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Rough set was defined by Pawlak in 1982. Concept of soft set was proposed as a mathematical tool to cope with uncertainty and
vagueness byMolodtsov in 1999. Soft sets were combined with rough sets by Feng et al. in 2011. Feng et al. investigated relationships
between a subset of initial universe of soft set and a soft set. Feng et al. defined the upper and lower approximations of a subset of
initial universe over a soft set. In this study, we firstly define concept of soft class and soft class operations such as union, intersection,
and complement.Thenwe give some properties of soft class operations. Based on definition and operations of soft classes, we define
lower and upper approximations of a soft set. Subsequently, we introduce concept of soft rough class and investigate some properties
of soft rough classes. Moreover, we give a novel decisionmakingmethod based on soft class and present an example related to novel
method.

1. Introduction

The concept of soft set was introduced by Molodtsov [1]
in 1999 as a general mathematical tool for dealing with
problems involving uncertain data. Maji et al. [2] defined
some concepts and operations on soft sets such as soft
subset, soft equality, soft union, soft intersection, and soft
complement. Çağman and Enginoğlu [3] redefined soft set
operations suggested by Maji et al. [2] and developed a
decision making method called uni-int decision making
method. Çağman [4] made some contributions to the theory
of soft sets to fill gaps of former definition and operations.

Rough set theory was proposed by Pawlak [5] as an
alternative approach to fuzzy sets theory and tolerance theory
and has been applied successfully to a lot of fields such
as machine learning, pattern recognition, and data mining.
Dubois and Prade [6] defined lower and upper approxima-
tions of a fuzzy set to extend concept of rough set and they
proposed the rough fuzzy sets. Soft sets were combined with
fuzzy sets and rough sets by Feng et al. [7]. In 2011, Feng et
al. [8] introduced soft rough approximation space and soft
rough set based on the novel granulation structures called
soft approximation spaces and presented basic properties of
soft rough approximations supported by some illustrative

example.They also defined some new types of soft sets such as
full soft sets, intersection complement softs set, and partition
soft sets. Meng et al. [9] proposed a new soft rough set
model and derived its properties. They also established a
more general model called soft rough fuzzy set. Irfan Ali [10]
discussed concept of approximation space associated with
each parameter in a soft set and defined an approximation
space associated with the soft sets and established connection
between soft set, fuzzy soft set, and rough sets. Feng [11] gave
an application of soft rough approximations in multicriteria
group decision making problems. Zhang [12] defined a new
rough set model and investigated its some fundamental
properties. He also presented a decision making method for
intuitionistic fuzzy soft sets based on this new rough set
approach. Zhang [13] studied parameter reduction of fuzzy
soft sets based on soft fuzzy rough set and defined some
new concepts such as lower soft fuzzy rough approximation
operator and upper soft fuzzy rough approximation operator.
To find approximation of a set, Shabir et al. [14] proposed
modified soft rough sets. Sun and Ma [15] proposed a new
concept of soft fuzzy rough set by combining the fuzzy soft
set with the traditional fuzzy rough set. They also defined
concept of the pseudofuzzy binary relation and based on
this concept they defined the soft fuzzy rough lower and
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upper approximation operators of any fuzzy subset in the
parameter set. In this paper, we define concept of soft
class and soft class operations based on decision makers set
and investigate some fundamental properties of soft class
operations. Then, we define soft rough class approximations
and soft rough class and investigate some properties of them.
Furthermore, we present a method to evaluate the decision
makers and give an example to illustrate the process of this
method. Proposed method can be used in many areas such
as industrial engineering, economy, and social sciences. In
particular, in industrial engineering, it can be used effectively
for Quality Lifecycle Management and Choosing Product.

2. Preliminary

Let𝑈 be an initial universe, let𝐸 be the universe of all possible
parameters related to the objects in𝑈, and letP(𝑈) be power
set of 𝑈.

Definition 1 (see [1]). Consider a nonempty set 𝐴 such that
𝐴 ⊆ 𝐸. A pair (𝑓, 𝐴) is called a soft set over 𝑈, where 𝑓 is a
mapping given by 𝑓 : 𝐴 → P(𝑈).

In this paper, we will use the following definition given by
Çağman [4] for basic set operations on soft sets.

Definition 2 (see [4]). A soft set 𝑓 over 𝑈 is a set valued
function from 𝐸 toP(𝑈). It can be written as a set of ordered
pairs:

𝑓 = {(𝑒, 𝑓 (𝑒)) : 𝑒 ∈ 𝐸} . (1)

Note that if 𝑓(𝑒) = 0, then the element (𝑒, 𝑓(𝑒)) will not
appear in soft set 𝑓. Set of all soft sets over 𝑈 will be denoted
by S(𝑈).

Example 3. Let 𝑈 = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} be the uni-

verse containing eight houses and let 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
6
}

be the set of parameters. Here, 𝑒
𝑖
(𝑖 = 1, 2, 3, 4, 5, 6) stand

for the parameters “modern,” “with parking,” “expensive,”
“cheap,” “large,” and “near to city,” respectively. Then, the
following soft sets are described byMr. A andMr. Bwhowant
to buy a house, respectively:

𝑓 = {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
7
, 𝑢
8
}) ,

(𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
})} ,

𝑔 = {(𝑒
2
{𝑢
1
, 𝑢
3
, 𝑢
6
}) , (𝑒
3
, 𝑈) , (𝑒

5
, {𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
})} .

(2)

Definition 4 (see [4]). Let 𝑓, 𝑔 ∈ S(𝑈). Then,

(1) if 𝑓(𝑒) = 0, for all 𝑒 ∈ 𝐸, 𝑓 is said to be a null soft set,
denoted by Φ;

(2) if 𝑓(𝑒) = 𝑈, for all 𝑒 ∈ 𝐸, 𝑓 is said to be absolute soft
set, denoted by �̂�;

(3) 𝑓 is soft subset of 𝑔, denoted by 𝑓 ⊆̃ 𝑔, if 𝑓(𝑒) ⊆ 𝑔(𝑒)

for all 𝑒 ∈ 𝐸;
(4) 𝑓 = 𝑔, if 𝑓 ⊆̃ 𝑔 and 𝑔 ⊆̃ 𝑓;

(5) soft union of 𝑓 and 𝑔, denoted by 𝑓 ∪̃ 𝑔, is a soft set
over𝑈 and is defined by 𝑓 ∪̃ 𝑔 : 𝐸 → P(𝑈) such that
(𝑓 ∪̃ 𝑔)(𝑒) = 𝑓(𝑒) ∪ 𝑔(𝑒) for all 𝑒 ∈ 𝐸;

(6) soft intersection of 𝑓 and 𝑔, denoted by 𝑓 ∩̃ 𝑔, is a
soft set over 𝑈 and is defined by 𝑓 ∩̃ 𝑔 : 𝐸 → P(𝑈)

such that (𝑓 ∩̃ 𝑔)(𝑒) = 𝑓(𝑒) ∩ 𝑔(𝑒) for all 𝑒 ∈ 𝐸;
(7) soft complement of 𝑓 is denoted by 𝑓�̃� and is defined

by 𝑓�̃� : 𝐸 → P(𝑈) such that 𝑓�̃�(𝑒) = 𝑈 \ 𝑓(𝑒) for all
𝑒 ∈ 𝐸.

Example 5. Let us consider soft sets 𝑓 and 𝑔 given in
Example 3. Then,

𝑓 ∪̃ 𝑔 = {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
6
, 𝑢
7
, 𝑢
8
}) ,

(𝑒
3
, 𝑈) , (𝑒

5
, {𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
})} ,

𝑓 ∩̃ 𝑔 = {(𝑒
2
{𝑢
1
}) , (𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
})} ,

𝑓
�̃�
= {(𝑒
1
, {𝑢
2
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
}) , (𝑒
2
, {𝑢
2
, 𝑢
3
, 𝑢
5
, 𝑢
6
}) ,

(𝑒
3
, {𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
}) , (𝑒
4
, 𝑈) , (𝑒

5
, 𝑈) , (𝑒

6
, 𝑈)} .

(3)

Definition 6 (see [8]). Let 𝑆 = (𝑓, 𝐴) be a soft set over 𝑈.
Then, the pair 𝑃 = (𝑈, 𝑆) is called soft approximation space.
Based on the soft approximation space 𝑃, we define the two
operations,

apr
𝑃
(𝑋) = {𝑢 ∈ 𝑈 : ∃𝑎 ∈ 𝐴, [𝑢 ∈ 𝑓 (𝑎) ⊆ 𝑋]} ,

apr
𝑃
(𝑋)

= {𝑢 ∈ 𝑈 : ∃𝑎 ∈ 𝐴, [𝑢 ∈ 𝑓 (𝑎) , 𝑓 (𝑎) ∩ 𝑋 ̸= 0]} ,

(4)

assigning to every subset 𝑋 ⊆ 𝑈 two sets apr
𝑃
(𝑋) and

apr
𝑃
(𝑋), which are called the soft𝑃-lower approximation and

the soft 𝑃-upper approximation of𝑋, respectively. In general,
we refer to apr

𝑃
(𝑋) and apr

𝑃
(𝑋) as soft rough approximations

of𝑋 with respect to 𝑃. Moreover, the sets

POS
𝑃
(𝑋) = apr

𝑃
(𝑋) ,

NEG
𝑃
(𝑋) = −apr

𝑃
(𝑋) ,

BND
𝑃
(𝑋) = apr

𝑃
(𝑋) − apr

𝑃
(𝑋)

(5)

are called the soft 𝑃-positive region, the soft 𝑃-negative
region, and the soft 𝑃-boundary region of 𝑋, respectively. If
apr
𝑃
(𝑋) = apr

𝑃
(𝑋),𝑋 is said to be soft𝑃-definable; otherwise

𝑋 is called a soft 𝑃-rough set.

Example 7 (see [8]). Let 𝑈 = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
}, let 𝐸 =

{𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
6
}, and let 𝐴 = {𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} ⊆ 𝐸. Let

𝑆 = (𝑓, 𝐴) be a soft set over 𝑈 given by Table 1 and the
approximation space 𝑃 = (𝑈, 𝑆).

For 𝑋 = {𝑢
3
, 𝑢
4
, 𝑢
5
} ⊆ 𝑈, we have apr

𝑃
(𝑋) = {𝑢

3
} and

apr
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
}. Thus apr

𝑃
(𝑋) ̸= apr

𝑃
(𝑋) = {𝑢

3
}

and 𝑋 is a soft 𝑃-rough set. Note that 𝑋 = {𝑢
3
, 𝑢
4
, 𝑢
5
} ̸⊆

apr
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
5
} in this case. Moreover, it is easy

to see that POS
𝑃
(𝑋) = {𝑢

3
}, NEG

𝑃
(𝑋
1
) = {𝑢

3
, 𝑢
4
}, and
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Table 1: The tabular representation of the soft set 𝑆.

𝑢
1

𝑢
2

𝑢
3

𝑢
4

𝑢
5

𝑢
6

𝑒
1

1 0 0 0 0 1

𝑒
2

0 0 1 0 0 0

𝑒
3

0 0 0 0 0 0

𝑒
4

1 1 0 0 1 0

BND
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
3
}. On the other hand, one can consider

𝑋
1
= {𝑢
3
, 𝑢
4
} ⊆ 𝑈. Since apr

𝑃
(𝑋
1
) = {𝑢

3
} = apr

𝑃
(𝑋
1
), by

definition,𝑋
1
is a soft 𝑃-definable set.

3. Soft Classes

In this section, we define concept of soft class and soft class
operations. Also we obtain some basic properties of soft class
operations.

Definition 8. Let 𝐸 be a parameter set, let 𝑈 be an initial
universe, and let 𝐷 = {𝑑

𝑖
: 𝑖 = 1, 2, . . . , 𝑛} be a set of decision

makers. Indexed class of soft sets {𝑓
𝑑𝑖
: 𝑓
𝑑𝑖
: 𝐸 → 𝑃(𝑈), 𝑑

𝑖
∈

𝐷} is called a soft class and is denoted by 𝑓
𝐷
.

If, for any 𝑑
𝑖
∈ 𝐷, 𝑓

𝑑𝑖
= Φ, the soft set 𝑓

𝑑𝑖
does not appear

in soft class 𝑓
𝐷
.

Throughout this study 𝐸,𝑈, and𝐷 denote parameter set,
initial universe, and decision makers set, respectively.

From now on, all soft classes over parameter set 𝐸, initial
universe 𝑈, and decision makers set 𝐷 will be denoted by
SC𝐸
𝐷
(𝑈).

Example 9. Let 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} be a parameter set, let 𝑈 =

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} be an initial universe, and let𝐷 =

{𝑑
1
, 𝑑
2
, 𝑑
3
} be a set of decisionmakers. If we consider soft sets

𝑓
𝑑1
, 𝑓
𝑑2
, 𝑓
𝑑3
given as

𝑓
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
6
}) ,

(𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
}) , (𝑒
4
, {})} ,

𝑓
𝑑2
= {(𝑒
1
, {𝑢
1
, 𝑢
2
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
})} ,

𝑓
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
3
, 𝑢
5
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
7
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
5
, 𝑢
8
})} ,

(6)

then𝑓
𝐷
= {𝑓
𝑑1
, 𝑓
𝑑2
, 𝑓
𝑑3
} is a soft class.We can represent a soft

class in tabular form as shown in Table 2.

Definition 10. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). If, for all 𝑑

𝑖
∈ 𝐷, 𝑓

𝑑𝑖
= Φ,

then 𝑓
𝐷
is called an empty soft class and is denoted by Ø.

Definition 11. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). If, for all 𝑑

𝑖
∈ 𝐷, 𝑓

𝑑𝑖
= �̂�,

then 𝑓
𝐷
is called a universal soft class and is denoted byU.

Definition 12. Let 𝑓
𝐷
, 𝑔
𝐷

∈ SC𝐸
𝐷
(𝑈). Then, 𝑓

𝐷
is a soft

subclass of 𝑔
𝐷
, denoted by 𝑓

𝐷
⊑ 𝑔
𝐷
, if, for all 𝑑

𝑖
∈ 𝐷,

𝑓
𝑑𝑖
⊆̃ 𝑔
𝑑𝑖
.

Table 2: The tabular representation of the soft class 𝑓
𝐷
.

𝑓
𝐷

𝑓
𝑑1

𝑓
𝑑2

𝑓
𝑑3

𝑒
1

{𝑢
1
, 𝑢
3
, 𝑢
4
} {𝑢

1
, 𝑢
2
} {𝑢

2
, 𝑢
3
, 𝑢
5
}

𝑒
2

{𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
6
} {𝑢

3
, 𝑢
6
} {𝑢

1
, 𝑢
4
, 𝑢
7
}

𝑒
3

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
} 𝑈 { }

𝑒
4

{ } {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
} {𝑢

5
, 𝑢
8
}

Example 13. Let 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} be a parameter set, let𝑈 =

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} be an initial universe, and let𝐷 =

{𝑑
1
, 𝑑
2
, 𝑑
3
} be a decision makers set. If

𝑓
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
6
}) ,

(𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
}) , (𝑒
4
, {})} ,

𝑓
𝑑2
= {(𝑒
1
, {𝑢
1
, 𝑢
2
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
})} ,

𝑓
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
3
, 𝑢
5
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
7
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
5
, 𝑢
8
})} ,

𝑔
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
3
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
6
}) , (𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
8
}) ,

(𝑒
4
, {})} ,

𝑔
𝑑2
= {(𝑒
1
, {𝑢
1
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
}) , (𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
6
}) ,

(𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
})} ,

𝑔
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
5
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
5
, 𝑢
8
})} ,

(7)

then soft classes can be written as 𝑓
𝐷

= {𝑓
𝑑1
, 𝑓
𝑑2
, 𝑓
𝑑3
} and

𝑔
𝐷
= {𝑔
𝑑1
, 𝑔
𝑑2
, 𝑔
𝑑3
}.

Note that, for all 𝑑
𝑖
∈ 𝐷, since 𝑔

𝑑𝑖
⊆̃ 𝑓
𝑑𝑖
, 𝑔
𝐷
⊑ 𝑓
𝐷
.

Proposition 14. If 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈), then

(1) 𝑓
𝐷
⊑ U;

(2) Ø ⊑ 𝑓
𝐷
;

(3) 𝑓
𝐷
⊑ 𝑓
𝐷
;

(4) 𝑓
𝐷
⊑ 𝑔
𝐷
and 𝑔

𝐷
⊑ ℎ
𝐷
⇒ 𝑓
𝐷
⊑ ℎ
𝐷
.

Proof. If 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈), then, for all 𝑑

𝑖
∈ 𝐷,

(1) 𝑓
𝑑𝑖
⊆̃ �̂� ⇒ 𝑓

𝐷
⊑ U;

(2) Φ ⊆̃ 𝑓
𝑑𝑖
⇒ Ø ⊑ 𝑓

𝐷
;

(3) 𝑓
𝑑𝑖
⊆̃ 𝑓
𝑑𝑖
⇒ 𝑓
𝐷
⊑ 𝑓
𝐷
;

(4) 𝑓
𝑑𝑖
⊆̃ 𝑔
𝑑𝑖
and 𝑔

𝑑𝑖
⊆̃ ℎ
𝑑𝑖
⇒ 𝑓
𝑑𝑖
⊆̃ ℎ
𝑑𝑖
; then, 𝑓

𝐷
⊑ 𝑔
𝐷

and 𝑔
𝐷
⊑ ℎ
𝐷
⇒ 𝑓
𝐷
⊑ ℎ
𝐷
.

Definition 15. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈). Then, 𝑓

𝐷
and 𝑔

𝐷
are

equal soft classes if and only if 𝑓
𝐷
⊑ 𝑔
𝐷
and 𝑓

𝐷
⊒ 𝑔
𝐷
. This

relation is denoted by 𝑓
𝐷
= 𝑔
𝐷
.
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Definition 16. Let 𝑓 and 𝑔 ∈ S(𝑈) and let 𝑓 ⊆̃ 𝑔. Then,
according to the soft set 𝑔, degree of subsethood of soft set
𝑓, denoted by 𝑓∘

𝑔
, is defined as follows:

𝑓
∘

𝑔
=

1


𝐸
𝑔



∑

𝑒∈𝐸

𝑓 (𝑒)


𝑔 (𝑒)


, 𝑔 (𝑒) ̸= 0. (8)

Here, 𝐸
𝑔
is set of parameters such that 𝑔(𝑒) ̸= 0.

Definition 17. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈), let 𝑓

𝐷
̸= Ø, and let 𝐷

1

and𝐷
2
be two subsets of𝐷 such that𝐷

1
∪ 𝐷
2
= 𝐷 and𝐷

1
∩

𝐷
2
= 0. If ∀𝑑

𝑖
∈ 𝐷
1
, 𝑓
𝑑𝑖
⊆̃ 𝑔
𝑑𝑖
, and ∀𝑑

𝑖
∈ 𝐷
2
, 𝑓
𝑑𝑖

̸̃⊆ 𝑔
𝑑𝑖
, then

𝑓
𝐷
is called almost-subclass of soft class 𝑔

𝐷
and is denoted by

𝑓
𝐷
⊑
𝑎
𝑔
𝐷
.

From now on, decision makers set 𝐷
1
will denote set of

𝑑
𝑖
∈ 𝐷 such that 𝑓

𝑑𝑖
⊆̃ 𝑔
𝑑𝑖
.

Definition 18. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑓

𝐷
⊑
𝑎
𝑔
𝐷
. Then,

according to the soft class 𝑔
𝐷
, degree of subclasshood of soft

class 𝑓
𝐷
, denoted by 𝑎(𝑓

𝐷
, 𝑔
𝐷
), is defined as follows:

𝑎 (𝑓
𝐷
, 𝑔
𝐷
) =

𝐷1


|𝐷|
∑

𝑑𝑖∈𝐷1

𝑓
∘

𝑔
(𝑑
𝑖
) . (9)

Here, for all 𝑑
𝑖

∈ 𝐷
1
, 𝑓
𝑑𝑖

⊆̃ 𝑔
𝑑𝑖

and 𝑓
∘

𝑔
(𝑑
𝑖
) =

(1/|𝐸
𝑔
|) ∑
𝑒∈𝐸

(|𝑓
𝑑𝑖
(𝑒)|/|𝑔

𝑑𝑖
(𝑒)|), such that 𝑔

𝑑𝑖
(𝑒) ̸= 0.

Example 19. Let us consider soft class 𝑓
𝐷
given in Example 13

and soft class 𝑔
𝐷
given as follows:

𝑔
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
7
}) ,

(𝑒
2
, {𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
}) , (𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
8
}) ,

(𝑒
4
, {𝑢
1
})} ,

𝑔
𝑑2
= {(𝑒
1
, {𝑢
1
, 𝑢
2
, 𝑢
5
, 𝑢
6
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
, 𝑢
7
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
6
, 𝑢
7
, 𝑢
8
})} ,

𝑔
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
3
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
7
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
5
})} .

(10)

Here, since 𝑓
𝑑1

⊆̃ 𝑔
𝑑1
, 𝑓
𝑑2

⊆̃ 𝑔
𝑑2
, and 𝑓

𝑑3

̸̃⊆ 𝑔
𝑑3
, |𝐷
1
| = 2.

Then,

𝑓
∘

𝑔
(𝑑
1
) =

1


𝐸
𝑔



∑

𝑒∈𝐸


𝑓
𝑑1
(𝑒)



𝑔
𝑑1
(𝑒)


=
1

4
(0.75 + 0.66 + 0.80 + 0) = 0.55,

𝑓
∘

𝑔
(𝑑
2
) =

1


𝐸
𝑔



∑

𝑒∈𝐸


𝑓
𝑑2
(𝑒)



𝑔
𝑑2
(𝑒)


=
1

4
(0.50 + 0.66 + 1 + 0.66) = 0.71.

(11)

Thus,

𝑎 (𝑓
𝐷
, 𝑔
𝐷
) =

2

3
(0.55 + 0.71) = 0.84 (12)

and 𝑓
𝐷
⊑
𝑎
𝑔
𝐷
.

Corollary 20. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈). Then

(1) if ∀𝑑
𝑖
∈ 𝐷, 𝑓

𝑑𝑖
= 𝑔
𝑑𝑖
, then 𝑎(𝑓

𝐷
, 𝑔
𝐷
) = 1;

(2) if 𝑓
𝐷
⊑ 𝑔
𝐷
,𝑓
𝐷
may be 𝑎𝑙𝑚𝑜𝑠𝑡-subclass of soft class 𝑔

𝐷
;

(3) if 𝑓
𝐷
⊑
𝑎
𝑔
𝐷
, 𝑓
𝐷
may not be a subclass of soft class 𝑔

𝐷
.

Definition 21. Let 𝑓
𝐷
, 𝑔
𝐷

∈ SC𝐸
𝐷
(𝑈). Then, union of soft

classes 𝑓
𝐷
and 𝑔

𝐷
, denoted by 𝑓

𝐷
⊔ 𝑔
𝐷
, is defined by class

of soft sets as follows:

𝑓
𝐷
⊔ 𝑔
𝐷
= {𝑓
𝑑𝑖
∪̃ 𝑔
𝑑𝑖
: 𝑑
𝑖
∈ 𝐷} . (13)

Example 22. Let 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} be a parameter set, let𝑈 =

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} be an initial universe, and let𝐷 =

{𝑑
1
, 𝑑
2
, 𝑑
3
} be a decision makers set. If

𝑓
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
2
, 𝑢
5
}) , (𝑒
2
, {𝑢
3
, 𝑢
4
, 𝑢
7
, 𝑢
8
}) ,

(𝑒
3
, {𝑢
1
, 𝑢
3
, 𝑢
5
, 𝑢
6
}) , (𝑒
4
, {})} ,

𝑓
𝑑2
= {(𝑒
1
, {𝑢
1
, 𝑢
3
}) , (𝑒
2
, {𝑢
3
, 𝑢
5
}) , (𝑒
3
, {𝑢
2
, 𝑢
4
}) ,

(𝑒
4
, {𝑢
5
, 𝑢
7
, 𝑢
8
})} ,

𝑓
𝑑3
= {(𝑒
1
, {𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
}) , (𝑒
2
, {𝑢
1
, 𝑢
6
, 𝑢
8
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
1
, 𝑢
4
, 𝑢
5
})} ,

𝑔
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
4
, 𝑢
6
}) , (𝑒
3
, {𝑢
3
, 𝑢
5
, 𝑢
8
}) ,

(𝑒
4
, {𝑢
3
, 𝑢
7
})} ,

𝑔
𝑑2
= {(𝑒
1
, {𝑢
2
, 𝑢
3
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
, 𝑢
8
}) ,

(𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
6
}) , (𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
})} ,

𝑔
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
5
, 𝑢
6
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
5
, 𝑢
7
, 𝑢
8
})} ,

(14)

then soft classes can be written as 𝑓
𝐷

= {𝑓
𝑑1
, 𝑓
𝑑2
, 𝑓
𝑑3
} and

𝑔
𝐷
= {𝑔
𝑑1
, 𝑔
𝑑2
, 𝑔
𝑑3
}.
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Here,

𝑓
𝐷
⊔ 𝑔
𝐷
=

{{{

{{{

{

𝑓
𝑑1
∪̃ 𝑔
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
}) , (𝑒
2
, {𝑢
3
, 𝑢
4
, 𝑢
6
, 𝑢
7
, 𝑢
8
}) , (𝑒
3
, {𝑢
1
, 𝑢
3
, 𝑢
5
, 𝑢
6
, 𝑢
8
}) , (𝑒
4
, {𝑢
3
, 𝑢
7
})}

𝑓
𝑑2
∪̃ 𝑔
𝑑2
= {(𝑒
1
, {𝑢
1
, 𝑢
2
, 𝑢
3
}) , (𝑒
2
, {𝑢
3
, 𝑢
5
, 𝑢
6
, 𝑢
8
}) , (𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
5
, 𝑢
6
}) , (𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
5
, 𝑢
7
, 𝑢
8
})}

𝑓
𝑑3
∪̃ 𝑔
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
6
, 𝑢
8
}) , (𝑒
3
, {}) , (𝑒

4
, {𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
7
, 𝑢
8
})}

}}}

}}}

}

. (15)

Proposition 23. If 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈), then

(1) 𝑓
𝐷
⊔ 𝑓
𝐷
= 𝑓
𝐷
;

(2) 𝑓
𝐷
⊔ Ø = 𝑓

𝐷
;

(3) 𝑓
𝐷
⊔U = U;

(4) 𝑓
𝐷
⊔ 𝑓
�̃�

𝐷
= U;

(5) 𝑓
𝐷
⊔ 𝑔
𝐷
= 𝑔
𝐷
⊔ 𝑓
𝐷
;

(6) (𝑓
𝐷
⊔ 𝑔
𝐷
) ⊔ ℎ
𝐷
= 𝑓
𝐷
⊔ (𝑔
𝐷
⊔ ℎ
𝐷
).

Proof. Let 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈). Then, for all 𝑑

𝑖
∈ 𝐷,

(1) 𝑓
𝐷
⊔ 𝑓
𝐷
= 𝑓
𝐷
, since 𝑓

𝑑𝑖
∪̃ 𝑓
𝑑𝑖
= 𝑓
𝑑𝑖
;

(2) 𝑓
𝐷
⊔Ø = 𝑓

𝐷
, since 𝑓

𝑑𝑖
∪̃ Φ = 𝑓

𝑑𝑖
;

(3) 𝑓
𝐷
⊔U = U, since 𝑓

𝑑𝑖
∪̃ �̂� = �̂�;

(4) 𝑓
𝐷
⊔ 𝑓
�̃�

𝐷
= U, since 𝑓

𝑑𝑖
∪̃ 𝑓
�̃�

𝑑𝑖
= �̂�;

(5) 𝑓
𝐷
⊔ 𝑔
𝐷
= 𝑔
𝐷
⊔ 𝑓
𝐷
, since 𝑓

𝑑𝑖
∪̃ 𝑔
𝑑𝑖
= 𝑔
𝑑𝑖
∪̃ 𝑓
𝑑𝑖
;

(6) (𝑓
𝐷
⊔ 𝑔
𝐷
) ⊔ ℎ
𝐷
= 𝑓
𝐷
⊔ (𝑓
𝐷
⊔ ℎ
𝐷
), since (𝑓

𝑑𝑖
∪̃ 𝑔
𝑑𝑖
) ∪̃

ℎ
𝑑𝑖
= 𝑓
𝑑𝑖
∪̃ (𝑔
𝑑𝑖
∪̃ ℎ
𝑑𝑖
).

Definition 24. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈). Then, intersection of

soft classes 𝑓
𝐷
and 𝑔
𝐷
, denoted by 𝑓

𝐷
⊓𝑔
𝐷
, is defined by class

of soft sets as follows:

𝑓
𝐷
⊓ 𝑔
𝐷
= {𝑓
𝑑𝑖
∩̃ 𝑔
𝑑𝑖
: 𝑑
𝑖
∈ 𝐷} . (16)

Example 25. Let us consider soft classes 𝑓
𝐷
and 𝑔

𝐷
given in

Example 22. Then,

𝑓
𝐷
⊓ 𝑔
𝐷

=

{{{

{{{

{

𝑓
𝑑1
∩̃ 𝑔
𝑑1
= {(𝑒
1
, {𝑢
1
}) , (𝑒
2
, {𝑢
4
}) , (𝑒
3
, {𝑢
3
, 𝑢
5
}) , (𝑒
4
, {})}

𝑓
𝑑2
∩̃ 𝑔
𝑑2
= {(𝑒
1
, {𝑢
3
}) , (𝑒
2
, {𝑢
3
}) , (𝑒
3
, {𝑢
2
}) , (𝑒
4
, {𝑢
7
, 𝑢
8
})}

𝑓
𝑑3
∩̃ 𝑔
𝑑3
= {(𝑒
1
, {𝑢
5
, 𝑢
6
}) , (𝑒
2
, {𝑢
1
}) , (𝑒
3
, {}) , (𝑒

4
, {𝑢
5
})}

}}}

}}}

}

.

(17)

Proposition 26. If 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈), then

(1) 𝑓
𝐷
⊓ 𝑓
𝐷
= 𝑓
𝐷
;

(2) 𝑓
𝐷
⊓ Ø = Ø;

(3) 𝑓
𝐷
⊓U = 𝑓

𝐷
;

(4) 𝑓
𝐷
⊓ 𝑓
�̃�

𝐷
= Ø;

(5) 𝑓
𝐷
⊓ 𝑔
𝐷
= 𝑔
𝐷
⊓ 𝑓
𝐷
;

(6) (𝑓
𝐷
⊓ 𝑔
𝐷
) ⊓ ℎ
𝐷
= 𝑓
𝐷
⊓ (𝑔
𝐷
⊓ ℎ
𝐷
).

Proof. Let 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈). Then, for all 𝑑

𝑖
∈ 𝐷,

(1) 𝑓
𝐷
⊓ 𝑓
𝐷
= 𝑓
𝐷
, since 𝑓

𝑑𝑖
∩̃ 𝑓
𝑑𝑖
= 𝑓
𝑑𝑖
;

(2) 𝑓
𝐷
⊓Ø = Ø, since 𝑓

𝑑𝑖
∩̃ Φ = Φ;

(3) 𝑓
𝐷
⊓U = 𝑓

𝐷
, since 𝑓

𝑑𝑖
∩̃ �̂� = 𝑓

𝑑𝑖
;

(4) 𝑓
𝐷
⊓ 𝑓
�̃�

𝐷
= Ø, since 𝑓

𝑑𝑖
∩̃ 𝑓
�̃�

𝑑𝑖
= Φ;

(5) 𝑓
𝐷
⊓ 𝑔
𝐷
= 𝑔
𝐷
⊓ 𝑓
𝐷
, since 𝑓

𝑑𝑖
∩̃ 𝑔
𝑑𝑖
= 𝑔
𝑑𝑖
∩̃ 𝑓
𝑑𝑖
;

(6) (𝑓
𝐷
⊓ 𝑔
𝐷
) ⊓ ℎ
𝐷
= 𝑓
𝐷
⊓ (𝑓
𝐷
⊓ ℎ
𝐷
), since (𝑓

𝑑𝑖
∩̃ 𝑔
𝑑𝑖
) ∩̃

ℎ
𝑑𝑖
= 𝑓
𝑑𝑖
∩̃ (𝑔
𝑑𝑖
∩̃ ℎ
𝑑𝑖
).

Proposition 27. If 𝑓
𝐷
, 𝑔
𝐷
, and ℎ

𝐷
∈ SC𝐸

𝐷
(𝑈), then

(1) 𝑓
𝐷
⊔ (𝑔
𝐷
⊓ ℎ
𝐷
) = (𝑓

𝐷
⊔ 𝑔
𝐷
) ⊓ (𝑓

𝐷
⊔ ℎ
𝐷
);

(2) 𝑓
𝐷
⊓ (𝑔
𝐷
⊔ ℎ
𝐷
) = (𝑓

𝐷
⊓ 𝑔
𝐷
) ⊔ (𝑓

𝐷
⊓ ℎ
𝐷
).

Proof. The proof can be easily obtained from Definitions 21
and 24.

Definition 28. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). Then, soft complement of

soft class 𝑓
𝐷
, denoted by 𝑓�̃�

𝐷
, is defined by class of soft sets as

follows:

𝑓
�̃�

𝐷
= {𝑓
�̃�

𝑑𝑖
: 𝑑
𝑖
∈ 𝐷} . (18)

Here, 𝑓�̃�
𝑑𝑖
= �̂� \̃ 𝑓

𝑑𝑖
for all 𝑑

𝑖
∈ 𝐷.

Proposition 29. If 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈), then

(1) (𝑓�̃�
𝐷
)
�̃�
= 𝑓
𝐷
;

(2) Ø�̃� = U.

Proof. The proof can be easily obtained from Definition 28.

Proposition 30. If 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈), then

(1) (𝑓
𝐷
⊔ 𝑔
𝐷
)
�̃�
= 𝑓
�̃�

𝐷
⊓ 𝑔
�̃�

𝐷
;

(2) (𝑓
𝐷
⊓ 𝑔
𝐷
)
�̃�
= 𝑓
�̃�

𝐷
⊔ 𝑔
�̃�

𝐷
.

Proof. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈). Then, for all 𝑑

𝑖
∈ 𝐷,

(1) (𝑓
𝐷
⊔ 𝑔
𝐷
)
�̃�
= 𝑓
�̃�

𝐷
⊓ 𝑔
�̃�

𝐷
, since (𝑓

𝑑𝑖
∪̃ 𝑔
𝑑𝑖
)
�̃�
= 𝑓
�̃�

𝑑𝑖
∩̃ 𝑔
�̃�

𝑑𝑖
;

(2) (𝑓
𝐷
⊓ 𝑔
𝐷
)
�̃�
= 𝑓
�̃�

𝐷
⊓ 𝑔
�̃�

𝐷
, since (𝑓

𝑑𝑖
∩̃ 𝑔
𝑑𝑖
)
�̃�
= 𝑓
�̃�

𝑑𝑖
∪̃ 𝑔
�̃�

𝑑𝑖
.
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Proposition 31. If 𝑓
𝑗𝐷
∈ SC𝐸

𝐷
(𝑈) (𝑗 = 1, 2, . . . , 𝑛), then

(1) (⋃̃
𝑛

𝑗=1
𝑓
𝑗𝑑𝑖
)
�̃�
= ⋂̃
𝑛

𝑗=1
(𝑓
𝑗𝑑𝑖
)
�̃�, for all 𝑑

𝑖
∈ 𝐷;

(2) (⋂̃
𝑛

𝑗=1
𝑓
𝑗𝑑𝑖
)
�̃�
= ⋃̃
𝑛

𝑗=1
(𝑓
𝑗𝑑𝑖
)
�̃�, for all 𝑑

𝑖
∈ 𝐷.

Proof. Since 𝑓
𝑗𝑑𝑖

are soft sets for all 𝑑
𝑖
∈ 𝐷 (𝑗 = 1, 2, . . . , 𝑛),

the proof is clear.

Proposition 32. Let 𝑓
𝑗𝐷
∈ SC𝐸

𝐷
(𝑈). Then,

(1) (⨆𝑛
𝑗=1

𝑓
𝑗𝐷
)
�̃�
= ⨅
𝑛

𝑗=1
(𝑓
𝑗𝐷
)
�̃�;

(2) (⨅𝑛
𝑗=1

𝑓
𝑗𝐷
)
�̃�
= ⨆
𝑛

𝑗=1
(𝑓
𝑗𝐷
)
�̃�.

Proof. The proof is obvious from Propositions 30 and 31.

Definition 33. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑔 ∈ S(𝑈). Then,

𝑓
𝐷
is called soft partition of soft set 𝑔 if and only if all of the

following conditions hold:

(1) Φ ∉ 𝑓
𝐷
.

(2) ⋃
𝑑𝑖∈𝐷

𝑓
𝑑𝑖
(𝑒) = 𝑔(𝑒), for all 𝑒 ∈ 𝐸.

(3) If 𝑓
𝑑𝑖
, 𝑓
𝑑𝑗
∈ 𝑓
𝐷
and 𝑖 ̸= 𝑗, then 𝑓

𝑑𝑖
(𝑒) ∩ 𝑓

𝑑𝑗
(𝑒) = 0, for

all 𝑒 ∈ 𝐸.

Definition 34. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑔 ∈ S(𝑈). If, for all

𝑒 ∈ 𝐸,

𝑔 (𝑒) ⊆ ⋃

𝑑𝑖∈𝐷

𝑓
𝑑𝑖
(𝑒) , (19)

then soft class 𝑓
𝐷
is called soft cover of soft set 𝑔.

Example 35. Let us consider soft class 𝑓
𝐷

given in
Example 22. Then, soft class 𝑓

𝐷
is soft cover of soft set

𝑔 given as follows:

𝑔 = {(𝑒
1
, {𝑢
1
, 𝑢
6
}) , (𝑒
2
, {𝑢
4
, 𝑢
5
, 𝑢
8
}) , (𝑒
3
, {𝑢
2
, 𝑢
5
}) ,

(𝑒
4
, {𝑢
4
, 𝑢
5
})} .

(20)

Definition 36. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). If, for all 𝑒 ∈ 𝐸 and 𝑑

𝑖
∈ 𝐷,

⋃
𝑑𝑖∈𝐷

𝑓
𝑑𝑖
(𝑒) = �̂�, then soft class𝑓

𝐷
is called full soft class and

is denoted by �̂�
𝐷
.

Proposition 37. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) be two soft covers of

soft set ℎ ∈ S(𝑈). Then, 𝑓
𝐷
⊓ 𝑔
𝐷
is a soft cover of soft set ℎ.

Proof. Assume that 𝑓
𝐷
and 𝑔

𝐷
be two soft covers of soft set

ℎ; then, for all 𝑒 ∈ 𝐸, ℎ(𝑒) ⊆ ⋃
𝑑𝑖∈𝐷

𝑓
𝑑𝑖
(𝑒) and ℎ(𝑒) ⊆

⋃
𝑑𝑖∈𝐷

𝑔
𝑑𝑖
(𝑒). Hence, ℎ(𝑒) ⊆ (⋃

𝑑𝑖∈𝐷
𝑓
𝑑𝑖
(𝑒)) ∩ (⋃

𝑑𝑖∈𝐷
𝑔
𝑑𝑖
(𝑒)) =

⋃
𝑑𝑖∈𝐷

(𝑓
𝑑𝑖
(𝑒) ∩ 𝑔

𝑑𝑖
(𝑒)) for all 𝑒 ∈ 𝐸. So, soft class 𝑓

𝐷
⊓ 𝑔
𝐷
is a

soft cover of soft set ℎ.

Proposition 38. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) be two soft covers of

soft set ℎ ∈ S(𝑈). Then, 𝑓
𝐷
⊔ 𝑔
𝐷
is a soft cover of soft set ℎ.

Proof. Assume that 𝑓
𝐷
and 𝑔

𝐷
be two soft covers of soft set

ℎ; then, for all 𝑒 ∈ 𝐸, ℎ(𝑒) ⊆ ⋃
𝑑𝑖∈𝐷

𝑓
𝑑𝑖
(𝑒) and ℎ(𝑒) ⊆

⋃
𝑑𝑖∈𝐷

𝑔
𝑑𝑖
(𝑒). Hence, ℎ(𝑒) ⊆ (⋃

𝑑𝑖∈𝐷
𝑓
𝑑𝑖
(𝑒)) ∪ (⋃

𝑑𝑖∈𝐷
𝑔
𝑑𝑖
(𝑒)) =

⋃
𝑑𝑖∈𝐷

(𝑓
𝑑𝑖
(𝑒) ∪ 𝑔

𝑑𝑖
(𝑒)) for all 𝑒 ∈ 𝐸. So soft class 𝑓

𝐷
⊔ 𝑔
𝐷
is a

soft cover of soft set ℎ.

Corollary 39. Let �̂�
𝐷
∈ SC𝐸

𝐷
(𝑈). Then, for all 𝑔 ∈ S(𝑈), �̂�

𝐷

is a soft cover of soft set 𝑔.

4. Soft Rough Classes

In this section, we define soft rough class and investigate its
some properties.

Definition 40. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). For 𝑒

𝑗
∈ 𝐸, parameterized

class (𝑒
𝑗
-class) of soft class 𝑓

𝐷
, denoted by 𝐶

𝑓𝐷
(𝑒
𝑗
), is defined

as follows:

𝐶
𝑓𝐷
(𝑒
𝑗
) = {𝑓

𝑑𝑖
(𝑒
𝑗
) : 𝑑
𝑖
∈ 𝐷} . (21)

Example 41. Let 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} be a parameter set, let

𝑈 = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} be an initial universe, and

let {𝑑
1
, 𝑑
2
, 𝑑
3
} be a set of decisionmakers. Let us consider soft

sets 𝑓
𝑑1
, 𝑓
𝑑2
, and 𝑓

𝑑3
given as follows:

𝑓
𝑑1
= {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
6
}) ,

(𝑒
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
}) , (𝑒
4
, {})} ,

𝑓
𝑑2
= {(𝑒
1
, {𝑢
1
, 𝑢
2
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
})} ,

𝑓
𝑑3
= {(𝑒
1
, {𝑢
2
, 𝑢
3
, 𝑢
5
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
7
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
5
, 𝑢
8
})} ;

(22)

then all of parameterized classes of 𝑓
𝐷
are as follows:

𝐶
𝑓𝐷
(𝑒
1
) = {{𝑢

1
, 𝑢
3
, 𝑢
4
} , {𝑢
1
, 𝑢
2
} , {𝑢
2
, 𝑢
3
, 𝑢
5
}} ,

𝐶
𝑓𝐷
(𝑒
2
) = {{𝑢

1
, 𝑢
4
, 𝑢
5
, 𝑢
6
} , {𝑢
3
, 𝑢
6
} , {𝑢
1
, 𝑢
4
, 𝑢
7
}} ,

𝐶
𝑓𝐷
(𝑒
3
) = {{𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
8
} , 𝑈, {}} ,

𝐶
𝑓𝐷
(𝑒
4
) = {{ } , {𝑢

1
, 𝑢
3
, 𝑢
7
, 𝑢
8
} , {𝑢
5
, 𝑢
8
}} .

(23)

Definition 42. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). Then, for 𝑔 ∈ S(𝑈) and

𝑒 ∈ 𝐸, 𝑒-lower approximation, denoted by 𝑔
𝑓𝐷

(𝑒), is defined
as follows:

𝑔
𝑓𝐷

(𝑒)

= {𝑢 ∈ 𝑈 : ∃𝑓
𝑑𝑖
(𝑒) ∈ 𝐶

𝑓𝐷
(𝑒) , 𝑢 ∈ 𝑓

𝑑𝑖
(𝑒) ⊆ 𝑔 (𝑒)} .

(24)

𝑒-upper approximation, denoted by 𝑔
𝑓𝐷
(𝑒), is defined as

follows:

𝑔
𝑓𝐷
(𝑒) = {𝑢 ∈ 𝑈 : ∃𝑓

𝑑𝑖
(𝑒) ∈ 𝐶

𝑓𝐷
(𝑒) , 𝑢

∈ 𝑓
𝑑𝑖
(𝑒) , 𝑓
𝑑𝑖
(𝑒) ∩ 𝑔 (𝑒) ̸= 0} .

(25)
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Moreover, the sets

POS
𝑓𝐷
𝑔 (𝑒) = 𝑔

𝑓𝐷

(𝑒) ,

NEG
𝑓𝐷
𝑔 (𝑒) = −𝑔

𝑓𝐷
(𝑒) ,

BND
𝑓𝐷
𝑔 (𝑒) = 𝑔

𝑓𝐷
(𝑒) − 𝑔

𝑓𝐷

(𝑒)

(26)

are called the 𝑒-positive region, the 𝑒-negative region, and
𝑒-boundary region of 𝑔 ∈ SC𝐸

𝐷
(𝑈). Here −𝑔

𝑓𝐷
(𝑒) is

complement of set 𝑔
𝑓𝐷
(𝑒). If 𝑔

𝑓𝐷

(𝑒) = 𝑔
𝑓𝐷
(𝑒), 𝑔 is said to be

𝑒-definable; otherwise 𝑔 is called 𝑒-rough set.

Proposition 43. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈). Then we have

𝑔
𝑓𝐷

(𝑒) = ⋃

𝑑𝑖∈𝐷

{𝑓
𝑑𝑖
(𝑒) : 𝑓

𝑑𝑖
(𝑒) ⊆ 𝑔 (𝑒)} ,

𝑔
𝑓𝐷
(𝑒) = ⋃

𝑑𝑖∈𝐷

{𝑓
𝑑𝑖
(𝑒) : 𝑓

𝑑𝑖
(𝑒) ∩ 𝑔 (𝑒) ̸= 0}

(27)

for all 𝑔 ∈ S(𝑈).

Definition 44. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑔 ∈ S(𝑈). Then,

soft 𝑓
𝐷
-lower approximation, denoted by apr

𝑓𝐷

𝑔, is defined
as follows:

apr
𝑓𝐷

𝑔 = {(𝑒, 𝑔
𝑓𝐷

(𝑒)) : 𝑒 ∈ 𝐸} . (28)

Also, soft 𝑓
𝐷
-upper approximation, denoted by apr

𝑓𝐷
𝑔, is

defined as follows:

apr
𝑓𝐷
𝑔 = {(𝑒, 𝑔

𝑓𝐷
(𝑒)) : 𝑒 ∈ 𝐸} . (29)

Moreover, the sets

POS
𝑓𝐷
𝑔 = apr

𝑓𝐷

𝑔 = {(𝑒, 𝑔
𝑓𝐷

(𝑒)) : 𝑒 ∈ 𝐸} ,

NEG
𝑓𝐷
𝑔 = −apr

𝑓𝐷
𝑔 = {(𝑒, −𝑔

𝑓𝐷
(𝑒)) : 𝑒 ∈ 𝐸} ,

BND
𝑓𝐷
𝑔 = apr

𝑓𝐷
𝑔 − apr

𝑓𝐷

𝑔

= {(𝑒, 𝑔
𝑓𝐷

(𝑒) − 𝑔
𝑓𝐷
(𝑒)) : 𝑒 ∈ 𝐸}

(30)

are called the soft 𝑓
𝐷
-positive region, the soft 𝑓

𝐷
-negative

region, and soft 𝑓
𝐷
-boundary region of 𝑔 ∈ S(𝑈), respec-

tively. If apr
𝑓𝐷

𝑔 = apr
𝑓𝐷
𝑔, 𝑓
𝐷
is said to be soft 𝑓

𝐷
-definable;

otherwise 𝑔 is called a soft 𝑓
𝐷
-rough class.

Example 45. Let us consider soft class 𝑓
𝐷

given in
Example 41. Let 𝑔 = {(𝑒

1
, {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
5
}), (𝑒
2
, {𝑢
3
, 𝑢
6
, 𝑢
7
}),

(𝑒
3
, 𝑈), (𝑒

4
, {𝑢
5
, 𝑢
7
, 𝑢
8
})} ∈ S(𝑈). Then,

apr
𝑓𝐷

𝑔 = {(𝑒
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
5
, 𝑢
8
})} ,

apr
𝑓𝐷
𝑔 = {(𝑒

1
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
}) ,

(𝑒
2
, {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
5
, 𝑢
7
, 𝑢
8
})} ,

POS
𝑓𝐷
𝑔 = {(𝑒

1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑒
2
, {𝑢
3
, 𝑢
6
}) , (𝑒
3
, 𝑈) ,

(𝑒
4
, {𝑢
5
, 𝑢
8
})} ,

NEG
𝑓𝐷
𝑔 = {(𝑒

1
, {𝑢
6
, 𝑢
7
, 𝑢
8
}) , (𝑒
2
, {𝑢
2
, 𝑢
8
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
2
, 𝑢
4
, 𝑢
6
})} ,

BND
𝑓𝐷
𝑔 = {(𝑒

1
, {𝑢
2
, 𝑢
5
}) , (𝑒
2
, {𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
7
}) , (𝑒
3
, {}) ,

(𝑒
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
})} .

(31)

Lemma 46. Let𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) and let ℎ, 𝑘 ∈ S(𝑈).Then,

for all 𝑒 ∈ 𝐸 and for all 𝑑
𝑖
∈ 𝐷,

(1) if ℎ ̸= �̂�, ℎ ̸= Φ,ℎU(𝑒) = 0 and ℎU(𝑒) = 𝑈;

(2) if ℎ = �̂�, ℎU(𝑒) = ℎU(𝑒) = 𝑈;

(3) ℎØ(𝑒) = ℎØ(𝑒) = 0;
(4) ℎ
𝑓𝐷⊔𝑔𝐷

(𝑒) = ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒);

(5) ℎ
𝑓𝐷⊔𝑔𝐷

(𝑒) ⊇ ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒);

(6) ℎ
𝑓𝐷⊓𝑔𝐷

(𝑒) ⊇ ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒);

(7) ℎ
𝑓𝐷⊓𝑔𝐷

(𝑒) = ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒).

Proof. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) and let ℎ, 𝑘 ∈ S(𝑈).The proofs

of (1), (2), and (3) are clear from definitions of 𝑒-upper and
𝑒-lower approximations:

(4) Let 𝑥 ∈ ℎ
𝑓𝐷⊔𝑔𝐷

(𝑒). Then, 𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) ∪ 𝑔

𝑑𝑖
(𝑒) ⊆ ℎ(𝑒) for

some 𝑑
𝑖
∈ 𝐷. Thus 𝑥 ∈ 𝑓

𝑑𝑖
(𝑒) ⊆ ℎ(𝑒) or 𝑥 ∈ 𝑔

𝑑𝑖
(𝑒) ⊆

ℎ(𝑒). So 𝑥 ∈ ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒) and ℎ

𝑓𝐷⊔𝑔𝐷
(𝑒) ⊆ ℎ

𝑓𝐷
(𝑒) ∪

ℎ
𝑔𝐷
(𝑒). To prove the reverse inclusion, assume that𝑥 ∈

ℎ
𝑓𝐷
(𝑒)∪ℎ

𝑔𝐷
(𝑒).Then, 𝑥 ∈ ℎ

𝑓𝐷
(𝑒) or 𝑥 ∈ ℎ

𝑔𝐷
(𝑒). So, for

some 𝑑
𝑖
∈ 𝐷, 𝑥 ∈ 𝑓

𝑑𝑖
(𝑒) ⊆ ℎ(𝑒) or 𝑥 ∈ 𝑔

𝑑𝑖
(𝑒) ⊆ ℎ(𝑒)

and 𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) ∪ 𝑔

𝑑𝑖
(𝑒) ⊆ ℎ(𝑒). Thus, 𝑥 ∈ ℎ

𝑓𝐷⊔𝑔𝐷
(𝑒).

Then we have ℎ
𝑓𝐷⊔𝑔𝐷

(𝑒) ⊆ ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒)ℎ
𝑓𝐷⊔𝑔𝐷

(𝑒) =

ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒).

(5) Let 𝑥 ∈ ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒). Then we have that 𝑥 ∈ ℎ

𝑓𝐷
(𝑒)

or 𝑥 ∈ ℎ
𝑔𝐷
(𝑒). By definition, there exists some 𝑑

𝑖
∈ 𝐷

such that 𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) and 𝑓

𝑑𝑖
(𝑒) ∩ ℎ(𝑒) ̸= 0 or 𝑥 ∈

𝑔
𝑑𝑖
and 𝑔

𝑑𝑖
(𝑒) ∩ ℎ(𝑒) ̸= 0. So 𝑥 ∈ 𝑓

𝑑𝑖
(𝑒) ∪ 𝑔

𝑑𝑖
(𝑒) and

(𝑓
𝑑𝑖
(𝑒) ∪ 𝑔

𝑑𝑖
(𝑒)) ∩ ℎ(𝑒) ̸= 0. Thus, 𝑥 ∈ ℎ

𝑓𝐷⊔𝑔𝐷
(𝑒). We

concluded that ℎ
𝑓𝐷⊔𝑔𝐷

(𝑒) ⊇ ℎ
𝑓𝐷
(𝑒) ∪ ℎ

𝑔𝐷
(𝑒).
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(6) Let 𝑥 ∈ ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒). By definition, there exists

some 𝑑
𝑖
∈ 𝐷 such that 𝑥 ∈ 𝑓

𝑑𝑖
(𝑒) ⊆ ℎ(𝑒) and 𝑥 ∈

𝑔
𝑑𝑖
(𝑒) ⊆ ℎ(𝑒). So 𝑥 ∈ (𝑓

𝑑𝑖
(𝑒) ∩ 𝑔

𝑑𝑖
)(𝑒) ⊆ ℎ(𝑒). Hence,

𝑥 ∈ ℎ
𝑓𝐷⊓𝑔𝐷

(𝑒). Thus, we conclude that ℎ
𝑓𝐷⊓𝑔𝐷

(𝑒) ⊇

ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒).

(7) Let 𝑥 ∈ ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒). Then we have that 𝑥 ∈ ℎ

𝑓𝐷
(𝑒)

and 𝑥 ∈ ℎ
𝑔𝐷
(𝑒). By definition, there exists some 𝑑

𝑖
∈

𝐷 such that 𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) and 𝑓

𝑑𝑖
(𝑒) ∩ ℎ(𝑒) ̸= 0 and 𝑥 ∈

𝑔
𝑑𝑖
and 𝑔

𝑑𝑖
(𝑒) ∩ ℎ(𝑒) ̸= 0. So 𝑥 ∈ 𝑓

𝑑𝑖
(𝑒) ∩ 𝑔

𝑑𝑖
(𝑒) and

(𝑓
𝑑𝑖
(𝑒) ∩ 𝑑

𝑑𝑖
(𝑒)) ∩ ℎ(𝑒) ̸= 0. Thus, 𝑥 ∈ ℎ

𝑓𝐷⊓𝑔𝐷
(𝑒). We

concluded that ℎ
𝑓𝐷⊓𝑔𝐷

(𝑒) ⊇ ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒). To prove

the reverse inclusion, assume that 𝑥 ∈ ℎ
𝑓𝐷⊓𝑔𝐷

(𝑒); then
𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) ∩ 𝑔

𝑑𝑖
(𝑒) such that (𝑓

𝑑𝑖
(𝑒) ∩ 𝑔

𝑑𝑖
(𝑒)) ∩ ℎ(𝑒) ̸=

0 and (𝑓
𝑑𝑖
(𝑒) ∩ ℎ

𝑑𝑖
(𝑒)) ∩ (𝑔

𝑑𝑖
(𝑒) ∩ ℎ(𝑒)) ̸= 0. Hence,

(𝑓
𝑑𝑖
(𝑒) ∩ ℎ

𝑑𝑖
(𝑒)) ̸= 0 and (𝑔

𝑑𝑖
(𝑒) ∩ ℎ

𝑑𝑖
(𝑒)) ̸= 0. Since

𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) and (𝑓

𝑑𝑖
(𝑒) ∩ ℎ

𝑑𝑖
(𝑒)) ̸= 0, 𝑥 ∈ ℎ

𝑓𝐷
(𝑒) and

in a similar way 𝑥 ∈ ℎ
𝑔𝐷
(𝑒). We get that ℎ

𝑓𝐷⊓𝑔𝐷
(𝑒) ⊆

ℎ
𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒). Then, ℎ

𝑓𝐷⊓𝑔𝐷
(𝑒) = ℎ

𝑓𝐷
(𝑒) ∩ ℎ

𝑔𝐷
(𝑒).

Theorem 47. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) and ℎ ∈ S(𝑈). Then,

(1) apr
𝑓𝐷⊔𝑔𝐷

(ℎ) = apr
𝑓𝐷

(ℎ) ∪̃ apr
𝑔𝐷

(ℎ);

(2) apr
𝑓𝐷⊔𝑔𝐷

(ℎ) ⊇ apr
𝑓𝐷
(ℎ) ∪̃ apr

𝑔𝐷
(ℎ);

(3) apr
𝑓𝐷⊓𝑔𝐷

(ℎ) ⊇ apr
𝑓𝐷

(ℎ) ∩̃ apr
𝑔𝐷

(ℎ);

(4) apr
𝑓𝐷⊓𝑔𝐷

(ℎ) = apr
𝑓𝐷
(ℎ) ∩̃ apr

𝑔𝐷
(ℎ);

(5) apr
Ø
(ℎ) = Φ;

(6) aprØ(ℎ) = Φ;

(7) if ∀𝑑
𝑖
∈ 𝐷, ℎ ̸= �̂�, apr

U
(ℎ) = Φ and aprU(ℎ) = �̂�;

(8) if ∀𝑑
𝑖
∈ 𝐷, ℎ = �̂�, apr

U
(ℎ) = �̂� and aprU(ℎ) = �̂�.

Proof. By using Lemma 46, the proof can be easily made.

Theorem 48. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let ℎ, 𝑘 ∈ S(𝑈). Then,

(1) apr
𝑓𝐷

(Φ) = apr
𝑓𝐷
(Φ) = Φ;

(2) apr
𝑓𝐷

(�̂�) = apr
𝑓𝐷
(�̂�) = �̂�;

(3) ℎ ⊆̃ 𝑘 ⇒ apr
𝑓𝐷

(ℎ) ⊆̃ apr
𝑓𝐷

(𝑘);

(4) ℎ ⊆̃ 𝑘 ⇒ apr
𝑓𝐷
(ℎ) ⊆̃ apr

𝑓𝐷
(𝑘);

(5) apr
𝑓𝐷

(ℎ ∩̃ 𝑘) ⊆̃ apr
𝑓𝐷

(ℎ) ∩̃ apr
𝑓𝐷

(𝑘);

(6) apr
𝑓𝐷
(ℎ ∩̃ 𝑘) ⊆̃ apr

𝑓𝐷
(ℎ) ∩̃ apr

𝑓𝐷
(𝑘);

(7) apr
𝑓𝐷

(ℎ ∪̃ 𝑘) ⊇̃ apr
𝑓𝐷

(ℎ) ∪̃ apr
𝑓𝐷

(𝑘);

(8) apr
𝑓𝐷
(ℎ ∪̃ 𝑘) = apr

𝑓𝐷
(ℎ) ∪̃ apr

𝑓𝐷
(𝑘).

Proof. (1) It is straightforward.
(2) It is straightforward.

(3) Let 𝑥 ∈ ℎ
𝑓𝐷
(𝑒). Then, for some 𝑑

𝑖
∈ 𝐷, 𝑥 ∈ 𝑓

𝑑𝑖
(𝑒) ⊆

ℎ(𝑒). Since (ℎ) ⊆̃ 𝑘, ℎ(𝑒) ⊆ 𝑘(𝑒), and 𝑥 ∈ 𝑓
𝑑𝑖
(𝑒) ⊆ 𝑘(𝑒).

Therefore 𝑥 ∈ 𝑘
𝑓𝐷
(𝑒) and ℎ

𝑓𝐷
(𝑒) ⊆ 𝑘

𝑓𝐷
(𝑒); From definition

of soft 𝑓
𝐷
-lower approximation apr

𝑓𝐷

(ℎ) ⊆̃ apr
𝑓𝐷

(𝑘).

(4) Let ℎ ⊆̃ 𝑘. Then, for all 𝑑
𝑖
∈ 𝐷, ℎ(𝑒) ∩ 𝑓

𝑑𝑖
(𝑒) ⊆ 𝑘(𝑒) ∩

𝑓
𝑑𝑖
(𝑒) and ℎ(𝑒) ∩𝑓

𝑑𝑖
(𝑒) ̸= 0, 𝑘(𝑒) ∩𝑓

𝑑𝑖
(𝑒) ̸= 0 for some 𝑑

𝑖
∈ 𝐷.

Therefore ℎ
𝑓𝐷
(𝑒) ⊆ 𝑘

𝑓𝐷
(𝑒). From definition of soft 𝑓

𝐷
-upper

approximation apr
𝑓𝐷
(ℎ) ⊆̃ apr

𝑓𝐷
(𝑘).

(5) Since ℎ ∩̃ 𝑘 ⊆̃ ℎ and ℎ ∩̃ 𝑘 ⊆̃ 𝑘, from (3), apr
𝑓𝐷

(ℎ ∩̃

𝑘) ⊆̃ apr
𝑓𝐷

(𝑘) and apr
𝑓𝐷

(ℎ ∩̃ 𝑘) ⊆̃ apr
𝑓𝐷

(𝑘), respectively.
Therefore, apr

𝑓𝐷

(ℎ ∩̃ 𝑘) ⊆̃ apr
𝑓𝐷

(ℎ) ∩̃ apr
𝑓𝐷

(𝑘).

(6) This is similar to proof (5).
(7) Since 𝑘 ⊆̃ ℎ ∪̃ 𝑘, from (3), apr

𝑓𝐷

(𝑘) ⊆̃ apr
𝑓𝐷

(ℎ ∪̃ 𝑘).
Similarly, apr

𝑓𝐷

(ℎ) ⊆̃ apr
𝑓𝐷

(ℎ ∪̃ 𝑘). Therefore, apr
𝑓𝐷

(ℎ ∪̃ 𝑘) ⊇̃

apr
𝑓𝐷

(𝑘) ∪̃ apr
𝑓𝐷

(ℎ).
(8) Let (𝑒, 𝑓(𝑒)) ∈ apr

𝑓𝐷
(ℎ ∪̃ 𝑘). By definition of soft 𝑓

𝐷
-

upper approximation, there exist some 𝑒 ∈ 𝐸 such that 𝑢 ∈

𝑓(𝑒) and 𝑓(𝑒) ∩ (ℎ ∪̃ 𝑘)(𝑒) ̸= 0. Hence, we get that either
𝑓(𝑒) ∩ ℎ(𝑒) ̸= 0 or 𝑓(𝑒) ∩ 𝑘(𝑒) ̸= 0. Then, (𝑒, 𝑓(𝑒)) ∈ apr

𝑓𝐷
(ℎ)

or (𝑒, 𝑓(𝑒)) ∈ apr
𝑓𝐷
(ℎ). This shows that

apr
𝑓𝐷
(ℎ ∪̃ 𝑘) ⊆̃ apr

𝑓𝐷
(ℎ) ∪̃ apr

𝑓𝐷
(𝑘) . (32)

To prove the reverse inclusion, note that 𝑘 ⊆̃ ℎ ∪̃ 𝑘 and
ℎ ⊆̃ ℎ ∪̃ 𝑘; then from (3) apr

𝑓𝐷
(𝑘) ⊆̃ apr

𝑓𝐷
(ℎ ∪̃ 𝑘) and

apr
𝑓𝐷
(ℎ) ⊆̃ apr

𝑓𝐷
(ℎ ∪̃ 𝑘), respectively. Thus,

apr
𝑓𝐷
(ℎ) ∪̃ apr

𝑓𝐷
(𝑘) ⊆̃ apr

𝑓𝐷
(ℎ ∪̃ 𝑘) . (33)

From (32) and (33),

apr
𝑓𝐷
(ℎ ∪̃ 𝑘) = apr

𝑓𝐷
(ℎ) ∪̃ apr

𝑓𝐷
(𝑘) . (34)

Definition 49. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let ℎ, 𝑘 ∈ S(𝑈). We

define

ℎS
𝑓𝐷
𝑘 ⇐⇒ apr

𝑓𝐷

(ℎ) = apr
𝑓𝐷

(𝑘) ,

ℎ_
𝑓𝐷
𝑘 ⇐⇒ apr

𝑓𝐷
(ℎ) = apr

𝑓𝐷
(𝑘) ,

ℎ ≍
𝑓𝐷
𝑘 ⇐⇒ ℎS

𝑓𝐷
𝑘 = ℎ_

𝑓𝐷
𝑘.

(35)

These binary relations are called the lower soft class rough
equal relation and the upper soft class rough equal relation,
respectively.

Theorem 50. Let 𝑓
𝐷

∈ SC𝐸
𝐷
(𝑈) and let ℎ, 𝑘, ℎ, and 𝑘


∈

S(𝑈). Then,

(1) ℎ_
𝑓𝐷
𝑘 ⇔ ℎ_

𝑓𝐷
(ℎ ∪̃ 𝑘)_

𝑓𝐷
𝑘;

(2) ℎ_
𝑓𝐷
ℎ
, 𝑘_

𝑓𝐷
𝑘

⇒ (ℎ ∪̃ 𝑘)_

𝑓𝐷
(ℎ

∪̃ 𝑘

);

(3) ℎ_
𝑓𝐷
𝑘 ⇒ ℎ ∪̃ (�̂� \̃ 𝑘)_

𝑓𝐷
�̂�;
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(4) ℎ ⊆̃ 𝑘, 𝑘_
𝑓𝐷
Φ ⇒ ℎ_

𝑓𝐷
Φ;

(5) ℎ ⊆̃ 𝑘, ℎ_
𝑓𝐷
�̂� ⇒ 𝑘_

𝑓𝐷
�̂�.

Proof. (1) Assume that ℎ_
𝑓𝐷
𝑘; then apr

𝑓𝐷
(ℎ) = apr

𝑓𝐷
(𝑘).

From Theorem 48, we know that apr
𝑓𝐷
(ℎ ∪̃ 𝑘) = apr

𝑓𝐷
(ℎ) ∪̃

apr
𝑓𝐷
(𝑘). Thus, apr

𝑓𝐷
(ℎ ∪̃ 𝑘) = apr

𝑓𝐷
(ℎ) = apr

𝑓𝐷
(𝑘) and so

ℎ_
𝑓𝐷
(ℎ ∪̃ 𝑘)_

𝑓𝐷
𝑘. Conversely, suppose that ℎ_

𝑓𝐷
(ℎ ∪̃

𝑘)_
𝑓𝐷
𝑘. From transitivity of_

𝑓𝐷
, ℎ_
𝑓𝐷
𝑘.

(2) Suppose that ℎ_
𝑓𝐷
ℎ
 and 𝑘_

𝑓𝐷
𝑘
; then, from

definition, apr
𝑓𝐷
(ℎ) = apr

𝑓𝐷
(ℎ

) and apr

𝑓𝐷
(𝑘) = apr

𝑓𝐷
(𝑘

).

From Theorem 48, apr
𝑓𝐷
(ℎ ∪̃ 𝑘) = apr

𝑓𝐷
(ℎ) ∪̃ apr

𝑓𝐷
(𝑘)

and apr
𝑓𝐷
(ℎ

∪̃ 𝑘

) = apr

𝑓𝐷
(ℎ

) ∪̃ apr

𝑓𝐷
(𝑘

). Hence, we get

apr
𝑓𝐷
(ℎ ∪̃ 𝑘) = apr

𝑓𝐷
(ℎ

∪̃ 𝑘

) and so (ℎ ∪̃ 𝑘)_

𝑓𝐷
(ℎ

∪̃ 𝑘

).

(3) Let ℎ_
𝑓𝐷
𝑘. Then, from definition, apr

𝑓𝐷
(ℎ) =

apr
𝑓𝐷
(𝑘). By Theorem 48, apr

𝑓𝐷
(ℎ ∪̃ (�̂� \̃ 𝑘)) = apr

𝑓𝐷
(ℎ) ∪̃

apr
𝑓𝐷
(�̂� \̃ 𝑘) and apr

𝑓𝐷
(�̂�) = apr

𝑓𝐷
(𝑘) ∪̃ apr

𝑓𝐷
(�̂� \̃ 𝑘).

It follows that apr
𝑓𝐷
(�̂�) = apr

𝑓𝐷
(ℎ ∪̃ (�̂� \̃ 𝑘)). Therefore,

ℎ ∪̃ (�̂� \̃ 𝑘)_
𝑓𝐷
�̂�.

(4) Let ℎ ⊆̃ 𝑘 and let 𝑘_
𝑓𝐷
Φ. FromTheorem 48, we get

apr
𝑓𝐷
(ℎ) ⊆̃ apr

𝑓𝐷
(𝑘) = apr

𝑓𝐷
Φ = Φ. Thus, apr

𝑓𝐷
(ℎ) = Φ =

apr
𝑓𝐷
Φ and so ℎ_

𝑓𝐷
Φ.

(5) Suppose that ℎ ⊆̃ 𝑘 and ℎ_
𝑓𝐷
�̂�. By Theorem 48,

we have apr
𝑓𝐷
(𝑘) ⊇̃ apr

𝑓𝐷
ℎ = apr

𝑓𝐷
�̂�. Also, since 𝑘 ⊆ �̂�,

apr
𝑓𝐷
(𝑘) ⊆̃ apr

𝑓𝐷
�̂�. Hence, apr

𝑓𝐷
(𝑘) = apr

𝑓𝐷
(�̂�), and so

𝑘_
𝑓𝐷
�̂�.

Definition 51. Let 𝑓
𝐷
, 𝑔
𝐷
∈ SC𝐸

𝐷
(𝑈) and let ℎ ∈ S(𝑈). We

define

𝑓
𝐷
S
ℎ
𝑔
𝐷
⇐⇒ apr

𝑓𝐷

(ℎ) = apr
𝑔𝐷

(ℎ) ,

𝑓
𝐷
_
ℎ
𝑔
𝐷
⇐⇒ apr

𝑓𝐷
(ℎ) = apr

𝑔𝐷
(ℎ) ,

𝑓
𝐷
≍
ℎ
𝑔
𝐷
⇐⇒ 𝑓

𝐷
S
ℎ
𝑔
𝐷
= 𝑓
𝐷
_
ℎ
𝑔
𝐷
.

(36)

These binary relations are called the lower soft class rough ℎ-
equal relation and the upper soft class rough ℎ-equal relation,
respectively.

Theorem 52. Let 𝑓
𝐷
, 𝑔
𝐷
, 𝑓


𝐷
, and 𝑔

𝐷
∈ SC𝐸

𝐷
(𝑈) and let ℎ ∈

S(𝑈). Then,

(1) 𝑓
𝐷
_
ℎ
𝑔
𝐷
⇔ 𝑓
𝐷
_
ℎ
(𝑓
𝐷
⊓ 𝑔
𝐷
)_
ℎ
𝑔
𝐷
;

(2) 𝑓
𝐷
_
ℎ
𝑓


𝐷
, 𝑔
𝐷
_
ℎ
𝑔


𝐷
⇒ (𝑓
𝐷
⊓ 𝑓


𝐷
)_
ℎ
(𝑔
𝐷
⊓ 𝑔


𝐷
);

(3) 𝑓
𝐷
_
ℎ
𝑔
𝐷
⇒ 𝑓
𝐷
⊓ (U \̃ 𝑔

𝐷
)_
ℎ
U;

(4) 𝑓
𝐷
⊑̃ 𝑔
𝐷
, 𝑔
𝐷
_
ℎ
Ø ⇒ 𝑓

𝐷
_
ℎ
Ø;

(5) 𝑓
𝐷
⊑̃ 𝑔
𝐷
, 𝑓
𝐷
_
ℎ
U ⇒ 𝑔

𝐷
_
ℎ
U.

Proof. (1) Assume that 𝑓
𝐷
_
ℎ
𝑔
𝐷
; then apr

𝑓𝐷
(ℎ) = apr

𝑔𝐷
(ℎ).

From Theorem 47, we know that apr
𝑓𝐷⊓𝑔𝐷

(ℎ) = apr
𝑓𝐷
(ℎ) ∩̃

apr
𝑔𝐷
(ℎ). Thus, apr

𝑓𝐷⊓𝑔𝐷
(ℎ) = apr

𝑓𝐷
(ℎ) = apr

𝑔𝐷
(ℎ)

and so 𝑓
𝐷
_
ℎ
(𝑓
𝐷
⊓ 𝑔
𝐷
)_
ℎ
𝑔
𝐷
. Conversely, suppose that

𝑓
𝐷
_
ℎ
(𝑓
𝐷
⊓𝑔
𝐷
)_
ℎ
𝑔
𝐷
. From transitivity of_

ℎ
, 𝑓
𝐷
_
ℎ
𝑔
𝐷
.

(2) Suppose that 𝑓
𝐷
_
ℎ
𝑓


𝐷
and 𝑔

𝐷
_
ℎ
𝑔


𝐷
; then, from

definition, apr
𝑓𝐷
(ℎ) = apr

𝑓


𝐷

(ℎ) and apr
𝑔𝐷
(ℎ) = apr

𝑔


𝐷

(ℎ).
From Theorem 47, apr

𝑓𝐷⊓𝑔𝐷
(ℎ) = apr

𝑓𝐷
(ℎ) ∩̃ apr

𝑔𝐷
(ℎ) =

apr
𝑓


𝐷

(ℎ) ∩̃ apr
𝑔


𝐷

(ℎ). So apr
𝑓𝐷⊓𝑔𝐷

(ℎ) = apr
𝑓


𝐷
⊓𝑔


𝐷

(ℎ) and
(𝑓
𝐷
⊓ 𝑔
𝐷
)_
ℎ
(𝑓


𝐷
⊓ 𝑔


𝐷
).

(3) The proof can be made by similar way to proof of (1)
and (2).

(4) Let 𝑓
𝐷
⊑ 𝑔
𝐷
and 𝑔

𝐷
_
ℎ
Ø. Then, apr

𝑔𝐷
(ℎ) = aprØ(ℎ)

and since 𝑓
𝐷

⊑ 𝑔
𝐷
, apr
𝑓𝐷
(ℎ) ⊆̃ aprØ(ℎ) = Φ. Therefore,

apr
𝑓𝐷
(ℎ) = aprØ(ℎ). We have 𝑓

𝐷
_
ℎ
Ø.

(5) The proof can be made by similar way to (4).

5. Decision Making Using Soft Rough Class

In this section, some concepts are defined to construct a
decisionmakingmethod using soft rough class and a decision
making algorithm is given. Then, an application of proposed
decision making method is made for a real problem.

Definition 53. Let 𝑓
𝐷

∈ SC𝐸
𝐷
(𝑈) and let 𝑔 be a soft set

(reference soft set) over 𝑈. Then, consistency degree of soft
set 𝑔 related to parameter 𝑒 ∈ 𝐸 and soft class 𝑓

𝐷
, denoted by

𝛾
𝑔

𝑓𝐷
(𝑒), is formulated as follows:

𝛾
𝑔

𝑓𝐷
(𝑒) =


𝑔
𝑓𝐷

(𝑒)



𝑔
𝑓𝐷
(𝑒)


. (37)

According to soft class 𝑓
𝐷
consistency degree of soft set

𝑔, denoted by Γ𝑔
𝑓𝐷
, is formulated as follows:

Γ
𝑔

𝑓𝐷
=

1

|𝐸|
∑

𝑒∈𝐸

𝛾
𝑔

𝑓𝐷
(𝑒) . (38)

Definition 54. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑔 be a soft set over

𝑈. Then, relative consistence degree (rcd) between soft class
𝑓
𝐷
− {𝑑
𝑖
} and soft set 𝑔 related to parameter 𝑒 ∈ 𝐸, denoted

by 𝛾𝑔
𝑓𝐷−{𝑓𝑑𝑖

}
(𝑒), is formulated as follows:

𝛾
𝑔

𝑓𝐷−{𝑓𝑑𝑖
}
(𝑒) =



𝑔
𝑓𝐷−{𝑓𝑑𝑖

}
(𝑒)



𝑔
𝑓𝐷−{𝑓𝑑𝑖

}
(𝑒)


. (39)

Between soft class 𝑓
𝐷
− {𝑑
𝑖
} and soft set 𝑔 total relative

consistency degree is formulated as follows:

Γ
𝑔

𝑓𝐷−{𝑓𝑑𝑖
}
=

1

|𝐸|
∑

𝑒∈𝐸

𝛾
𝑔

𝑓𝐷−{𝑓𝑑𝑖
}
(𝑒) . (40)

Definition 55. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑔 be a soft set over

𝑈.Then Γ𝑔
𝑓𝐷
−Γ
𝑔

𝑓𝐷−{𝑓𝑑𝑖
}
is called effectiveness of decisionmaker

𝑑
𝑖
and is denoted by 𝑒(𝑑

𝑖
).

Now we will give relations between two decision makers
in decision maker set𝐷.



10 Mathematical Problems in Engineering

Table 3: The tabular representation of the soft class 𝑓
𝐷
.

𝑓
𝐷

𝑓
𝑑1

𝑓
𝑑2

𝑓
𝑑3

𝑓
𝑑4

𝑓
𝑑5

𝑡
1

{𝑢
1
, 𝑢
3
, 𝑢
4
} {𝑢

1
, 𝑢
2
} {𝑢

2
, 𝑢
3
, 𝑢
5
} {𝑢

1
, 𝑢
3
} {𝑢

1
, 𝑢
3
, 𝑢
5
}

𝑡
2

{𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
6
} {𝑢

3
, 𝑢
6
} {𝑢

1
, 𝑢
4
, 𝑢
7
} {𝑢

1
, 𝑢
2
, 𝑢
8
} { }

𝑡
3

{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
} {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} { } {𝑢

1
, 𝑢
3
, 𝑢
4
} {𝑢

1
, 𝑢
8
}

𝑡
4

{ } {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
} {𝑢

5
, 𝑢
8
} {𝑢

7
, 𝑢
8
} {𝑢

1
, 𝑢
3
, 𝑢
5
}

𝑡
5

{𝑢
2
, 𝑢
4
, 𝑢
7
} {𝑢

1
, 𝑢
2
} {𝑢

3
, 𝑢
5
, 𝑢
7
} {𝑢

2
, 𝑢
5
, 𝑢
8
} {𝑢

1
, 𝑢
4
, 𝑢
6
}

Definition 56. Let 𝑓
𝐷
∈ SC𝐸

𝐷
(𝑈) and let 𝑔 be a soft set over

𝑈. Effectiveness relations between 𝑑
𝑖
and 𝑑

𝑗
are defined as

follows:

(1) If 𝑒(𝑑
𝑖
) >
𝑔
𝑒(𝑑
𝑗
), 𝑑
𝑖
is more effective than 𝑑

𝑗
.

(2) If 𝑒(𝑑
𝑖
) =
𝑔
𝑒(𝑑
𝑗
), 𝑑
𝑖
has same effect as 𝑑

𝑗
.

(3) If 𝑒(𝑑
𝑖
) <
𝑔
𝑒(𝑑
𝑗
), 𝑑
𝑗
is more effective than 𝑑

𝑖
.

Algorithm 57.

Step 1. Construct a soft class 𝑓
𝐷
and reference soft set 𝑔 over

𝑈.

Step 2. Find the consistency degree of soft set 𝑔 denoted by
𝛾
𝑔

𝑓𝐷
(𝑒) related to parameter 𝑒 ∈ 𝐸.

Step 3. Find consistency degree of soft set 𝑔 according to soft
class 𝑓

𝐷
.

Step 4. Find total relative consistency degree between soft
class 𝑓

𝐷
− {𝑑
𝑖
} and soft set 𝑔.

Step 5. Find effectiveness of each decision maker 𝑑
𝑖
∈ 𝐷.

Step 6. Chose effective decision maker.

6. Applied Example

Assume that an investment company wants to employ stock
market analysts. Five persons apply for this position in the
company and the department of human resources wants to
make appropriate choice among the applicants. Therefore,
department of human resources wants some previous eval-
uations made by applicants 𝑑

1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, and 𝑑

5
for firms

𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
in different times 𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
in

the last two years.

Step 1. According to the appreciation criteria, evaluations of
applicants 𝑑

1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, and 𝑑

5
performed in different times

specified by human resources department are represented by
soft sets 𝑓

𝑑1
, 𝑓
𝑑2
, 𝑓
𝑑3
, 𝑓
𝑑4
, and 𝑓

𝑑5
given as follows:

𝑓
𝑑1
= {(𝑡
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) , (𝑡
2
, {𝑢
1
, 𝑢
4
, 𝑢
5
, 𝑢
6
}) ,

(𝑡
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
8
}) , (𝑡
4
, {}) , (𝑡

5
, {𝑢
2
, 𝑢
4
, 𝑢
7
})} ,

Table 4:The tabular representation of the consistency degree of soft
set 𝑔 for 𝑡

𝑖
(𝑖 = 1, 2, 3, 4, 5).

𝑡
1

𝑡
2

𝑡
3

𝑡
4

𝑡
5

𝛾
𝑔

𝑓𝐷
0.800 0.666 1.000 0.600 0.500

𝑓
𝑑2
= {(𝑡
1
, {𝑢
1
, 𝑢
2
}) , (𝑡
2
, {𝑢
3
, 𝑢
6
}) ,

(𝑡
3
, {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
}) , (𝑡
4
, {𝑢
1
, 𝑢
3
, 𝑢
7
, 𝑢
8
}) ,

(𝑡
5
, {𝑢
1
, 𝑢
2
})} ,

𝑓
𝑑3
= {(𝑡
1
, {𝑢
2
, 𝑢
3
, 𝑢
5
}) , (𝑡
2
, {𝑢
1
, 𝑢
4
, 𝑢
7
}) , (𝑡
3
, {}) ,

(𝑡
4
, {𝑢
5
, 𝑢
8
}) , (𝑡
5
, {𝑢
3
, 𝑢
5
, 𝑢
7
})} ,

𝑓
𝑑4
= {(𝑡
1
, {𝑢
1
, 𝑢
3
}) , (𝑡
2
, {𝑢
1
, 𝑢
2
, 𝑢
8
}) , (𝑡
3
, {𝑢
1
, 𝑢
3
, 𝑢
4
}) ,

(𝑡
4
, {𝑢
7
, 𝑢
8
}) , (𝑡
5
, {𝑢
2
, 𝑢
5
, 𝑢
8
})} ,

𝑓
𝑑5
= {(𝑡
1
, {𝑢
1
, 𝑢
3
, 𝑢
5
}) , (𝑡
2
, {}) , (𝑡

3
, {𝑢
1
, 𝑢
8
}) ,

(𝑡
4
, {𝑢
1
, 𝑢
3
, 𝑢
5
}) , (𝑡
5
, {𝑢
1
, 𝑢
4
, 𝑢
6
})} .

(41)

Department of human resources has real results previously
obtained in specified times: 𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, and 𝑡

5
. These real

results are represented by soft set 𝑔 (reference soft set) as
follows:

𝑔 = {(𝑡
1
, {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
5
}) , (𝑡
2
, {𝑢
3
, 𝑢
6
, 𝑢
7
}) , (𝑡
3
, 𝑈) ,

(𝑡
4
, {𝑢
5
, 𝑢
7
, 𝑢
8
}) , (𝑡
5
, {𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
7
})} .

(42)

Tabular representation of soft class 𝑓
𝐷

= {𝑓
𝑑1
, 𝑓
𝑑2
, 𝑓
𝑑3
, 𝑓
𝑑4
,

𝑓
𝑑5
} is shown in Table 3.

Step 2. Using (37), consistency degree of soft set 𝑔 for time
parameters 𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, and 𝑡

5
is obtained as in Table 4.

Step 3. Using (38) and Table 4, consistency degree of soft set
𝑔 related to soft class 𝑓

𝐷
is obtained as Γ𝑔

𝑓𝐷
= 0.713.

Step 4. Using (39), relative consistency degrees of soft set 𝑔
with respect to soft class 𝑓

𝐷
are as in Table 5. And, from (40),

total relative consistency degrees of soft set 𝑔 with respect to
soft class 𝑓

𝐷
are as in Table 6.
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Table 5: Relative consistency degrees between soft set 𝑔 and 𝑓
𝐷
−

{𝑑
𝑖
}.

𝑓
𝐷

𝑡
1

𝑡
2

𝑡
3

𝑡
4

𝑡
5

𝛾
𝑔

𝑓𝐷−{𝑓𝑑1
}

0.750 0.400 1.000 0.600 0.250

𝛾
𝑔

𝑓𝐷−{𝑓𝑑2
}

0.750 0.000 1.000 0.600 0.375

𝛾
𝑔

𝑓𝐷−{𝑓𝑑3
}

0.200 0.400 1.000 0.400 0.571

𝛾
𝑔

𝑓𝐷−{𝑓𝑑4
}

0.800 0.500 1.000 0.400 0.666

𝛾
𝑔

𝑓𝐷−{𝑓𝑑5
}

0.600 0.666 1.000 0.600 0.571

Table 6: Total relative consistency degrees between soft set 𝑔 and
soft class 𝑓

𝐷
− {𝑑
𝑖
}.

Total relative consistency formula Values
Γ
𝑔

𝑓𝐷−{𝑓𝑑1
}

0.600

Γ
𝑔

𝑓𝐷−{𝑓𝑑2
}

0.535

Γ
𝑔

𝑓𝐷−{𝑓𝑑3
}

0.514

Γ
𝑔

𝑓𝐷−{𝑓𝑑4
}

0.673

Γ
𝑔

𝑓𝐷−{𝑓𝑑5
}

0.687

Step 5. UsingDefinition 55, effectiveness of the applicants 𝑑
1
,

𝑑
2
, 𝑑
3
, 𝑑
4
, and 𝑑

5
is obtained as follows:

𝑒 (𝑑
1
) = 0.113,

𝑒 (𝑑
2
) = 0.278,

𝑒 (𝑑
3
) = 0.199,

𝑒 (𝑑
4
) = 0.040,

𝑒 (𝑑
5
) = 0.026.

(43)

Step 6. FromDefinition 56, effectiveness of applicants can be
ordered as follows:

𝑒 (𝑑
2
) >
𝑔
𝑒 (𝑑
3
) >
𝑔
𝑒 (𝑑
1
) >
𝑔
𝑒 (𝑑
4
) >
𝑔
𝑒 (𝑑
5
) . (44)

Then, 𝑑
2
is the most effective decision maker in soft class

𝑓
𝐷
by soft set 𝑔.

7. Conclusion

In this paper, we have defined concepts of soft class, soft
class operations, and soft rough class.Thenwe have presented
a decision making method based on the soft rough class.
Finally, we have provided an example that demonstrated that
this decision making method can successfully work. It can be
applied to problems of many fields that contain uncertainty.
Next, we can define fuzzy soft class and fuzzy soft rough class
and their operations as generalization of soft classes and soft
rough classes. Also a reduction method can be developed
based on soft class and soft rough classes.
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