (𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼)

− 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))]

(16)

is jointly concave in (𝐼, 𝑝
𝑅
, 𝑝), where 𝑎 ∨ 𝑏 = max[𝑎, 𝑏].

Proof. Given𝑝
𝑅
and𝑝,𝑝

𝑅
𝑑
𝑅
(𝑝)+𝑝

𝐸
𝑑
𝐸
(𝑝
𝑅
, 𝑝) is just constant

and thus wewill not consider them for a while. Since𝐻(⋅) and
G
𝑡+1

(⋅) are concave,

𝑝
𝑅
𝑑
𝑅
(𝑝) + 𝑝

𝐸
𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑐𝑦 − 𝐻 (𝑦 − 𝑑

𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼G
𝑡+1

(𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))

(17)

is jointly concave in (𝑦, 𝑝
𝑅
, 𝑝). Now, take any 𝛿 > 0 such that

𝑦+𝛿 < 𝑦
∗
(𝑝
𝑅
, 𝑝) and we have 𝑦∧ (𝐼+𝑘) ≤ (𝑦+𝛿)∧ (𝐼+𝑘) <

𝑦
∗
(𝑝
𝑅
, 𝑝). So,

− 𝑐 (𝑦 ∧ (𝐼 + 𝑘) − 𝐼) − 𝐻((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼 (G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝)))

≤ −𝑐 ((𝑦 + 𝛿) ∧ (𝐼 + 𝑘) − 𝐼) − 𝐻((𝐼 + 𝑘) ∧ (𝑦

+ 𝛿) − 𝑑
𝐸
(𝑝
𝑅
, 𝑝)) + 𝛼 (G

𝑡+1
((𝐼 + 𝑘) ∧ (𝑦 + 𝛿)

− 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝)))

(18)

for any 𝑘. Thus,

𝐸 [−𝑐 (𝑦 ∧ (𝐼 + 𝑘) − 𝐼) − 𝐻((𝐼 + 𝑘) ∧ 𝑦

− 𝑑
𝐸
(𝑝
𝑅
, 𝑝)) + 𝛼G

𝑡+1
((𝐼 + 𝑘) ∧ 𝑦 − 𝑑

𝐸
(𝑝
𝑅
, 𝑝)

− 𝑑
𝑅
(𝑝))] ≤ 𝐸 [−𝑐 ((𝑦 + 𝛿) ∧ (𝐼 + 𝑘) − 𝐼)

− 𝐻((𝐼 + 𝑘) ∧ (𝑦 + 𝛿) − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼G
𝑡+1

((𝐼 + 𝑘) ∧ (𝑦 + 𝛿) − 𝑑
𝐸
(𝑝
𝑅
, 𝑝)

− 𝑑
𝑅
(𝑝))] .

(19)
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Therefore,

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))]

(20)

is increasing in 𝑦 when 𝑦 ≤ 𝑦
∗
(𝑝
𝑅
, 𝑝). By the similar

argument,

− 𝑐𝐸 [(𝐼 + 𝑘) ∧ 𝑦 − 𝐼]

− 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))]

+ 𝛼𝐸 [G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))]

(21)

is decreasing in 𝑦 when 𝑦 ≥ 𝑦
∗
(𝑝
𝑅
, 𝑝). The first result holds.

Since, for given 𝑝
𝑅
and 𝑝, 𝑦

∗
(𝑝
𝑅
, 𝑝) is the maximizer of

− 𝑐 ((𝐼 + 𝑘) − 𝐼) − 𝐻((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))

(22)

for any 𝑦 ∈ R, for given 𝑝
𝑅
and 𝑝, (𝑦∗(𝑝

𝑅
, 𝑝) ∨ 𝐼) ∧ (𝐼 + 𝑘) is

the maximizer of

− 𝑐 ((𝐼 + 𝑘) − 𝐼) − 𝐻((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼G
𝑡+1

((𝐼 + 𝑘) ∧ 𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))

(23)

for 𝑦 ∈ [𝐼, 𝐼 + 𝑘]. Now, take (𝐼
1
, 𝑝
𝑅,1

, 𝑝
1
), (𝐼
2
, 𝑝
𝑅,2

, 𝑝
2
), and

𝛾 ∈ [0, 1]. Then

𝛾 (−𝑐 ((𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
) − 𝐼
1
) − 𝐻((𝐼

1

+ 𝑘) ∧ (𝑦
∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
) − 𝑑
𝐸
(𝑝
𝑅,1

, 𝑝
1
))

+ 𝛼 (G
𝑡+1

((𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)

− 𝑑
𝐸
(𝑝
𝑅,1

, 𝑝
1
) − 𝑑
𝑅
(𝑝
𝑅,1

, 𝑝
1
)))) + (1 − 𝛾)

⋅ (−𝑐 ((𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
) − 𝐼
2
)

− 𝐻((𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)

− 𝑑
𝐸
(𝑝
𝑅,2

, 𝑝
2
)) + 𝛼G

𝑡+1
((𝐼
2
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
) − 𝑑
𝐸
(𝑝
𝑅,2

, 𝑝
2
)

− 𝑑
𝑅
(𝑝
𝑅,2

, 𝑝
2
))) ≤ −𝑐 (𝛾 [(𝐼

1
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)] + (1 − 𝛾) [(𝐼

2
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)] − 𝐼

𝛾
) − 𝐻(𝛾 [(𝐼

1
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)] + (1 − 𝛾) [(𝐼

2
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)] − 𝑑

𝐸
(𝑝
𝑅,𝛾

, 𝑝
𝐸,𝛾

))

+ 𝛼G
𝑡+1

(𝛾 [(𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)] + (1

− 𝛾) [(𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)]

− 𝛾 [𝑑
𝐸
(𝑝
𝑅,1

, 𝑝
1
) − 𝑑
𝑅
(𝑝
𝑅,1

, 𝑝
1
)] − (1 − 𝛾)

⋅ [𝑑
𝐸
(𝑝
𝑅,2

, 𝑝
2
) − 𝑑
𝑅
(𝑝
𝑅,2

, 𝑝
2
)]) = −𝑐 (𝛾 [(𝐼

1
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)] + (1 − 𝛾) [(𝐼

2
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)] − 𝐼

𝛾
) − 𝐻(𝛾 [(𝐼

1
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)] + (1 − 𝛾) [(𝐼

2
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)] − 𝑑

𝐸
(𝑝
𝑅,𝛾

, 𝑝
𝐸,𝛾

))

+ 𝛼G
𝑡+1

(𝛾 [(𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)] + (1

− 𝛾) [(𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)] − 𝑑

𝐸
(𝑝
𝑅,𝛾

,

𝑝
𝛾
) − 𝑑
𝑅
(𝑝
𝑅,𝛾

, 𝑝
𝛾
)) ≤ −𝑐 ((𝐼

𝛾
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,𝛾

, 𝑝
𝛾
) ∨ 𝐼
𝛾
) − 𝐼
𝛾
) − 𝐻((𝐼

𝛾
+ 𝑘)

∧ (𝑦
∗
(𝑝
𝑅,𝛾

, 𝑝
𝛾
) ∨ 𝐼
𝛾
) − 𝑑
𝐸
(𝑝
𝑅,𝛾

, 𝑝
𝛾
))

+ 𝛼G
𝑡+1

((𝐼
𝛾
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,𝛾

, 𝑝
𝛾
) ∨ 𝐼
𝛾
)

− 𝑑
𝐸
(𝑝
𝑅,𝛾

, 𝑝
𝛾
) − 𝑑
𝑅
(𝑝
𝑅,𝛾

, 𝑝
𝛾
)) ,

(24)

where 𝐼
𝛾

= 𝛾𝐼
1
+ (1 − 𝛾)𝐼

2
, 𝑝
𝑅,𝛾

= 𝛾𝑝
𝑅,1

+ (1 − 𝛾)𝑝
𝑅,2

, and
𝑝
𝛾

= 𝛾𝑝
1
+ (1 − 𝛾)𝑝

2
. The first inequality holds due to the

concavity of𝐻
𝑡
andG

𝑡+1
, the second equality holds due to the

linearity of demand functions, and the last inequality holds
since, for given 𝑝

𝑅,𝛾
and 𝑝

𝛾
, 𝑦 = (𝐼

𝛾
+ 𝑘) ∧ 𝑦

∗
(𝑝
𝑅,𝛾

, 𝑝
𝛾
) ∨ 𝐼
𝛾

is the maximizer of

− 𝑐 (𝑦 − 𝐼) − 𝐻 (𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝))

+ 𝛼G
𝑡+1

(𝑦 − 𝑑
𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))

(25)

for 𝑦 ∈ [𝐼
𝛾
, 𝐼
𝛾
+ 𝑘]. So, we need to verify that

𝛾 [(𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)]

+ (1 − 𝛾) [(𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)]

(26)

is within [𝐼
𝛾
, 𝐼
𝛾
+ 𝑘].

𝛾 [(𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)]

+ (1 − 𝛾) [(𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)]

≥ 𝛾 [(𝐼
1
+ 𝑘) ∧ 𝐼

1
] + (1 − 𝛾) [(𝐼

2
+ 𝑘) ∧ 𝐼

2
]

= 𝛾𝐼
1
+ (1 − 𝛾) 𝐼

2
= 𝐼
𝛾
,
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Table 1: Parameters for numerical analysis.

𝑎 𝑏
𝑅

𝑏
𝐸

Marginal cost Holding cost Backlog cost Salvage price Range for regular price (𝑝
𝑅
) Range for extra charge (𝑝)

250 5 6 30 0.3 28 20 25–65 0–30

𝛾 [(𝐼
1
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,1

, 𝑝
1
) ∨ 𝐼
1
)]

+ (1 − 𝛾) [(𝐼
2
+ 𝑘) ∧ (𝑦

∗
(𝑝
𝑅,2

, 𝑝
2
) ∨ 𝐼
2
)]

≤ 𝛾 (𝐼
1
+ 𝑘) + (1 − 𝛾) (𝐼

2
+ 𝑘) = 𝐼

𝛾
+ 𝑘.

(27)

By taking the expectation, we can obtain the second result.

Proposition 9. For all 𝑡 = 1, 2, . . . , 𝑇, G
𝑡
(⋅) is concave

function.

Proof. Since we consider the 𝑇−period problem, G
𝑇+1

(𝐼) =

0 and G
𝑇+1

(𝐼) is concave in 𝐼. By induction, suppose that
G
𝑡+1

(⋅) is concave. Let 𝑦∗(𝑝
𝑅
, 𝑝) be defined as in Lemma 8.

By Assumption 4 and Lemma 8,

Π
𝑡
(𝐼 : 𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼, 𝑝

𝑅
, 𝑝) = 𝑝

𝑅
𝐸 [𝑑
𝑅
(𝑝)]

+ 𝑝
𝐸
𝐸 [𝑑
𝐸
(𝑝
𝑅
, 𝑝)] − 𝑐𝐸 [(𝐼 + 𝑘) ∧ (𝑦

∗
(𝑝
𝑅
, 𝑝)

∨ 𝐼) − 𝐼] − 𝐸 [𝐻 ((𝐼 + 𝑘) ∧ (𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼)

− 𝑑
𝐸
(𝑝
𝑅
, 𝑝))] + 𝛼𝐸 [G

𝑡+1
((𝐼 + 𝑘)

∧ (𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼) − 𝑑

𝐸
(𝑝
𝑅
, 𝑝) − 𝑑

𝑅
(𝑝))]

(28)

is jointly concave in (𝐼, 𝑝
𝑅
, 𝑝). So,

G
𝑡
(𝐼) = max

𝑝
𝑅
≤𝑝𝑅≤𝑝𝑅,𝑝≤𝑝≤𝑝

Π
𝑡
(𝐼 : 𝑦
∗
(𝑝
𝑅
, 𝑝) ∨ 𝐼, 𝑝

𝑅
, 𝑝) (29)

is concave in 𝐼. Therefore, for all 𝑡 = 1, 2, . . . , 𝑇, G
𝑡
(⋅) is

concave.

Proposition 10. Suppose that, in period 𝑡, the inventory level
is 𝐼
𝑡
and the advanced demand from period 𝑡 − 1 which is for

regular service is 𝑥
𝑡−1

.Then, in period 𝑡, there is some finite pair
(𝑦
∗

𝑡
, 𝑝
∗

𝑡
, 𝑝
∗

𝑅,𝑡
) such that if 𝐼

𝑡
− 𝑥
𝑡−1

≤ 𝑦
∗

𝑡
, it is optimal to place

positive number (𝑦∗
𝑡
−𝐼
𝑡
+𝑥
𝑡−1

) of order and to charge the prices
𝑝
∗

𝑅,𝑡
+𝑝
∗

𝑡
for the express service and 𝑝

∗

𝑅,𝑡
for the regular service.

Otherwise, no ordering will take place.

Proof. As seen in Lemma 8, the optimal solution pair
(𝑦
∗

𝑡
, 𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) does not depend on 𝐼

𝑡
and 𝑥

𝑡−1
but 𝑦∗
𝑡
depends

on (𝑝
∗

𝑅
, 𝑝
𝑡
) which is 𝑦∗

𝑡
= 𝑦
∗

𝑡
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
). So, if 𝐼

𝑡
− 𝑥
𝑡−1

≤ 𝑦
∗

𝑡
,

it is optimal to place 𝑦
∗

𝑡
− 𝐼
𝑡
+ 𝑥
𝑡−1

of orders. Otherwise, the
optimal order up to level is 𝐼

𝑡
− 𝑥
𝑡−1

which is not to order.
Now, we need to verify that there exists finite solution pair in
each period 𝑡. In each period 𝑡, the feasible sets for 𝑝

𝑅,𝑡
and 𝑝

𝑡

are bounded so that the optimal pricing 𝑝
∗

𝑅,𝑡
and 𝑝

∗

𝑡
are finite.

𝑦
∗

𝑡
= 𝑦
∗

𝑡
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) is solution to

𝑝
∗

𝑅,𝑡
𝑑
𝑅
(𝑝
∗

𝑡
) + (𝑝

∗

𝑅,𝑡
+ 𝑝
∗

𝑡
) 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) − 𝑐 (𝑦 − 𝐼)

− 𝐻(𝑦 − 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
))

+ 𝛼G
𝑡+1

(𝑦 − 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) − 𝑑
𝑅
(𝑝
∗

𝑡
)) .

(30)

By Assumption 6, in each period 𝑡,

lim
𝑦→±∞

− 𝑐𝑦 − 𝐻(𝑦 − 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
)) = −∞. (31)

Thus, as 𝑦 → ±∞

(𝑝
∗

𝑅,𝑡
𝑑
𝑅
(𝑝
∗

𝑡
) + (𝑝

∗

𝑅,𝑡
+ 𝑝
∗

𝑡
) 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) − 𝑐 (𝑦 − 𝐼)

− 𝐻(𝑦 − 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
))) + 𝛼G

𝑡+1
(𝑦

− 𝑑
𝐸
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) − 𝑑
𝑅
(𝑝
∗

𝑡
))

(32)

will go to ∞, and thus the solution 𝑦
∗

𝑡
= 𝑦
∗

𝑡
(𝑝
∗

𝑅,𝑡
, 𝑝
∗

𝑡
) should

be finite. Therefore, the result holds.

5. Numerical Analysis

In this section, we provide a report on a numerical analysis
carried on to obtain insights into the structure of optimal
policies and their sensitivity and quantitative comparison
with the traditional policy (single-pricing policy). Among the
main questions, we focus on

(1) the benefits of a multiple pricing strategy compared
to a one pricing strategy in settings with continuous
inventory replenishment opportunities,

(2) the sensitivity of the optimal base stock and list
prices with respect to the degree of variability and the
seasonality in the demands,

(3) the comparison of profit with the traditional single-
pricing policy.

Our numerical study is based on data in Table 1. As men-
tioned in Assumption 3, the demand function is a linear
function of the regular price and extra charge. That is,

𝑑
𝐸
(𝑝
𝑟
, 𝑝) = 𝑎 × 𝛾 − 𝑏

𝑅
𝑝
𝑅
− 𝑏
𝐸
𝑝 + 𝜖. (33)

The random term 𝜖 is assumed to be normally distributed
with mean 0. However, it is truncated to avoid the negative
value of demand such that the minimum of 𝜖 is −1 × (𝑎 −

𝑏
𝑅
𝑝
𝑅
−𝑏
𝐸
𝑝). Also, to capture the degree of demand variability,

we have used [c.v. × (𝑎 − 𝑏
𝑅
𝑝
𝑅
− 𝑏
𝐸
𝑝)]
2 as the variance of 𝜖,
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Figure 1: Optimal base stock levels for varying demand uncertainty.
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Figure 2: Price for regular service for varying demand uncertainty.

where c.v. is the coefficient for the variability in demand. 𝛾 is
the randomly generated number for the demand seasonality.

Figure 1 shows the base stock for both nonseasonal and
seasonal demand cases. As you can see in this figure, as the
demand variation increases, the base stock tends to increase.
This might be from the fact that more demand fluctuation
can increase the possibility of inventory shortage. So, in order
to decrease the shortage cost, the base stock would increase.
Figures 2 and 3 show the threshold price predetermined for

regular service and express service in each time for each
demand variation (c.v.).

The inventory controlling strategy by multiple service
levels can provide the retailer or producer with the one-
period advanced information regarding demand since some
customers, who select regular service, are willing to delay
shipment for their order. This one-period advanced infor-
mation can be useful in managing the inventory in the
next period in the sense that inventory can be controlled
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Figure 3: Price for express service for varying demand uncertainty.
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Figure 4: Profit comparison between inventory control by multiple service levels and traditional inventory control by single-service level.

more efficiently and moreover there is chance to reduce the
cost which is induced from holding too much inventory or
shortage inventory.

Figure 4 shows the benefits of an inventory control
through multiple service levels compared to traditional
inventory control by single-service level. In both nonseasonal
and seasonal case, you can see that our model under unreli-
able supplying capacity is more profitable than the traditional
single-service and single-pricing model. Moreover, at higher
level of demand uncertainty (c.v.), the profit increase from
our model for seasonal demand case is higher than the
nonseasonal case. Thus, we can see that the benefit from
inventory control strategy by multiple service levels can
be relatively large in the environment where the inventory
system experiences higher demand uncertainty and season-
ality: inventory control by multiple service levels under the
unreliable supplying capacity, which provides the system

with one-period advanced information regarding demand,
efficiently captures the demanduncertainty in order to reduce
the cost compared to traditional controlling model by single-
service level, thus giving more profit. From this numerical
analysis, we can see that the proposed model provides better
strategy for the inventory controlling problem even under the
unreliable supplying capacity.

6. Conclusion

We study dynamic pricing and inventory replenishment
problems under unreliable supplying condition.This research
was initiated by the following practical intuition; that is,
if customers are willing to expedite the service for their
order, then they are willing to pay extra charge. In this
paper, we have verified this intuition through constructing
a reasonable demand model (Assumption 3) and by the
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mathematical dynamic programming model where product
can be provided to the customers with multiple (two) prices
corresponding to the service level, either express service or
regular service. It is shown in this paper that there exist a
pair of threshold levels for inventory ordering up to level
and prices corresponding to service levels in the following
strategy: if the inventory level before ordering in each period
which is subtracted by the regular demand advanced from
the previous period is less than the predetermined threshold,
then it is optimal to make ordering decision and increase
inventory level up to the predetermined threshold level and
offer threshold price for each service level. Otherwise, no
ordering is optimal.

We can extend our model in the following possible
research directions. First, we can extend the result to the case
of infinite horizon. Considering an infinite horizon model
with stationary parameters with some practical assumptions,
some optimality result similar to one from the finite horizon
model might be extended. Second, we assume the depen-
dency of demand in a period only on the price in the same
and current period. However, the demand function might
be extended to depend not only on the current period but
also on the current and the historical prices, which are the
prices in past periods. Even though it would be complex to
analyze, it would be interesting to incorporate these more
general demand settings into the model and examine the
corresponding optimal policies. Third, our assumption in
which the backlogging is allowed can be modified such that
the backlogging is not allowed but lost-sales are assumed.
Finally, it would be interesting and important to incorporate
a fixed ordering cost into our model. Analysis of such
extensions can be more complicated to analyze but would be
worth further exploration.
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